Articles | Volume 11, issue 2
https://doi.org/10.5194/se-11-329-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-329-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy
Maurizio Ercoli
CORRESPONDING AUTHOR
Dip. di Fisica e Geologia – Università degli Studi di Perugia,
Perugia, Italy
Interuniversity Center for Research on 3D-Seismotectonics
(Centro InterRUniversitario per l'Analisi SismoTettonica tridimensionale con
applicazioni territoriali – CRUST), Chieti Scalo, Italy
Emanuele Forte
Dept. of Mathematics and Geosciences, University of Trieste, Trieste,
Italy
Massimiliano Porreca
Dip. di Fisica e Geologia – Università degli Studi di Perugia,
Perugia, Italy
Interuniversity Center for Research on 3D-Seismotectonics
(Centro InterRUniversitario per l'Analisi SismoTettonica tridimensionale con
applicazioni territoriali – CRUST), Chieti Scalo, Italy
Ramon Carbonell
Dept. Structure & Dynamics of the Earth, CSIC-Inst. Earth Sciences
Jaume Almera, Barcelona, Spain
Cristina Pauselli
Dip. di Fisica e Geologia – Università degli Studi di Perugia,
Perugia, Italy
Interuniversity Center for Research on 3D-Seismotectonics
(Centro InterRUniversitario per l'Analisi SismoTettonica tridimensionale con
applicazioni territoriali – CRUST), Chieti Scalo, Italy
Giorgio Minelli
Dip. di Fisica e Geologia – Università degli Studi di Perugia,
Perugia, Italy
Interuniversity Center for Research on 3D-Seismotectonics
(Centro InterRUniversitario per l'Analisi SismoTettonica tridimensionale con
applicazioni territoriali – CRUST), Chieti Scalo, Italy
Massimiliano R. Barchi
Dip. di Fisica e Geologia – Università degli Studi di Perugia,
Perugia, Italy
Interuniversity Center for Research on 3D-Seismotectonics
(Centro InterRUniversitario per l'Analisi SismoTettonica tridimensionale con
applicazioni territoriali – CRUST), Chieti Scalo, Italy
Related authors
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Lauro Chiaraluce, Richard Bennett, David Mencin, Wade Johnson, Massimiliano Rinaldo Barchi, Marco Bohnhoff, Paola Baccheschi, Antonio Caracausi, Carlo Calamita, Adriano Cavaliere, Adriano Gualandi, Eugenio Mandler, Maria Teresa Mariucci, Leonardo Martelli, Simone Marzorati, Paola Montone, Debora Pantaleo, Stefano Pucci, Enrico Serpelloni, Mariano Supino, Salvatore Stramondo, Catherine Hanagan, Liz Van Boskirk, Mike Gottlieb, Glen Mattioli, Marco Urbani, Francesco Mirabella, Assel Akimbekova, Simona Pierdominici, Thomas Wiersberg, Chris Marone, Luca Palmieri, and Luca Schenato
Sci. Dril., 33, 173–190, https://doi.org/10.5194/sd-33-173-2024, https://doi.org/10.5194/sd-33-173-2024, 2024
Short summary
Short summary
We built six observatory stations in central Italy to monitor a fault potentially capable of generating a strong earthquake. Each site has 80–160 m deep wells equipped with strainmeters and seismometers. At the surface, we placed GNSS antennas and seismic and meteorological sensors. All data, which are open access for the scientific community, will help us to better understand the complex physical and chemical processes that lead to the generation of the full range of slow and fast earthquakes.
Paola Montone, Simona Pierdominici, Maria Teresa Mariucci, Francesco Mirabella, Marco Urbani, Assel Akimbekova, Lauro Chiaraluce, Wade Johnson, and Massimiliano Rinaldo Barchi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1249, https://doi.org/10.5194/egusphere-2024-1249, 2024
Short summary
Short summary
The STAR project set out to drill 6 shallow holes and use geophysical logging to figure out the best depth for placing seismometers and strainmeters, to image the upper crust and in particular the Alto Tiberina fault, Italy. These measurements give us a better idea of what the rocks are like, helping us connect what we know from literature with what we find underground, giving solid information on rock properties, which helps understand the first couple hundred meters of the Earth's crust.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Maurizio Ercoli, Daniele Cirillo, Cristina Pauselli, Harry M. Jol, and Francesco Brozzetti
Solid Earth, 12, 2573–2596, https://doi.org/10.5194/se-12-2573-2021, https://doi.org/10.5194/se-12-2573-2021, 2021
Short summary
Short summary
Past strong earthquakes can produce topographic deformations, often
memorizedin Quaternary sediments, which are typically studied by paleoseismologists through trenching. Using a ground-penetrating radar (GPR), we unveiled possible buried Quaternary faulting in the Mt. Pollino seismic gap region (southern Italy). We aim to contribute to seismic hazard assessment of an area potentially prone to destructive events as well as promote our workflow in similar contexts around the world.
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Juvenal Andrés, Puy Ayarza, Martin Schimmel, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 11, 2499–2513, https://doi.org/10.5194/se-11-2499-2020, https://doi.org/10.5194/se-11-2499-2020, 2020
Juvenal Andrés, Deyan Draganov, Martin Schimmel, Puy Ayarza, Imma Palomeras, Mario Ruiz, and Ramon Carbonell
Solid Earth, 10, 1937–1950, https://doi.org/10.5194/se-10-1937-2019, https://doi.org/10.5194/se-10-1937-2019, 2019
David Marti, Ignacio Marzan, Jana Sachsenhausen, Joaquina Alvarez-Marrón, Mario Ruiz, Montse Torne, Manuela Mendes, and Ramon Carbonell
Solid Earth, 10, 177–192, https://doi.org/10.5194/se-10-177-2019, https://doi.org/10.5194/se-10-177-2019, 2019
Short summary
Short summary
A detailed knowledge of the very shallow subsurface has become of crucial interest for modern society, especially if it hosts critical surface infrastructures such as temporary waste storage sites. The use of indirect methods to characterize the internal structure of the subsurface has been successfully applied, based on the 3-D distribution of seismic velocities and well-log data, which are of great interest for civil engineering companies.
