Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1211-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins
Anthony Jourdon
CORRESPONDING AUTHOR
Research & Development, Total S.A., Pau, France
Charlie Kergaravat
Research & Development, Total S.A., Pau, France
Guillaume Duclaux
CNRS, Observatoire de la Côte d'Azur, Université Côte d'Azur, IRD, Géoazur, France
Caroline Huguen
Research & Development, Total S.A., Pau, France
Related authors
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Clément Desormeaux, Vincent Godard, Dimitri Lague, Guillaume Duclaux, Jules Fleury, Lucilla Benedetti, Olivier Bellier, and the ASTER Team
Earth Surf. Dynam., 10, 473–492, https://doi.org/10.5194/esurf-10-473-2022, https://doi.org/10.5194/esurf-10-473-2022, 2022
Short summary
Short summary
Landscape evolution is highly dependent on climatic parameters, and the occurrence of intense precipitation events is considered to be an important driver of river incision. We compare the rate of erosion with the variability of river discharge in a mountainous landscape of SE France where high-magnitude floods regularly occur. Our study highlights the importance of the hypotheses made regarding the threshold that river discharge needs to exceed in order to effectively cut down into the bedrock.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Tectonics
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
The topographic signature of temperature-controlled rheological transitions in an accretionary prism
3D crustal stress state of Germany according to a data-calibrated geomechanical model
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022, https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Short summary
This study investigates one of the key processes that may lead to the destruction and destabilization of continental tectonic plates: the infiltration of buoyant, hot, molten rock (magma) into the base of the plate. Using simple calculations, I suggest that heating during melt–rock interaction may thermally perturb the tectonic plate, weakening it and potentially allowing it to be reshaped from beneath. Geochemical, petrologic, and geologic observations are used to guide model parameters.
Liming Li, Xianrui Li, Fanyan Yang, Lili Pan, and Jingxiong Tian
Solid Earth, 13, 1371–1391, https://doi.org/10.5194/se-13-1371-2022, https://doi.org/10.5194/se-13-1371-2022, 2022
Short summary
Short summary
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip rates of active faults and crustal velocities in the northeastern Tibetan Plateau. Based on the analysis of the fault kinematics in the study area, we evaluated the possibility of earthquakes occurring in the main faults in the area, and analyzed the crustal deformation mechanism of the northeastern Tibetan Plateau.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022, https://doi.org/10.5194/se-13-535-2022, 2022
Short summary
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Cited articles
Agostini, A., Corti, G., Zeoli, A., and Mulugeta, G.:
Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models,
Geochem. Geophy. Geosy.,
10, 11, https://doi.org/10.1029/2009GC002676, 2009.
Allken, V., Huismans, R. S., and Thieulot, C.:
Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study,
Geochem. Geophy. Geosy.,
13, 1–18, https://doi.org/10.1029/2012GC004077, 2012.
Ammann, N., Liao, J., Gerya, T., and Ball, P.:
Oblique continental rifting and long transform fault formation based on 3D thermomechanical numerical modeling,
Tectonophysics,
746, 106–120, https://doi.org/10.1016/j.tecto.2017.08.015, 2017.
Atwater, T. and Stock, J.:
Pacific North America plate tectonics of the Neogene southwestern United States: an update,
Int. Geol. Rev.,
40, 375–402, https://doi.org/10.1080/00206819809465216, 1998.
Basile, C.:
Tectonophysics Transform continental margins – part 1: Concepts and models,
Tectonophysics,
661, 1–10, https://doi.org/10.1016/j.tecto.2015.08.034, 2015.
Basile, C. and Brun, J. P.:
Transtensional faulting patterns ranging from pull-apart basins to transform continental margins: An experimental investigation,
J. Struct. Geol.,
21, 23–37, https://doi.org/10.1016/S0191-8141(98)00094-7, 1999.
Basile, C., Mascle, J., Popoff, M., Bouillin, J. P., and Mascle, G.:
The Ivory Coast-Ghana transform margin: a marginal ridge structure deduced from seismic data,
Tectonophysics,
222, 1–19, 1993.
Basile, C., Maillard, A., Patriat, M., Gaullier, V., Loncke, L., Roest, W., Mercier de Lépinay, M., and Pattier, F.:
Structure and evolution of the demerara plateau, offshore french guiana: Rifting, tectonic inversion and post-rift tilting at transform-divergent margins intersection,
Tectonophysics,
591, 16–29, https://doi.org/10.1016/j.tecto.2012.01.010, 2013.
