Articles | Volume 12, issue 11
https://doi.org/10.5194/se-12-2671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-2671-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data
Institut für Geologie, Mineralogie, Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Wolfgang Friederich
Institut für Geologie, Mineralogie, Geophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Stefan M. Schmid
Institut für Geophysik, ETH-Zürich, Sonneggstr. 5, 8092 Zurich, Switzerland
Mark R. Handy
Institut für Geophysik, ETH-Zürich, Sonneggstr. 5, 8092 Zurich, Switzerland
Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74–100, 12249 Berlin, Germany
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
Marcel Paffrath, Wolfgang Friederich, and the AlpArray and AlpArray-SWATH D Working Groups
Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, https://doi.org/10.5194/se-12-1635-2021, 2021
Short summary
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Rainer Kind, Stefan M. Schmid, Xiaohui Yuan, Benjamin Heit, Thomas Meier, and the AlpArray and AlpArray-SWATH-D Working Groups
Solid Earth, 12, 2503–2521, https://doi.org/10.5194/se-12-2503-2021, https://doi.org/10.5194/se-12-2503-2021, 2021
Short summary
Short summary
A large amount of new seismic data from the greater Alpine area have been obtained within the AlpArray and SWATH-D projects. S-to-P converted seismic phases from the Moho and from the mantle lithosphere have been processed with a newly developed method. Examples of new observations are a rapid change in Moho depth at 13° E below the Tauern Window from 60 km in the west to 40 km in the east and a second Moho trough along the boundary of the Bohemian Massif towards the Western Carpathians.
Marcel Paffrath, Wolfgang Friederich, and the AlpArray and AlpArray-SWATH D Working Groups
Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, https://doi.org/10.5194/se-12-1635-2021, 2021
Short summary
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Azam Jozi Najafabadi, Christian Haberland, Trond Ryberg, Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Michael Weber, and the AlpArray and AlpArray SWATH-D working groups
Solid Earth, 12, 1087–1109, https://doi.org/10.5194/se-12-1087-2021, https://doi.org/10.5194/se-12-1087-2021, 2021
Short summary
Short summary
This study achieved high-precision hypocenters of 335 earthquakes (1–4.2 ML) and 1D velocity models of the Southern and Eastern Alps. The general pattern of seismicity reflects head-on convergence of the Adriatic Indenter with the Alpine orogenic crust. The relatively deeper seismicity in the eastern Southern Alps and Giudicarie Belt indicates southward propagation of the Southern Alpine deformation front. The derived hypocenters form excellent data for further seismological studies, e.g., LET.
Ehsan Qorbani, Dimitri Zigone, Mark R. Handy, Götz Bokelmann, and AlpArray-EASI working group
Solid Earth, 11, 1947–1968, https://doi.org/10.5194/se-11-1947-2020, https://doi.org/10.5194/se-11-1947-2020, 2020
Short summary
Short summary
The crustal structure of the Eastern and Southern Alps is complex. Although several seismological studies have targeted the crust, the velocity structure under this area is still not fully understood. Here we study the crustal velocity structure using seismic ambient noise tomography. Our high-resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. We discuss our new models of the crust with respect to the geologic and tectonic features.