Joaquina Alvarez-Marrón, Fernando Bastida, Ernest Rutter, Ramon Carbonell, and Charlotte M. Krawczyk
Solid Earth, 7, 1199–1205, https://doi.org/10.5194/se-7-1199-2016, https://doi.org/10.5194/se-7-1199-2016, 2016
Xènia Ogaya, Juan Alcalde, Ignacio Marzán, Juanjo Ledo, Pilar Queralt, Alex Marcuello, David Martí, Eduard Saura, Ramon Carbonell, and Beatriz Benjumea
Solid Earth, 7, 943–958, https://doi.org/10.5194/se-7-943-2016, https://doi.org/10.5194/se-7-943-2016, 2016
Short summary
Short summary
This paper explores the compatibility of seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in reservoir characterisation. The combination of the two methods together with well-log data at the Hontomín CO2 storage pilot plant (Spain) allowed a detailed characterisation of the shallow subsurface and defined the structural and fluid flow characteristics of the existing faults, which are key aspects for the risk assessment of the site.
Juvenal Andrés, Juan Alcalde, Puy Ayarza, Eduard Saura, Ignacio Marzán, David Martí, José Ramón Martínez Catalán, Ramón Carbonell, Andrés Pérez-Estaún, José Luis García-Lobón, and Félix Manuel Rubio
Solid Earth, 7, 827–841, https://doi.org/10.5194/se-7-827-2016, https://doi.org/10.5194/se-7-827-2016, 2016
I. Flecha, R. Carbonell, and R. W. Hobbs
Solid Earth, 4, 543–554, https://doi.org/10.5194/se-4-543-2013, https://doi.org/10.5194/se-4-543-2013, 2013
J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell
Solid Earth, 4, 481–496, https://doi.org/10.5194/se-4-481-2013, https://doi.org/10.5194/se-4-481-2013, 2013
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Tectonics
Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland
Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers
Conditional probability of distributed surface rupturing during normal-faulting earthquakes
Contrasting exhumation histories and relief development within the Three Rivers Region (south-east Tibet)
Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania
Relative timing of uplift along the Zagros Mountain Front Flexure (Kurdistan Region of Iraq): Constrained by geomorphic indices and landscape evolution modeling
Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Xiong Ou, Anne Replumaz, and Peter van der Beek
Solid Earth, 12, 563–580, https://doi.org/10.5194/se-12-563-2021, https://doi.org/10.5194/se-12-563-2021, 2021
Short summary
Short summary
The low-relief, mean-elevation Baima Xueshan massif experienced slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma and then regional rock uplift at 0.25 km/Myr since ~10 Ma. The high-relief, high-elevation Kawagebo massif shows much stronger local rock uplift related to the motion along a west-dipping thrust fault, at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. Mekong River incision plays a minor role in total exhumation in both massifs.
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020, https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Short summary
The Patos-Marinza oil field in Central Albania (40.71° N, 19.61° E) is one of the largest onshore oil fields in Europe. More than 7 million oil barrels are extracted per year from sandstone formations in western Albania. The regional seismicity culminated in December 2016, when a seismic sequence developed in the oil field, triggering the opening of a public inquiry. We take advantage of the Sentinel-1 radar images to show that a strong subsidence, probably induced, is taking place in the field.
Mjahid Zebari, Christoph Grützner, Payman Navabpour, and Kamil Ustaszewski
Solid Earth, 10, 663–682, https://doi.org/10.5194/se-10-663-2019, https://doi.org/10.5194/se-10-663-2019, 2019
Short summary
Short summary
Here, we assessed the maturity level and then relative variation of uplift time of three anticlines along the hanging wall of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq. We also estimated the relative time difference between the uplift time of more mature anticlines and less mature ones to be around 200 kyr via building a landscape evolution model. These enabled us to reconstruct a spatial and temporal evolution of these anticlines.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Cited articles
Allen, C. R., St. Amand, P., Richter, C. F., and Nordquist, J.:
Relationship between seismicity and geologic structure in the southern
California region, Bull. Seismol. Soc. Am., 55,
753–797, 1965.
Anderlini, L., Serpelloni, E., and Belardinelli, M. E.: Creep and locking of
a low-angle normal fault: Insights from the Altotiberina fault in the
Northern Apennines (Italy), Geophys. Res. Lett., 43, 4321–4329,
https://doi.org/10.1002/2016GL068604, 2016.
Anelli, L., Gorza, M., Pieri, M., and Riva, M.: Subsurface well data in the
Northern Apennines (Italy). Memorie della Società Geologica Italiana,
48, 461–471, 1994.
Bally, A. W., Burbi, L., Cooper, C., and Ghelardoni, R.: Balanced
cross-sections and seismic reflection profiles across the central Apennines,
Memorie della Societa Geologica Italiana, 35, 257–310, 1986.
Barchi, M.: Integration of a seismic profile with surface and subsurface
geology in a cross-section through the Umbria-Marche Apennines, Bollettino
della Società Geologica Italiana, 110, 469–479, 1991.
Barchi, M., Landuzzi, A., Minelli, G., and Pialli, G.: Outer northern
Apennines. In anatomy of an orogen: The Apennines and adjacent Mediterranean
Basins, Netherlands, Springer, 215–253, 2001.
Barchi, M. R. and Mirabella, F.: The 1997–98 Umbria-Marche earthquake
sequence: “Geological” vs. “seismological” faults, Tectonophysics,
476, 170–179, https://doi.org/10.1016/j.tecto.2008.09.013, 2008.
Barchi, M. R., Minelli, G., and Pialli, G.: The CROP 03 Profile: a synthesis
of results on deep structures of the Northern Apennines, Mem. Soc. Geol.
It., 52, 383–400, 1998.
Barchi, M. R., Galadini, F., Lavecchia, G., Messina, P., Michetti, A. M.,
Peruzza, L., Pizzi, A., Tondi, E., and Vittori, E.: Sintesi delle conoscenze
sulle faglie attive in Italia Centrale: parametrizzazione ai fini della
caratterizzazione della pericolosità sismica, CNR-Gruppo Nazionale per
la Difesa dai Terremoti, Roma, 62 pp., 2000.
Barnes, A. E.: Theory of two-dimensional complex seismic trace analysis,
Geophysics, 61, 264–272, 1996.
Barnes, A. E.: Attributes for automating seismic facies analysis, Seg.