Bellahsen, N., Leroy, S., Autin, J., Razin, P., d'Acremont, E., Sloan, H., Pik, R., Ahmed, A., and Khanbari, K.:
Pre-existing oblique transfer zones and transfer/transform relationships in continental margins: New insights from the southeastern Gulf of Aden, Socotra Island, Yemen,
Tectonophysics,
607, 32–50, https://doi.org/10.1016/j.tecto.2013.07.036, 2013.
Bonini, M., Cerca, M., Moratti, G., López-Martínez, M., Corti, G., and Gracia-Marroquín, D.:
Strain partitioning in highly oblique rift settings: Inferences from the southwestern margin of the Gulf of California (Baja California Sur, México),
Tectonics,
38, 4426–4453, https://doi.org/10.1029/2019TC005566, 2019.
Brune, S.:
Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup,
Geochem. Geophy. Geosy.,
15, 3392–3415, https://doi.org/10.1002/2014GC005446, 2014.
Brune, S. and Autin, J.:
The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling,
Tectonophysics,
607, 65–79, https://doi.org/10.1016/j.tecto.2013.06.029, 2013.
Brune, S., Popov, A. A., and Sobolev, S. V:
Modeling suggests that oblique extension facilitates rifting and continental break-up,
J. Geophys. Res.,
117, 1–16, https://doi.org/10.1029/2011JB008860, 2012.
Brune, S., Corti, G., and Ranalli, G.:
Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression,
Tectonics,
36, 1767–1786, https://doi.org/10.1002/2017TC004739, 2017.
Brune, S., Williams, S. E., and Müller, R. D.: Oblique rifting: the rule, not the exception, Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, 2018.
Buchmann, T. J. and Connolly, P. T.:
Contemporary kinematics of the Upper Rhine Graben: A 3D finite element approach,
Global Planet. Change,
58, 287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007.
Clifton, A. E., Schlische, R. W., Withjack, M. O., and Ackermann, R. V.:
Influence of rift obliquity on fault-population systematics: Results of experimental clay models,
J. Struct. Geol.,
22, 1491–1509, https://doi.org/10.1016/S0191-8141(00)00043-2, 2000.
Corti, G.:
Tectonophysics Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System,
Tectonophysics,
522–523, 1–33, https://doi.org/10.1016/j.tecto.2011.06.010, 2012.
Darin, M. H., Bennett, S. E. K., Dorsey, R. J., Oskin, M. E., and Iriondo, A.:
Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto-Gulf of California oblique rift,
Tectonophysics,
693, 378–408, https://doi.org/10.1016/j.tecto.2016.04.038, 2016.
Davison, I., Faull, T., Greenhalgh, J., Beirne, E. O., and Steel, I.:
Transpressional structures and hydrocarbon potential along the Romanche Fracture Zone: a review,
Geol. Soc. London Spec. Publ.,
431, 235–248, https://doi.org/10.1144/SP431.2, 2016.
Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., and San'kov, V.:
Paleostress reconstructions and geo- dynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting,
Tectonophysics,
282, 1–38, https://doi.org/10.1016/S0040-1951(97)00210-2, 1997.
DeMets, C. and Merkouriev, S.:
High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present,
Geophys. J. Int.,
207, 741–773, https://doi.org/10.1093/gji/ggw305, 2016.
Duclaux, G., Huismans, R. S., and May, D. A.:
Rotation, narrowing, and preferential reactivation of brittle structures during oblique rifting,
Earth Planet. Sc. Lett.,
531, 115952, https://doi.org/10.1016/j.epsl.2019.115952, 2020.
Farangitakis, G. P., McCaffrey, K. J. W., Willingshofer, E., Allen, M. B., Kalnins, L. M., van Hunen, J., Persaud, P., and Sokoutis, D.:
The structural evolution of pull-apart basins in response to changes in plate motion,
Basin Res.,
33, 1603–1625, https://doi.org/10.1111/bre.12528, 2021.
Ferrari, L., Orozco-Esquivel, T., Bryan, S. E., López-Martínez, M., and Silva-Fragoso, A.:
Cenozoic magmatism and extension in western Mexico: Linking the Sierra Madre Occidental silicic large igneous province and the Comondú Group with the Gulf of California rift,
Earth-Sci. Rev.,
183, 115–152, https://doi.org/10.1016/j.earscirev.2017.04.006, 2018.