Marcel Tesch, Johannes Stampa, Thomas Meier, Edi Kissling, György Hetényi, Wolfgang Friederich, Michael Weber, Ben Heit, and the AlpArray Working Group
Solid Earth Discuss., https://doi.org/10.5194/se-2020-122, https://doi.org/10.5194/se-2020-122, 2020
Publication in SE not foreseen
F. Sodoudi, A. Brüstle, T. Meier, R. Kind, W. Friederich, and EGELADOS working group
Solid Earth, 6, 135–151, https://doi.org/10.5194/se-6-135-2015, https://doi.org/10.5194/se-6-135-2015, 2015
A. Brüstle, W. Friederich, T. Meier, and C. Gross
Solid Earth, 5, 1027–1044, https://doi.org/10.5194/se-5-1027-2014, https://doi.org/10.5194/se-5-1027-2014, 2014
W. Friederich, A. Brüstle, L. Küperkoch, T. Meier, S. Lamara, and Egelados Working Group
Solid Earth, 5, 275–297, https://doi.org/10.5194/se-5-275-2014, https://doi.org/10.5194/se-5-275-2014, 2014
W. Friederich, L. Lambrecht, B. Stöckhert, S. Wassmann, and C. Moos
Solid Earth, 5, 141–159, https://doi.org/10.5194/se-5-141-2014, https://doi.org/10.5194/se-5-141-2014, 2014
S. Wehling-Benatelli, D. Becker, M. Bischoff, W. Friederich, and T. Meier
Solid Earth, 4, 405–422, https://doi.org/10.5194/se-4-405-2013, https://doi.org/10.5194/se-4-405-2013, 2013
Related subject area
Subject area: Core and mantle structure and dynamics | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Highlights on mantle deformation beneath the Western Alps with seismic anisotropy using CIFALPS2 data
Teleseismic P waves at the AlpArray seismic network: wave fronts, absolute travel times and travel-time residuals
Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations
Permian plume beneath Tarim from receiver functions
Silvia Pondrelli, Simone Salimbeni, Judith M. Confal, Marco G. Malusà, Anne Paul, Stephane Guillot, Stefano Solarino, Elena Eva, Coralie Aubert, and Liang Zhao
Solid Earth, 15, 827–835, https://doi.org/10.5194/se-15-827-2024, https://doi.org/10.5194/se-15-827-2024, 2024
Short summary
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
Marcel Paffrath, Wolfgang Friederich, and the AlpArray and AlpArray-SWATH D Working Groups
Solid Earth, 12, 1635–1660, https://doi.org/10.5194/se-12-1635-2021, https://doi.org/10.5194/se-12-1635-2021, 2021
Short summary
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Lei Li, Pierre Boué, and Michel Campillo
Solid Earth, 11, 173–184, https://doi.org/10.5194/se-11-173-2020, https://doi.org/10.5194/se-11-173-2020, 2020
Lev Vinnik, Yangfan Deng, Grigoriy Kosarev, Sergey Oreshin, and Larissa Makeyeva
Solid Earth, 9, 1179–1185, https://doi.org/10.5194/se-9-1179-2018, https://doi.org/10.5194/se-9-1179-2018, 2018
Short summary
Short summary
We used seismology data to estimate the thickness of the MTZ and found it thinned beneath Tarim, which is exactly beneath the Permian basalts. This relation can be reconciled with coherent translation of a tectosphere that extends to a depth of 410 km or more. Combined with observations in the Siberian large igneous province and Greenland, these features may confirm the existence of a deep tectosphere. Alternatively, the shift of Tarim is less than predicted by an order of magnitude.
Cited articles
Aki, K., Christoffersson, A., and Husebye, E. S.: Determination of the
three-dimensional seismic structure of the lithosphere, J.
Geophys. Res., (1896-1977), 82, 277–296,
https://doi.org/10.1029/JB082i002p00277, 1977. a
Albuquerque Seismological Laboratory (ASL)/USGS: Global Seismograph Network
(GSN – IRIS/USGS), https://doi.org/10.7914/SN/IU, 1988. a
AlpArray Working Group: AlpArray Seismic Network (AASN) temporary component,
https://doi.org/10.12686/ALPARRAY/Z3_2015, 2015. a
Babuška, V., PlomerovÁ, J., and Granet, M.: The deep lithosphere in
the Alps: a model inferred from P residuals, Tectonophysics, 176, 137–165,
https://doi.org/10.1016/0040-1951(90)90263-8, 1990. a