Technical Program Expanded Abstracts, 19, 553–556, https://doi.org/10.1190/1.1816121, 2000.
Barnes, A. E.: Displaying Seismic Data to Look Like Geology, in:
Attributes: New Views on Seismic Imaging–Their Use in Exploration and
Production, edited by: Marfurt, K. J., Gao, D., Barnes, A., Chopra, S., Corrao, A.,
Hart, B., James, H., Pacht, J., and Rosen, N. C., SEPM Society for
Sedimentary Geology, 31, https://doi.org/10.5724/gcs.11.31, 2011.
Barnes, A. E.: Handbook of Poststack Seismic Attributes, Society of
Exploration Geophysicists, 21, 268 pp., https://doi.org/10.1190/1.9781560803324, 2016.
Basili, R., Valensise, G., Vannoli, P., Burrato, P., Fracassi, U., Mariano,
S., Tiberti, M. M., and Boschi, E.: The Database of Individual Seismogenic Sources
(DISS), version 3: summarizing 20 years of research on Italy's earthquake
geology, Tectonophysics, 453, 20–43, 2008.
Beidinger, A., Decker, K., and Roch, K. H.: The Lassee segment of the
Vienna Basin fault system as a potential source of the earthquake of
Carnuntum in the fourth century AD, Int. J. Earth Sci.,
100, 1315–1329, 2011.
Bigi, S., Casero, P., and Ciotoli, G.: Seismic interpretation of the Laga
basin; constraints on the structural setting and kinematics of the central
Apennines, J. Geol. Soc., 168, 179–190, https://doi.org/10.1144/0016-76492010-084, 2011.
Blumetti, A. M., Coltorti, M., Dramis, F., and Farabollini, P.: Due sezioni
stratigrafiche nel Pleistocene medio della conca di Norcia; implicazioni
geomorfologiche e neotettoniche, Rend. Soc. Geol. Ital., 13, 17–26, 1990.
Blumetti, A. M., Dramis, F., and Michetti, A. M.: Fault-generated mountain
fronts in the central Apennines (Central Italy): Geomorphological features
and seismotectonic implications, Earth Surf. Proc. Land.,
18, 203–223, https://doi.org/10.1002/esp.3290180304, 1993.
Bohm, G., Luzi, L., and Galadini, F.: Tomographic depth seismic velocity model
below the plain of Norcia (Italy) for site effect studies, Bollettino di
geofisica Teorica ed Applicata, 52, 197–209, https://doi.org/10.4430/bgta0002, 2011.
Boncio, P., Brozzetti, F., Ponziani, F., Barchi, M., Lavecchia, G., and
Pialli, G.: Seismicity and extensional tectonics in the northern
Umbriamarche Apennines, Memorie della Societa Geologica Italiana, 52,
539–555, 1998.
Boncio, P., Brozzetti, F., and Lavecchia, G.: Architecture and seismotectonics
of a regional low-angle normal fault zone in central Italy, Tectonics,
19, 1038–1055, https://doi.org/10.1029/2000TC900023, 2000.
Bonini, L., Toscani, G., and Seno, S.: Three-dimensional segmentation and
different rupture behavior during the 2012 Emilia seismic sequence (Northern
Italy), Tectonophysics, 630, 33–42, 2014.
Bonini, L., Basili, R., Burrato, P., Cannelli, V., Fracassi, U., Maesano, F. E., Melini, D., Tarabusi, G., Tiberti, M. M., Vannoli, P., and Valensise, G.: Testing different tectonic models for the source of the Mw 6.5,
30 October 2016, Norcia earthquake (central Italy): A youthful normal fault,
or negative inversion of an old thrust?, Tectonics, 38, 990–1017,
https://doi.org/10.1029/2018TC005185, 2019.
Borre, K., Cacon, S., Cello, G., Kontny, B., Likke Andersen, H., Moratti,
G., Piccardi, L., Stemberk, J., Tondi, E., and Vilimek, V.: The COST project in
Italy: analysis and monitoring of seismogenic faults in the Gargano and
Norcia areas (centralsouthern Apennines, Italy), J. Geodyn., 36, 3–18,
2003.
Botter, C., Cardozo, N., Hardy, S., Leconte, I., and Escalona, A.: From mechanical
modeling to seismic imaging of faults: a synthetic workflow to study the
impact of faults on seismic, Mar. Pet. Geol., 57, 187–207, 2014.
Brewer, J. A., Matthews, D. H., Warner, M. R., Hall, J., Smythe, D. K., and
Whittington, R. J.: BIRPS deep seismic reflection studies of the British
Caledonides, Nature, 305, 206–210,
https://doi.org/10.1038/305206a0, 1983.
Brozzetti, F. and Lavecchia, G.: Seismicity and related extensional stress
field: the case of the Norcia seismic zone, Annales Tectonicae, 8, 38–57,
1994.
Brozzetti, F., Boncio, P., Cirillo, D., Ferrarini, F., de Nardis, R., Testa,
A., Liberi, F., and Lavecchia, G.: High resolution field mapping and
analysis of the August–October 2016 coseismic surface faulting (Central
Italy Earthquakes): slip distribution, parameterization and comparison with
global earthquakes, Tectonics, 38, 417–439, https://doi.org/10.1029/2018TC005305,
2019.
Bulhões, E. M.: Técnica “Volume de Amplitudes”. SBGF/6∘
Congresso Internacional da Sociedade Brasileira de Geofísica, Rio de
Janeiro, Anais, 1999 (in Portuguese).
Calamita, F. and Pizzi, A.: Recent and active extensional tectonics in the
southern Umbro-Marchean Apennines (Central Italy), Memorie della Società
Geologica Italiana, 48, 541–548, 1994.
Calamita, F., Coltorti, M., Deiana, G., Dramis, F., and Pambianchi, G.:
Neotectonic evolution and geomorphology of the Cascia and Norcia depressions
(Umbria-Marche Apennines), Geografia Fisica e Dinamica Quaternaria, 5,
263–276, 1982.
Calamita, F., Pace, P., and Satolli, S.: Coexistence of fault-propagation
and fault-bend folding in curve-shaped foreland fold-and-thrust belts:
examples from the Northern Apennines (Italy), Terra Nova, 24, 396–406,
2012.