Fletcher, J. M., Grove, M., Kimbrough, D., Lovera, O., and Gehrels, G. E.:
Ridge-trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: Insights from detrital zircon U-Pb ages from the Magdalena fan and adjacent areas,
Bull. Geol. Soc. Am.,
119, 1313–1336, https://doi.org/10.1130/B26067.1, 2007.
Gerya, T.:
Origin and models of oceanic transform faults,
Tectonophysics,
522–523, 34–54, https://doi.org/10.1016/j.tecto.2011.07.006, 2012.
Gerya, T. and Burov, E.:
Nucleation and evolution of ridge-ridge-ridge triple junctions: Thermomechanical model and geometrical theory,
Tectonophysics,
746, 83–105, https://doi.org/10.1016/j.tecto.2017.10.020, 2018.
Gerya, T. V.:
Three-dimensional thermomechanical modeling of oceanic spreading initiation and evolution,
Phys. Earth Planet. In.,
214, 35–52, https://doi.org/10.1016/j.pepi.2012.10.007, 2013.
Heine, C. and Brune, S.:
Oblique rifting of the equatorial atlantic: Why there is no saharan atlantic ocean,
Geology,
42, 211–214, https://doi.org/10.1130/G35082.1, 2014.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Hergert, T. and Heidbach, O.:
Geomechanical model of the Marmara Sea region—II. 3-D contemporary background stress field,
Geophys. J. Int.,
185, 1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011.
Hirth, G. and Kohlstedt, D. L.:
Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists,
Geophys. Monogr. Ser.,
138, 83–105, 2003.
Jourdon, A., Le Pourhiet, L., Mouthereau, F., and May, D.:
Modes of Propagation of Continental Breakup and Associated Oblique Rift Structures,
J. Geophys. Res.-Sol. Ea.,
125, 1–27, https://doi.org/10.1029/2020JB019906, 2020.
Kameyama, M., Yuen, D. A., and Karato, S.:
Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone,
Earth Planet. Sc. Lett.,
168, 159–172, 1999.
Langemeyer, S. M., Lowman, J. P., and Tackley, P. J.:
Global mantle convection models produce transform offsets along divergent plate boundaries,
Communications Earth & Environment,
2, 1–10, https://doi.org/10.1038/s43247-021-00139-1, 2021.
Le Calvez, J. and Vendeville, B.:
Experimental designs to model along-strike fault interaction fault interaction,
Journal of the Virtual Explorer,
7, 1–17, https://doi.org/10.3809/jvirtex.2002.00043, 2002.
Le Pourhiet, L., May, D. A., Huille, L., Watremez, L., and Leroy, S.:
A genetic link between transform and hyper-extended margins,
Earth Planet. Sc. Lett.,
465, 184–192, https://doi.org/10.1016/j.epsl.2017.02.043, 2017.
Le Pourhiet, L., Chamot-Rooke, N., Delescluse, M., May, D. A., Watremez, L., and Pubellier, M.:
Continental break-up of the South China Sea stalled by far-field compression,
Nat. Geosci.,
11, 605–609, https://doi.org/10.1038/s41561-018-0178-5, 2018.
Liao, J. and Gerya, T.:
From continental rifting to sea fl oor spreading: Insight from 3D thermo-mechanical modeling,
Gondwana Res.,
28, 1329–1343, https://doi.org/10.1016/j.gr.2014.11.004, 2015.
Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M., González-Fernández, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., and Umhoefer, P. J.:
Variation in styles of rifting in the Gulf of California,
Nature,
448, 466–469, https://doi.org/10.1038/nature06035, 2007.
Lorenzo, J. M. and Vera, E. E.:
Thermal uplift and erosion across the continent-ocean transform boundary of the southern Exmouth Plateau,
Earth Planet. Sc. Lett.,
108, 79–92, https://doi.org/10.1016/0012-821X(92)90061-Y, 1992.
Mart, Y. and Dauteuil, O.:
Analogue experiments of propagation of oblique rifts,
Tectonophysics,
316, 121–132, 2000.
Mascle, J. and Blarez, E.:
Evidence for transform margin evolution from the Ivory Coast–Ghana continental margin,
Nature,
326, 378–381, 1987.
May, D. A., Brown, J., and Le Pourhiet, L.:
pTatin3D: High-Performance Methods for Long-Term Lithospheric Dynamics,
in: Proceeding SC'14 Proc. Int. Conf. High Perform. Comput. Networking, Storage Anal., SC14, 16–21 November 2014, New Orleans, 274–284, 2014.