Bezada, M. J., Faccenda, M., and Toomey, D. R.: Representing anisotropic
subduction zones with isotropic velocity models: A characterization of the
problem and some steps on a possible path forward, Geochem. Geophys. Geosys., 17, 3164–3189, https://doi.org/10.1002/2016gc006507, 2016. a, b
Blundell, D. J., Freeman, R., Mueller, S., and Button, S.: A continent
revealed: The European Geotraverse, structure and dynamic evolution,
Cambridge University Press, 1992. a
Boschi, L., Fry, B., Ekström, G., and Giardini, D.: The European upper
mantle as seen by surface waves, Surv. Geophys., 30, 463–501, 2009. a
CERN: CERN Seismic Network, available at: https://www.fdsn.org/networks/detail/C4/ (last access: 3 September 2021), 2017. a
Crotwell, H., Owens, T., and Ritsema, J.: The TauP Toolkit: Flexible Seismic
Travel-Time and Raypath Utilities, Seismological Research Letters, 70,
https://doi.org/10.1785/gssrl.70.2.154, 1999. a
Department Of Earth And Environmental Sciences, Geophysical Observatory,
University Of München: BayernNetz, https://doi.org/10.7914/SN/BW, 2001. a
Deschamps, A. and Beucler, E.: POSA experiment, https://doi.org/10.15778/RESIF.ZH2016,
2013. a
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determination of
earthquake source parameters from waveform data for studies of global and
regional seismicity, J. Geophys. Res.-Sol. Ea., 86,
2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981. a
Ekström, G., Nettles, M., and Dziewonski, A.: The global CMT project
2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Int., 200, 1–9,
https://doi.org/10.1016/j.pepi.2012.04.002, 2012. a
El-Sharkawy, A., Meier, T., Lebedev, S., Behrmann, J. H., Hamada, M.,
Cristiano, L., Weidel, C., and Köhn, D.: The slab puzzle of the
Alpine‐Mediterranean region: Insights from a new, high‐resolution, shear
wave velocity model of the upper mantle, Geochem. Geophys. Geosys., 21, e2020GC008993, https://doi.org/10.1029/2020GC008993, 2020. a
ESI SAS (Earth Science Institute Of The Slovak Academy Of Sciences): National
Network of Seismic Stations of Slovakia, https://doi.org/10.14470/FX099882, 2004. a
Federal Institute for Geosciences and Natural Resources: German Regional
Seismic Network (GRSN), https://doi.org/10.25928/MBX6-HR74, 1976. a
Frei, W., Hertzmann, P., Lehner, P., Olivier, R., Pfiffner, A., Steck, A.,
and Valasek, P.: Geotraverses across the Swiss Alps, Nature, 340,
544–548, 1989. a
French Landslide Observatory – Seismological Datacenter/RESIF:
Observatoire Multi-disciplinaire des Instabilités de Versants (OMIV),
https://doi.org/10.15778/RESIF.MT, 2006. a
Fry, B., Deschamps, F., Kissling, E., Stehly, L., and Giardini, D.: Layered
azimuthal anisotropy of Rayleigh wave phase velocities in the European Alpine
lithosphere inferred from ambient noise, Earth Planet. Sci. Lett.,
297, 95–102, 2010. a
GEOFON Data Centre: GEOFON Seismic Network, https://doi.org/10.14470/TR560404, 1993. a
Geological Survey-Provincia Autonoma Di Trento: Trentino Seismic Network,
https://doi.org/10.7914/SN/ST, 1981. a
Giacomuzzi, G., Chiarabba, C., and De Gori, P.: Linking the Alps and Apennines
subduction systems: New constraints revealed by high-resolution teleseismic
tomography, Earth Planet. Sci. Lett., 301, 531–543, 2011. a
Guéguen, P., Coutant, O., Langlais, M., and RESIF: Maurienne Seismic Swarm
2017-2018, https://doi.org/10.15778/RESIF.YW2017, 2017. a
Handy, M. R., Schmid, S. M., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological–geophysical record of spreading and subduction in the
Alps, Earth-Sci. Rev., 102, 121–158,
https://doi.org/10.1016/j.earscirev.2010.06.002, 2010. a
Handy, M. R., Ustaszewski, K., and Kissling, E.: Reconstructing the
Alps–Carpathians–Dinarides as a key to understanding
switches in subduction polarity, slab gaps and surface motion, Int.