Carvalho, J., Taha, R., Cabral, J., Carrilho, F., and Miranda, M.:
Geophysical characterization of the OtaVila Franca de Xira-Lisbon-Sesimbra
fault zone, Portugal, Geophys. J. Int., 174, 567-584, 2008.
Cavinato, G. P. and De Celles, P. G.: Extensional basins in the
tectonically bimodal central Apennines fold-thrust belt, Italy: Response to
corner flow above a subducting slab in retrograde motion, Geology, 27,
955–958, 1999.
Centamore, E., Adamoli, L., Berti, D., Bigi, G., Bigi, S., Casnedi, R., Cantalamessa, G.
Fumanti, F.
Morelli, C.
Micarelli, A.
Ridolfi, M., and
Salvucci, R.: Carta geologica dei bacini della Laga e del Cellino e dei rilievi
carbonatici circostanti, in: Studi Geologici Camerti, Vol. Spec.
Università degli Studi, Dipartimento di Scienze della Terra, SELCA, available at: http://193.204.8.201:8080/jspui/handle/1336/782,
Firenze, 1992.
Cheloni, D., Falcucci, E., and Gori, S.: Half-graben rupture geometry of
the 30 October 2016 MW 6.6 Mt. Vettore-Mt. Bove earthquake, central Italy,
J. Geophys. Res.-Sol. Ea., 124 , 4091–4118,
https://doi.org/10.1029/2018JB015851, 2018.
Chen, Q. and Sidney, S.: Seismic Attribute Technology for Reservoir
Forecasting and Monitoring, The Leading Edge, 16, 445,
https://doi.org/10.1190/1.1437657, 1997.
Chiarabba, C., De Gori, P., Cattaneo, M., Spallarossa, D., and Segou, M.:
Faults geometry and the role of fluids in the 2016–2017 Central Italy
seismic sequence, Geophys. Res. Lett., 45, 6963–6971, 2018.
Chiaraluce, L., Barchi, M., Collettini, C., Mirabella, F., and Pucci, S.:
Connecting seismically active normal faults with Quaternary geological
structures in a complex extensional environment: the Colfiorito 1997 case
history (northern Apennines, Italy), Tectonics 24, TC1002,
https://doi.org/10.1029/2004TC001627, 2005.
Chiaraluce, L., Di Stefano, R., Tinti, E., Scognamiglio, L., Michele, M.,
Casarotti, E., Cattaneo, M., De Gori, P., Chiarabba, C., Monachesi, G., Lombardi, A., Valoroso, L., Latorre, D., and Marzorati, S.: The 2016 Central Italy seismic sequence: A first look
at the mainshocks, aftershocks, and source models, Seismol. Res. Lett., 88, 757–771, https://doi.org/10.1785/0220160221, 2017.
Chopra, S. and Marfurt, K. J.: Seismic attributes – A Historical
Perspective, Geophysics, 70, 3, https://doi.org/10.1190/1.2098670, 2005.
Chopra, S. and Marfurt, K. J.: Seismic Attributes for Prospect
Identification and Reservoir Characterization, SEG Geophysical Developments
Series No. 11, edited by: Hill, S. J. (series editor and volume editor), ISBN
978-1-56080-141-2 (volume) – ISBN 978-0-931830-41-9 (series), 464 pp., 2007.
Chopra, S. and Marfurt, K. J.: Emerging and future trends in seismic
attributes, The Leading Edge, 27, 298–318, https://doi.org/10.1190/1.2896620, 2008.
Chopra, S. and Marfurt, K. J.: Volume co-rendering of seismic attributes – A
great aid to seismic interpretation, SEG Technical Program Expanded
Abstracts, January 2011, 1150–1154, 2011.
Ciaccio, M., Barchi, M. R., Chiarabba, C., Mirabella, F., and Stucchi, E.:
Seismological, geological and geophysical constraints for the Gualdo Tadino
fault, Umbria-Marche Apennines (central Italy), Tectonophysics, 406, 233–247, 2005.
Cinti, F. R., De Martini, P. M., Pantosti, D., Baize, S., Smedile, A.,
Villani, F., Civico, R., Pucci, S., Lombardi, A. M., Sapia, V., Pizzimenti, L., Caciagli, M., and Brunori, C. A.: 22-kyr-long record of surface faulting along the source
of the 30 October 2016 earthquake (central Apennines, Italy), from
integrated paleoseismic data sets, J. Geophys. Res.-Sol. Ea., 124, 9021–9048, https://doi.org/10.1029/2019JB017757,
2019.
Civico, R., Pucci, S., Villani, F., Pizzimenti, L., De Martini, P. M.,
Nappi, R., and the Open EMERGEO Working Group: Surface ruptures following
the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy, J.
Maps, 14, 151–160, https://doi.org/10.1080/17445647.2018.1441756, 2018.
Coltorti, M. and Farabollini, P.: Quaternary evolution of the “Castelluccio di
Norcia” basin (Umbro-Marchean Apennines, central Italy), Il Quaternario,
8, 149–166, 1995.
Cook, F. A., Albaugh, D. S., Brown, L. D., Kaufman, S., Oliver, J. E., and
Hatcher Jr., R. D.: Thin-skinned tectonics in the crystalline southern
Appalachians; COCORP seismic-reflection profiling of the Blue Ridge and
Piedmont, Geology, 7, 563–567, 1979.
De Guidi, G., Vecchio, A., Brighenti, F., Caputo, R., Carnemolla, F., Di Pietro, A., Lupo, M., Maggini, M., Marchese, S., Messina, D., Monaco, C., and Naso, S.: Brief communication: Co-seismic displacement on 26 and 30 October 2016 (Mw = 5.9 and 6.5) – earthquakes in central Italy from the analysis of a local GNSS network, Nat. Hazards Earth Syst. Sci., 17, 1885–1892, https://doi.org/10.5194/nhess-17-1885-2017, 2017.
Deschamps, A., Iannaccone, G., and Scarpa, R.: The Umbrian earthquake
(Italy) of 19 September 1979, Annales Geophysicae, 2, 29–36, 1984.
Di, H. and AlRegib, G.: Semi-automatic fault/fracture interpretation based
on seismic geometry analysis, Geophysical Prospecting, 67, 1379–1391, https://doi.org/10.1111/1365-2478.12769, 2019.