May, D. A., Brown, J., and Le Pourhiet, L.:
A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous Stokes flow, Comput. Methods Appl. Mech. Eng., 290, 496–523, https://doi.org/10.1016/j.cma.2015.03.014, 2015 (code available at: https://bitbucket.org/ptatin/ptatin3d/src/master/, last access: 27 May 2021).
McKenzie, D. and Morgan, W. J.:
Evolution of Triple Junctions,
Nature,
224, 125–133, https://doi.org/10.1038/224125a0, 1969.
Mercier de Lépinay, M., Loncke, L., Basile, C., Roest, W. R., Patriat, M., Maillard, A., and De Clarens, P.:
Transform continental margins – Part 2: A worldwide review,
Tectonophysics,
693, 96–115, https://doi.org/10.1016/j.tecto.2016.05.038, 2016.
Milani, E. J. and Davison, I.:
Basement control and transfer tectonics in the Recôncavo-Tucano-Jatobá rift, Northeast Brazil,
Tectonophysics,
154, 41–70, https://doi.org/10.1016/0040-1951(88)90227-2, 1988.
Mondy, L. S., Rey, P. F., Duclaux, G., and Moresi, L.:
The role of asthenospheric flow during rift propagation and breakup,
Geology,
46, 103–106, 2018.
Nemčok, M., Sinha, S. T., Stuart, C. J., Welker, C., Choudhuri, M., Sharma, S. P., Misra, A. A., Sinha, N., and Venkatraman, S.:
East Indian margin evolution and crustal architecture: integration of deep reflection seismic interpretation and gravity modelling,
Geol. Soc. London Spec. Publ.,
369, 477–496, https://doi.org/10.1144/SP369.6, 2012.
Neuharth, D., Brune, S., Glerum, A., Heine, C., and Welford, J. K.:
Formation of continental microplates through rift linkage: Numerical modelling and its application to the Flemish Cap and Sao Paulo Plateau,
Geochem. Geophy. Geosy.,
22, e2020GC009615, https://doi.org/10.1029/2020gc009615, 2021.
Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T., and Uenzelmann-Neben, G.:
Southern African continental margin: Dynamic processes of a transform margin,
Geochem. Geophy. Geosy.,
10, 3, https://doi.org/10.1029/2008GC002196, 2009.
Persaud, P., Stock, J. M., Steckler, M. S., Martín-Barajas, A., Diebold, J. B., González-Fernández, A., and Mountain, G. S.:
Active deformation and shallow structure of the Wagner, Consag, and Delfín Basins, northern Gulf of California, Mexico,
J. Geophys. Res.-Sol. Ea.,
108, 2355, https://doi.org/10.1029/2002jb001937, 2003.
Persaud, P., Tan, E., Contreras, J., and Lavier, L.:
A bottom-driven mechanism for distributed faulting in the Gulf of California rift,
Tectonophysics,
719–720, 51–65, https://doi.org/10.1016/j.tecto.2016.11.024, 2017.
Philippon, M. and Corti, G.:
Obliquity along plate boundaries,
Tectonophysics,
693, 171–182, https://doi.org/10.1016/j.tecto.2016.05.033, 2016.
Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini, M., and Cloetingh, S.:
Slip re-orientation in oblique rifts,
Geology,
43, 147–150, https://doi.org/10.1130/G36208.1, 2015.
Plattner, C., Malservisi, R., Dixon, T. H., Lafemina, P., Sella, G. F., Fletcher, J., and Suarez-Vidal, F.:
New constraints on relative motion between the Pacific Plate and Baja California microplate (Mexico) from GPS measurements,
Geophys. J. Int.,
170, 1373–1380, https://doi.org/10.1111/j.1365-246X.2007.03494.x, 2007.
Precigout, J., Gueydan, F., Gapais, D., Garrido, C. J., and Essaifi, A.:
Strain localisation in the subcontinental mantle — a ductile alternative to the brittle mantle,
Tectonophysics,
445, 318–336, https://doi.org/10.1016/j.tecto.2007.09.002, 2007.
Ranalli, G. and Murphy, D. C.:
Rheological stratification of the lithosphere,
Tectonophysics,
132, 281–295, 1987.