J. Earth Sci., 104, 1–26, https://doi.org/10.1007/s00531-014-1060-3, 2014. a
Handy, M., Schmid, S., Paffrath, M., Friederich, W., and the AlpArray Working Group: Orogenic lithosphere and slabs in the greater Alpine area – interpretations
based on teleseismic P-wave tomography, Solid Earth, 12, 2633–2669,
https://doi.org/10.5194/se-12-2633-2021, 2021. a, b, c, d, e, f, g, h, i, j, k
Heit, B., Weber, M., Tilmann, F., Haberland, C., Jia, Y., Carraro, C., Walcher,
G., Franceschini, A., and Pesaresi, D.: The Swath-D Seismic Network in Italy
and Austria, https://doi.org/10.14470/MF7562601148, 2017. a, b
Hetényi, G., Molinari, I., Clinton, J., et al.: The AlpArray Seismic
Network: A Large-Scale European Experiment to Image the Alpine Orogen,
Surv. Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018. a, b, c
Hirn, A., Nadir, S., Thouvenot, F., Nicolich, R., Pellis, G., Scarascia, S.,
Tabacco, I., Castellano, F., and Merlanti, F.: Mapping the Moho of the
Western Alps by wide-angle reflection seismics, Tectonophysics, 162,
193–202, https://doi.org/10.1016/0040-1951(89)90243-6, 1989. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN),
https://doi.org/10.13127/SD/X0FXNH7QFY, 1997. a
Institut De Physique Du Globe De Paris (IPGP) and Ecole Et Observatoire Des
Sciences De La Terre De Strasbourg (EOST): GEOSCOPE, French Global Network
of broad band seismic stations, https://doi.org/10.18715/GEOSCOPE.G, 1982. a
Institute Of Geophysics, Academy Of Sciences Of The Czech Republic: Czech
Regional Seismic Network, https://doi.org/10.7914/SN/CZ, 1973. a
Jena, F. S. U.: Thüringer Seismologisches Netz (TSN), https://doi.org/10.7914/SN/TH,
2009. a
Karousova, H., Plomerova, J., and Babuska, V.: Upper-mantle structure beneath
the southern Bohemian Massif and its surroundings imaged by high-resolution
tomography, Geophys. J. Int., 194, 1203–1215,
https://doi.org/10.1093/gji/ggt159, 2013. a
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic
velocities in the Earth from traveltimes, Geophys. J. Int.,
122, 108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995. a, b
Kissling, E.: Deep structure of the Alps – what do we really know?, Phys. Earth Planet. Int., 79, 87–112,
https://doi.org/10.1016/0031-9201(93)90144-X, 1993. a
Kissling, E., Schmid, S., and Ansorge, J.: Lithosphere structure and tectonic
evolution of the Alpine arc: New evidence from high-resolution teleseismic
tomography, Geological Society London Memoirs, 32,
https://doi.org/10.1144/GSL.MEM.2006.032.01.08, 2006. a
Krischer, L., Megies, T., Barsch, R., Beyreuther, M., Lecocq, T., Caudron, C.,
and Wassermann, J.: ObsPy: A bridge for seismology into the scientific Python
ecosystem, Comput. Sci. Discov., 8, 014003,
https://doi.org/10.1088/1749-4699/8/1/014003, 2015. a
Kummerow, J., Kind, R., Oncken, O., Giese, P., Ryberg, T., Wylegalla, K.,
Scherbaum, F., Transalp Working Group, et al.: A natural and controlled source seismic
profile through the Eastern Alps: TRANSALP, Earth Planet. Sci.
Lett., 225, 115–129, 2004. a
Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C.,
Bellahsen, N., Cristiano, L., and Weidle, C.: Surface wave tomography of the
Alps using ambient-noise and earthquake phase velocity measurements, J. Geophys. Res.-Sol. Ea., 123, 1770–1792,
https://doi.org/10.1002/2017JB014698, 2018. a
Kästle, E. D., Rosenberg, C., Boschi, L., Bellahsen, N., Meier, T., and
El-Sharkawy, A.: Slab break-offs in the Alpine subduction zone,
International J. Earth Sci., 109, 587–603,
https://doi.org/10.1007/s00531-020-01821-z, 2020. a, b, c
Kövesligethy Radó Seismological Observatory (Geodetic And Geophysical
Institute, Research Centre For Astronomy And Earth Sciences, Hungarian
Academy Of Sciences (MTA CSFK GGI KRSZO)): Hungarian National Seismological
Network, https://doi.org/10.14470/UH028726, 1992. a
Küperkoch, L., Meier, T., Lee, J., Friederich, W., and the EGELADOS Working
Group: Automated determination of P-phase arrival times at regional and
local distances using higher order statistics, Geophysical Journal
International, 181, 1159–1170, https://doi.org/10.1111/j.1365-246X.2010.04570.x, 2010. a
Legendre, C., Meier, T., Lebedev, S., Friederich, W., and Viereck-Götte,
L.: A shear wave velocity model of the European upper mantle from automated
inversion of seismic shear and surface waveforms, Geophys. J. Int., 191, 282–304, 2012. a
Leipzig University: SXNET Saxon Seismic Network, https://doi.org/10.7914/SN/SX, 2001. a
Link, F. and Rümpker, G.: The mantle flow below the Alps from isolated
mantle anisotropy based on differential Ps – XKS Splitting, in: EGU General
Assembly Conference Abstracts, EGU General Assembly Conference Abstracts, p. 2810, 2020. a
Lombardi, D., Braunmiller, J., Kissling, E., and Giardini, D.: Moho depth and
Poisson's ratio in the Western-Central Alps from receiver functions,
Geophys. J. Int., 173, 249–264, 2008. a
Lombardi, D., Braunmiller, J., Kissling, E., and Giardini, D.: Alpine mantle
transition zone imaged by receiver functions, Earth Planet. Sci.