Di Giulio, G., Ercoli, M., Vassallo, M., and Porreca, M.: Investigation of the
Norcia basin (Central Italy) through ambient vibration measurements and
geological surveys, Eng. Geol., 267, 105501, https://doi.org/10.1016/j.enggeo.2020.105501,
2020.
DISS Working Group: Database of Individual Seismogenic Sources (DISS),
Version 3.2.1: A compilation of potential sources for earthquakes larger
than M 5.5 in Italy and surrounding areas, available at: http://diss.rm.ingv.it/diss/ (last access: January 2019),
Istituto Nazionale di Geofisica e Vulcanologia, https://doi.org/10.6092/INGV.IT-DISS3.2.1, 2018.
Ehsan, S. A., Carbonell, R., Ayarza, P., Martí, D.,
Pérez-Estaún, A., Martínez-Poyatos, D. J., Simancas, J. F.,
Azor, A., and Mansilla, L.: Crustal deformation styles along the reprocessed
deep seismic reflection transect of the Central Iberian Zone (Iberian
Peninsula), Tectonophysics, 621, 159–174,
https://doi.org/10.1016/j.tecto.2014.02.014, 2014.
Ehsan, S. A., Carbonell, R., Ayarza, P., Martí, D., Martínez
Poyatos, D., Simancas, J. F., Azor, A., Ayala, C., Torné, M., and
Pérez-Estaún, A.: Lithospheric velocity model across the Southern
Central Iberian Zone (Variscan Iberian Massif): The ALCUDIA wide-angle
seismic reflection transect, Tectonics, 34, 535–554, https://doi.org/10.1002/2014TC003661, 2015.
Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., and Federico, C.:
“Geophysical paleoseismology” through high resolution GPR data: A case of
shallow faulting imaging in Central Italy, J. Appl. Geophys.,
90, 27–40, https://doi.org/10.1016/j.jappgeo.2012.12.001, 2013.
Ercoli, M., Pauselli, C., Frigeri, A., Forte, E., and Federico, C.: 3-D GPR data
analysis for high-resolution imaging of shallow subsurface faults: the Mt
Vettore case study (Central Apennines, Italy), Geophys. J. Int., 198, 609–621, https://doi.org/10.1093/gji/ggu156, 2014.
Ercoli, M., Pauselli, C., Cinti, F. R., Forte, E., and Volpe, R.: Imaging of
an active fault: Comparison between 3D GPR data and outcrops at the
Castrovillari fault, Calabria, Italy, Interpretation, 3, SY57–SY66,
2015.
Ferrario, M. F. and Livio, F.: Characterizing the distributed faulting
during the 30 October 2016, Central Italy earthquake: A reference for fault
displacement hazard assessment, Tectonics, 37, 1256–1273,
https://doi.org/10.1029/2017TC004935, 2018.
Finetti, I. R., Boccaletti, M., Bonini, M., Del Ben, A., Geletti, R., Pipan,
M., and Sani, F.: Crustal section based on CROP seismic data across the
North Tyrrhenian–Northern Apennines–Adriatic Sea, Tectonophysics,
343, 135–163, 2001.
Forte, E., Pipan, M., Casabianca, D., Di Cuia, R., and Riva, A.: Imaging and
characterization of a carbonate hydrocarbon reservoir analogue using GPR
attributes, J. Appl. Geophys., 81, 76–87, 2012.
Forte, E., Dossi, M., Pipan, M., and Del Ben, A.: Automated phase attribute-based
picking applied to reflection seismics, Geophysics, 81, V55–V64, https://doi.org/10.1190/GEO2015-0333.1, 2016.
Galadini, F. and Galli, P.: Paleoseismology of silent faults in the
central Apennines (Italy): The Mt. Vettore and Laga Mts. Faults, Ann.
Geophys., 46, 815–836, https://doi.org/10.4401/ag-3457, 2003.
Galadini, F., Falcucci, E., Gori, S., Zimmaro, P., Cheloni, D., and Stewart,
J. P.: Active Faulting in Source Region of 2016–2017 Central Italy Event
Sequence, Earthquake Spectra, 34, 1557–1583, 2018.
Galli, P., Galadini, F., and Calzoni, F.: Surface faulting in Norcia (Central
Italy): a “paleoseismological perspective”, Tectonophysics, 403, 117–130,
2005.
Galli, P., Galadini, F., and Pantosti, D.: Twenty years of paleoseismology
in Italy, Earth-Sci. Rev., 88, 89–117, 2008.
Galli,P., Galderisi, A., Ilardo, I., Piscitelli, S., Scionti, V., Bellanova,
J., and Calzoni, F.: Holocene paleoseismology of the Norcia fault system
(Central Italy), Tectonophysics, 745, 154–169,
https://doi.org/10.1016/j.tecto.2018.08.008, 2018.
Galli, P., Galderisi, A., Peronace, E., Giaccio, B., Hajdas, I., Messina,
P., Pileggi, D., and Polpetta, F.: The awakening of the dormant
Mount Vettore fault (2016 central Italy earthquake, Mw 6.6): Paleoseismic
clues on its millennial silences, Tectonics, 38, 687–705,
https://doi.org/10.1029/2018TC005326, 2019.
Gersztenkorn, G. and Marfurt, K. J.: Eigenstructure-based coherence computations
as an aid to 3-D structural and stratigraphic mapping, Geophysics, 64,
1468–1479, 1999.
Gori, S., Falcucci, E., Galadini, F., Zimmaro, P., Stewart, J. P., Kayen, R.
E., Lingwall, B., Moro, M., Saroli, M., Pizzi, A., and Di Domenica, A.:
Surface faulting caused by the 2016 Central Italy seismic sequence,
Earthquake Spectra, 34, 1585–1610, https://doi.org/10.1193/111417EQS236MR, 2018.
Gruppo di Lavoro Sequenza Centro Italia: Rapporto Bollettino Sismico
Italiano sulla revisione dei giorni 24–26 agosto; 26–27 ottobre; 30 ottobre
– 1∘ novembre 2016, Bollettino Sismico Italiano (BSI), 13 pp.,
2019.