Rybacki, E. and Dresen, G.:
Dislocation and diffusion creep of synthetic anorthite aggregates,
J. Geophys. Res.-Sol. Ea.,
105, 26017–26036, https://doi.org/10.1029/2000JB900223, 2000.
Schettino, A. and Turco, E.:
Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions,
Geophys. J. Int.,
178, 1078–1097, https://doi.org/10.1111/j.1365-246X.2009.04186.x, 2009.
Scrutton, R. A.:
On Sheared Passive Continental Margins,
Developments in Geotectonics,
15, 293–305, https://doi.org/10.1016/B978-0-444-41851-7.50020-0, 1979.
Seiler, C., Fletcher, J. M., Quigley, M. C., Gleadow, A. J. W., and Kohn, B. P.:
Neogene structural evolution of the Sierra San Felipe, Baja California: Evidence for proto-gulf transtension in the Gulf Extensional Province?,
Tectonophysics,
488, 87–109, https://doi.org/10.1016/j.tecto.2009.09.026, 2010.
Simpson, R. W.:
Quantifying Anderson's fault types,
J. Geophys. Res.,
102, 909–919, https://doi.org/10.1029/97JB01274, 1997.
Spencer, J. E. and Normark, W. R.:
Tosco-Abreojos fault zone: A Neogene transform plate boundary within the Pacific margin of southern Baja California, Mexico,
Geology,
7, 554–557, https://doi.org/10.1130/0091-7613(1979)7<554:TFZANT>2.0.CO;2, 1979.
Stock, J. M. and Hodges, V. K.:
Pre-Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific plate,
Tectonics,
8, 99–115, 1989.
Suckro, S. K., Gohl, K., Funck, T., Heyde, I., Schreckenberger, B., Gerlings, J., and Damm, V.:
The davis strait crust-a transform margin between two oceanic basins,
Geophys. J. Int.,
193, 78–97, https://doi.org/10.1093/gji/ggs126, 2013.
Taylor, B., Goodliffe, A., and Martinez, F.:
Initiation of transform faults at rifted continental margins,
C. R. Geosci.,
341, 428–438, https://doi.org/10.1016/j.crte.2008.08.010, 2009.
Thompson, J. O., Moulin, M., Aslanian, D., de Clarens, P., and Guillocheau, F.:
New starting point for the Indian Ocean: Second phase of breakup for Gondwana,
Earth-Sci. Rev.,
191, 26–56, https://doi.org/10.1016/j.earscirev.2019.01.018, 2019.
Tron, V. and Brun, J. P.:
Experiments on oblique rifting in brittle-ductile systems,
Tectonophysics,
188, 71–84, https://doi.org/10.1016/0040-1951(91)90315-J, 1991.
Turcotte, D. L. and Schubert, G.:
Geodynamics, second edn.,
Cambridge University Press, Cambridge, https://doi.org/10.1007/s007690000247, 2002.
van Wijk, J., Axen, G., and Abera, R.:
Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California,
Tectonophysics,
719–720, 37–50, https://doi.org/10.1016/j.tecto.2017.04.019, 2017.
van Wijk, J. W., Heyman, S. P., Axen, G. J., and Persaud, P.:
Nature of the crust in the northern Gulf of California and Salton trough,
Geosphere,
15, 1598–1616, https://doi.org/10.1130/GES02082.1, 2019.
Watremez, L., Burov, E., D'Acremont, E., Leroy, S., Huet, B., Le Pourhiet, L., and Bellahsen, N.:
Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden,
Geochem. Geophy. Geosy.,
14, 2800–2817, https://doi.org/10.1002/ggge.20179, 2013.
Withjack, M. O. and Jamison, W. R.:
Deformation produced by oblique rifting,
Tectonophysics,
126, 99–124, https://doi.org/10.1016/0040-1951(86)90222-2, 1986.
Zwaan, F., Schreurs, G., Naliboff, J., and Buiter, S. J. H.:
Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models,
Tectonophysics,
693, 239–260, https://doi.org/10.1016/j.tecto.2016.02.036, 2016.
Short summary
The borders between oceans and continents, called margins, can be convergent, divergent, or horizontally sliding. The formation of oceans occurs in a divergent context. However, some divergent margin structures display an accommodation of horizontal sliding during the opening of oceans. To study and understand how the horizontal sliding part occurring during divergence influences the margin structure, we performed 3D high-resolution numerical models evolving during tens of millions of years.
The borders between oceans and continents, called margins, can be convergent, divergent, or...