Ha, T. N., Marfurt, K. J., Wallet, B. C., and Hutchinson, B.: Pitfalls and implementation of data conditioning, attribute analysis, and self-organizing maps to 2D data: Application to the Exmouth Plateau, North Carnarvon Basin, Australia, Interpretation, 7, SG23–SG42, 2019.
Hale, D.: Methods to compute fault images, extract fault surfaces, and
estimate fault throws from 3D seismic images, Geophysics, 78, O33–O43,
https://doi.org/10.1190/geo2012-0331.1, 2013.
Hutchinson, B.: Application and Limitations of Seismic Attributes on 2D
Reconnaissance Surveys: Master's thesis, University of Oklahoma, 130 pp., available at:
https://shareok.org/handle/11244/34658 (last access: January 2019), 2016.
Iacopini, D. and Butler, R. W. H.: Imaging deformation in submarine thrust belts
using seismic attributes, Earth Planet. Sci. Lett., 302, 414–422, 2011.
Iacopini, D., Butler, R. W. H., and Purves, S.: Seismic imaging of thrust faults
and structural damage: a visualization workflow for deepwater thrust belts,
First Break, 30, 39–46, 2012.
Iacopini, D., Butler, R. W. H., Purves, S., McArdle, N., and De Freslon,
N.: Exploring the seismic expression of fault zones in 3D seismic volumes,
J. Struct. Geol., 89, 54–73, 2016.
Improta, L., Latorre, D., Margheriti, L., Nardi, A., Marchetti, A.,
Lombardi, A. M., Castello, B., Villani, F., Ciaccio, M. G., Mele, F. M.,
Moretti, M., and the Bollettino sismico Italiano Working Group:
Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence
(central Italy) constrained by the first high-quality catalog of early
Aftershocks, Scientific Reports, 9, 6921, https://doi.org/10.1038/s41598-019-43393-2, 2019.
ISIDe working group: version 1.0, https://doi.org/10.13127/ISIDe, 2016.
Ithaca catalogue: http://www.isprambiente.gov.it/it/progetti/suolo-e-territorio-1/ithaca-catalogo-delle-faglie-capaci, last access:
January 2019.
Koopman, A.: Detachment tectonics in the central Apennines, Italy, Geologica
Eltraiectina, 30, 1–155, 1983.
Lavecchia, G.: Il sovrascorrimento dei Monti Sibillini: Analisi cinematica e
strutturale, Bollettino della Società Geologica Italiana, 104, 161–194,
1985.
Lavecchia, G., Brozzetti, F., Barchi, M., Keller, J., and Menichetti, M.:
Seismotectonic zoning in east-central Italy deduced from the analysis of the
Neogene to present deformations and related stress fields, Geol.
Soc. Am. Bull., 106, 1107–1120, 1994.
Lavecchia, G., Castaldo, R., de Nardis, R., De Novellis, V., Ferrarini, F.,
Pepe, S., Brozzetti, F., Solaro, G., Cirillo, D., Bonano, M., Boncio, P.,
Casu, F., De Luca, C., Lanari, R., Manunta, M., Manzo, M., Pepe, A., Zinno,
I., and Tizzani, P.: Ground deformation and source geometry of the 24 August
2016 Amatrice earthquake (Central Italy) investigated through analytical and
numerical modeling of DInSAR measurements and structural-geological data,
Geophys. Res. Lett., 43, 12389–12398, 2016.
Lima, R., Teixeira, L. E. W., de Albuquerque, F. R., and Lima-Filho, F.:
Ground Penetrating Radar digital imaging and modeling of microbialites from
the Salitre Formation, Northeast Brazil, Geologia USP – Serie Cientifica,
18, 187–200, https://doi.org/10.11606/issn.2316-9095.v18-146075, 2018.
Livio, F., Michetti, A. M., Vittori, E., Gregory, L., Wedmore, L., Piccardi, L., Tondi, E., Roberts, G. and CENTRAL ITALY EARTHQUAKE W.G., Blumetti, A. M., Bonadeo, L., Brunamonte, F., Comerci, V., Dimanna, P., Ferrario, M. F., Faure Walker, J., Frigerio, C., Fumanti, F., Guerrieri, L., Iezzi, F., Leoni, G., McCaffrey, K., Mildon, Z., Phillips, R., Rhodes, E., Walters, R. J., and Wilkinson, M.: Surface faulting during the August 24, 2016, central Italy
earthquake (Mw 6.0): Preliminary results, Ann. Geophys., 59, 1–8, https://doi.org/10.4401/ag-7197, 2016.
Maesano, F. E., D'Ambrogi, C., Burrato, P., and Toscani, G.: Slip-rates of
blind thrusts in slow deforming areas: examples from the Po Plain (Italy),
Tectonophysics, 643, 8–25, 2015.
Mancinelli, P., Porreca, M., Pauselli, C., Minelli, G., Barchi, M. R., and
Speranza, F.: Gravity and magnetic modeling of Central Italy: Insights into
the depth extent of the seismogenic layer, Geochem. Geophy.
Geosy., 20, 2157–2172, https://doi.org/10.1029/2018GC008002, 2019.
Manning, T., Ablyazina, D., and Quigley, J.: The nimble node –
Million-channel land recording systems have arrived, The Leading Edge, 38,
706–714, https://doi.org/10.1190/tle38090706.1, 2019.
Marfurt, K. J.: Seismic Attributes as the Framework for Data Integration
throughout the Oilfield Life Cycle, SEG, 508 pp., 2018.
Marfurt, K. J. and Alves, T. M.: Pitfalls and limitations in seismic attribute
interpretation of tectonic features, Interpretation, 3, 5–15,
https://doi.org/10.1190/INT-2014-0122.1, 2015.
Marfurt, K. J. Gao, D., Barnes, A., Chopra, S., Corrao, A., Hart, B., James,
H., Pacht, J., and Rosen, N. C.: SEPM Society for Sedimentary Geology, 31, https://doi.org/10.5724/gcs.11.31, 2011.
Martinis, B. and Pieri, M.: Alcune notizie sulla formazione evaporitica
dell'Italia centrale e meridionale, Bollettino della Società
Entomologica Italiana, 4, 649–678, 1964.
Mazzotti, A., Stucchi, E., Fradelizio, G., Zanzi, L., and Scandone, P.: Seismic
exploration in complex terrains: A processing experience in the southern
Apennines, Geophysics, 65, 1402–1417, https://doi.org/10.1190/1.1444830,
2000.
McArdle, N. J., Iacopini, D., KunleDare, M. A., and Paton, G. S.: The use of
geologic expression workflows for basin scale reconnaissance: a case study
from the Exmouth Subbasin, North Carnarvon Basin, northwestern Australia,
Interpretation, 2, 163–177, 2014.
McClymont, A. F., Green, A. G., Villamor, P., Horstmeyer, H., Grass, C., and
Nobes, D. C.: Characterization of the shallow structures of active fault
zones using 3-D ground-penetrating radar data, J. Geophys. Res., 113,
B10315, https://doi.org/10.1029/2007JB005402, 2008.
Milli, S., Moscatelli, M., Stanzione, O., and Falcini, F.: Sedimentology
and physical stratigraphy of the Messinian turbidites deposits of the Laga
basin (Central Apennines, Italy), Bollettino della Società Geologica
Italiana, 126, 37–48, 2007.
Minelli, G. and Menichetti, M.: Tectonic evolution of the Perugia massifs
area (Central Italy), Bollettino della Società Entomologica Italiana,
109, 445–453, 1990.
Mirabella, F., Barchi, M. R., and Lupattelli, A.: Seismic reflection data in
the Umbria Marche region: Limits and capabilities to unravel the subsurface
structure in a seismically active area, Ann. Geophys., 51,
383–396, https://doi.org/10.4401/ag-3032, 2008.
Naeini, E. Z. and Prindle, K.: Machine learning and learning from machines,
The Leading Edge, 37, 886–893, 2018.
Patacca, E. and Scandone, P.: Late thrust propagation and sedimentary
response in the thrust-belt foredeep system of the southern Apennines
(Pliocene–Pleistocene), in: Anatomy of an
Orogen: The Apennines and adjacent Mediterranean basins, edited by: Vai, G. and Martini, I., 441–454, Norwell,
MA: Kluwer Acad., 2001.
Pauselli, C., Barchi, M. R., Federico, C., Magnani, M. B., and Minelli, G.:
The crustal structure of the northern Apennines (Central Italy): An insight
by the CROP03 seismic line, Am. J. Sci., 306, 428–450,
https://doi.org/10.2475/06.2006.02, 2006.
Pauselli, C., Federico, C., Frigeri, A., Orosei, R., Barchi, M. R., and
Basile, G.: Ground Penetrating Radar investigations to study active faults
in the Norcia Basin (Central Italy), J. Appl. Geophys., 72,
39–45, 2010.
Pierantoni, P. P., Deiana, G., and Galdenzi, S.: Stratigraphic and
structural features of the Sibillini Mountains (Umbria–Marche Apennines,
Italy), Italian Journal of Geosciences, 132, 497–520,
https://doi.org/10.3301/IJG.2013.08, 2013.
Pizzi, A., Calamita, F., Coltorti, M., and Pieruccini, P.: Quaternary
normal faults, intramontane basins and seismicity in the
Umbria-MarcheAbruzzi Apennine Ridge (Italy): Contribution of neotectonic
analysis to seismic hazard assessment, Bollettino Società Geologica
Italiana Special Publication, 1, 923–929, 2002.
Pizzi, A., Di Domenica, A., Gallovič, F., Luzi, L., and Puglia, R.:
Fault segmentation as constraint to the occurrence of the main shocks of
the 2016 Central Italy seismic sequence, Tectonics, 36,
2370–2387, https://doi.org/10.1002/2017TC004652, 2017.
Porreca, M., Minelli, G., Ercoli, M., Brobia, A., Mancinelli, P., Cruciani,
F., Giorgetti, C., Carboni, C., Mirabella, F., Cavinato, G., Cannata, A.,
Pauselli, C., and Barchi, M. R.: Seismic reflection profiles and subsurface
geology of the area interested by the 2016–2017 earthquake sequence
(Central Italy), Tectonics, 37, 1–22, https://doi.org/10.1002/2017TC004915, 2018.
Porreca, M., Fabbrizzi, A., Azzaro, S., Pucci, S., Del Rio, L., Pierantoni,
P. P., Giorgetti, C., Roberts, G., and Barchi, M. R.: 3D geological reconstruction
of the M. Vettore seismogenic fault system (Central Apennines, Italy):
Cross-cutting relationship with the M. Sibillini thrust, J.
Struct. Geol., 131, 103938, https://doi.org/10.1016/j.jsg.2019.103938, 2020.
Pucci, S., De Martini, P. M., Civico, R., Villani, F., Nappi, R., Ricci, T.,
Azzaro, R., Brunori, C. A., Caciagli, M., Cinti, F. R., Sapia, V., De Ritis,
R., Mazzarini, F., Tarquini, S., Gaudiosi, G., Nave, R., Alessio, G.,
Smedile, A., Alfonsi, L., Cucci, L., and Pantosti, D.: Coseismic ruptures of the
24 August 2016, Mw6.0 Amatrice earthquake (central Italy), Geophys. Res. Lett., 44, 2138–2147, https://doi.org/10.1002/2016GL071859, 2017.
Ramsay, J. G. and Huber, M. I.: The Techniques of Modern Structural Geology:
Folds and Fractures, Elsevier Science, 391 pp., 1987.
Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A.,
Matheron, P., Bareyt, M., Seguret, M., Camara, P., and Deramond, J.: Ecors deep
seismic data and balanced cross sections: Geometric constraints on the
evolution of the Pyrenees, Tectonics, 8, 41–50,
https://doi.org/10.1029/TC008i001p00041, 1989.
Rovida, A., Locati, M., Camassi, R., Lolli, B., and Gasperini P. (Eds.):
CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes,
Istituto Nazionale di Geofisica e Vulcanologia,
https://doi.org/10.6092/INGV.IT-CPTI15, 2016.
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic
earthquakes: Examples from the Wasatch and San Andreas fault zones, J. Geophys. Res.-Sol. Ea., 89, 5681–5698, 1984.
Scognamiglio, L., Tinti, E., Casarotti, E., Pucci, S., Villani, F., Cocco,
M., Magnoni, F., Michelini, A., and Dreger, D.: Complex fault geometry and
rupture dynamics of the Mw 6.5, 2016, October 30th central Italy earthquake,
J. Geophys. Res.-Sol. Ea., 123, 2943–2964, https://doi.org/10.1002/2018jb015603, 2018.
Serva, L., Blumetti, A. M., Guerrieri, L., and Michetti, A. M.: The Apennine
intermountain basins: the result of repeated strong earthquakes over a
geological time interval, Boll. Soc. Geol. It., 1, 939–946, 2002.
Simancas, J. F., Carbonell, R., González Lodeiro, F., Pérez
Estaún, A., Juhlin, C., Ayarza, P., Kashubin, A., Azor, A.,
Martínez Poyatos, D., Almodóvar, G. R., Pascual, E., Sáez, R., and
Expósito, I.: Crustal structure of the transpressional Variscan orogen
of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS),
Tectonics, 22, 1062, https://doi.org/10.1029/2002TC001479, 2003.
Snieder, R. and Trampert, J.: Inverse Problems in Geophysics. In: Wirgin A.
(eds) Wavefield Inversion. International Centre for Mechanical Sciences
(Courses and Lectures), vol. 398, Springer, Vienna, 1999.
Taner, M. T.: Seismic attributes. Canadian Society of Exploration
Geophysicists Recorder, 26, 48–56, 2001.
Taner, M. T., Koehler, F., and Sheriff, R. E.: Complex Seismic Trace Analysis,
Geophysics, 44, 1041, https://doi.org/10.1190/1.1440994, 1979.
Tarquini, S., Isola, I., Favalli, M., and Boschi, E.: TINITALY/01: a new
triangular irregular network of Italy, Ann. Geophys., 50, 407–425, 2007.
Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., and
Nannipieri, L.: Release of a 10-m-resolution DEM for the Italian territory:
Comparison with global-coverage DEMs and anaglyph-mode exploration via the
web, Comput. Geosci., 38, 168–170.
https://doi.org/10.1016/j.cageo.2011.04.018, 2012.
Trippetta, F., Collettini, C., Vinciguerra, S., and Meredith, P. G.:
Laboratory measurements of the physical properties of Triassic evaporites
from Central Italy and correlation with geophysical data, Tectonophysics,
492, 121–132, 2010.
Torvela, T., Moreau, J., Butler, R. W. H., Korja, A., and Heikkinen, P.: The
mode of deformation in the orogenic mid-crust revealed by seismic attribute
analysis, Geochem. Geophys. Geosy., 14, 1069–1086, 2013.
Vai, G. B.: Basement and early (pre-Alpine) history, in: Anatomy of an orogen: The Apennines and adjacent
Mediterranean basins, edited by: Vai, G. B. and
Martini, I. P., 121–150, Dordrecht, Netherlands: Kluwer Academic
Publisher, https://doi.org/10.1007/978-94-015-9829-3_10,
2001.
Valoroso, L., Chiaraluce, L., Piccinini, D., Di Stefano, R., Schaff, D., and
Waldhauser, F.: Radiography of a normal fault system by 64,000
high-precision earthquake locations: The 2009 L'Aquila (central Italy) case
study, J. Geophys. Res.-Sol. Ea., 118, 1156–1176,
https://doi.org/10.1002/jgrb.50130, 2013.
Vernengo, L., Trinchero, E., Torrejón, M. G., and Rovira, I.: Amplitude
volume technique attributes and multidimensional seismic interpretation, The
Leading Edge, 36, 776–781, https://doi.org/10.1190/tle36090776.1, 2017.
Villani, F., Pucci, S., Civico, R., De Martini, P. M., Cinti, F. R., and
Pantosti, D.: Surface faulting of the 30 October 2016 Mw 6.5 central Italy
earthquake: Detailed analysis of a complex coseismic rupture, Tectonics, 37,
3378–3410, https://doi.org/10.1029/2018TC005175, 2018a.
Villani, F., Sapia, V., Baccheschi, P., Civico, R., Di Giulio, G., Vassallo,
M., Marchetti, M., and Pantosti, D.: Geometry and structure of a fault bounded extensional basin by
integrating geophysical surveys and seismic anisotropy across the 30 October
2016 Mw 6.5 earthquake fault (central Italy): The Pian Grande di
Castelluccio basin, Tectonics, 38, 26–48, https://doi.org/10.1029/2018TC005205,
2018b.
Villani, F., Maraio, S., Bruno, P. P., Improta, L., Wood, K., Civico, R.,
Baccheschi, P., Sapia., V., Pucci, S., Brunori, C. A., De Martini, P. M.,
Pantosti, D., Conti, P., and Doglioni, C.: High-resolution seismic profiling of
the Castelluccio basin: new constraints on the shallow subsurface of the 30
October 2016 Mw 6.5 Norcia earthquake fault (central Italy), Proceeding of
the 38∘ Convegno GNGTS, 2019.
Wilkinson, M. W., McCaffrey, K. J. W., Jones, R. R., Roberts, G. P.,
Holdsworth, R. E., Gregory, L. C., Walters, R. J., Wedmore, L., Goodall, H., and Iezzi, F. : Near-field fault slip of the 2016
Vettore Mw 6.6 earthquake (Central Italy) measured using low-cost GNSS,
Scientific Reports, 7, 4612, https://doi.org/10.1038/s41598-017-04917-w, 2017.
Wrona, T., Pan, I., Gawthorpe, R. L., and Fossen, H.: Seismic facies analysis
using machine learning, Geophysics, 83, O83–O95, 2018.
Zhao, W., Forte, E., Fontolan, G., and Pipan, M.: Advanced GPR imaging of
sedimentary features: integrated attribute analysis applied to sand dunes,
Geophys. J. Int., 213, 147–156,
https://doi.org/10.1093/gji/ggx541, 2018.
Short summary
We present a first application of seismic attributes, a well-known technique in the oil and gas industry, to vintage seismic reflection profiles in a seismotectonic study. Our results improve data interpretability, allowing us to detect peculiar geophysical signatures of faulting and a regional seismogenic layer. We suggest a new tool for both seismotectonic research and assessments of the seismic hazard, not only in the central Apennines (Italy), but also in seismically active areas abroad.
We present a first application of seismic attributes, a well-known technique in the oil and gas...