Lett., 278, 163–174, 2009. a
Luth, S., Willingshofer, E., Sokoutis, D., and Cloetingh, S.: Does subduction
polarity change below the Alps? Inferences from analogue modelling,
Tectonophysics, 582, 140–161, 2013. a
Malet, J.-P., Hibert, C., Radiguet, M., Gautier, S., Larose, E., Amitrano, D.,
Jongmans, D., Bièvre, G., and RESIF: French Landslide Observatory – OMIV
(Temporary data) (MT-campagne) (RESIF – SISMOB), https://doi.org/10.15778/RESIF.1N2015,
2015. a
Marone, F., Van Der Lee, S., and Giardini, D.: Three-dimensional upper-mantle
S-velocity model for the Eurasia–Africa plate boundary region, Geophys. J. Int., 158, 109–130, 2004. a
McKee, K. F., Roman, D., Fee, D., Ripepe, M., AIUPPA, A., and Waite, G.:
Seismo-acoustic Network at Stromboli Volcano, Italy,
https://doi.org/10.7914/SN/YI_2018, 2018. a
MedNet Project Partner Institutions: Mediterranean Very Broadband
Seismographic Network (MedNet), https://doi.org/10.13127/SD/FBBBTDTD6Q, 1988. a
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller,
G. R., Koslovskaya, E., Rumpfhuber, E.-M., and Šumanovac, F.: Shape and
origin of the East-Alpine slab constrained by the ALPASS teleseismic model,
Tectonophysics, 510, 195–206,
https://doi.org/10.1016/j.tecto.2011.07.001, 2011. a, b, c, d, e, f, g, h, i
Molinari, I., Verbeke, J., Boschi, L., Kissling, E., and Morelli, A.: Italian
and Alpine three-dimensional crustal structure imaged by ambient-noise
surface-wave dispersion, Geochem. Geophys. Geosyst, 16, 4405–4421,
https://doi.org/10.1002/2015GC006176, 2015. a
Mueller, S. and Banda, E.: European geotraverse project, Terra cognita, 3,
291–294, 1983. a
OGS (Istituto Nazionale Di Oceanografia E Di Geofisica Sperimentale):
North-East Italy Seismic Network, https://doi.org/10.7914/SN/OX, 2016. a
OGS (Istituto Nazionale Di Oceanografia E Di Geofisica Sperimentale) And
University Of Trieste: North-East Italy Broadband Network,
https://doi.org/10.7914/SN/NI, 2002. a
Paffrath, M. and Friederich, W.: P-wave traveltime tomography model derived from AlpArray Seismic Network data, GFZ Data Services [data set], https://doi.org/10.5880/fidgeo.2021.032, last access: 2 November 2021. a, b
Peter, D., Boschi, L., Deschamps, F., Fry, B., Ekström, G., and Giardini,
D.: A new finite-frequency shear-velocity model of the European-Mediterranean
region, Geophys. Res. Lett., 35, 16, https://doi.org/10.1029/2008gl034769, 2008. a
Pfiffner, O.-A., Frei, W., Finckh, P., and Valasek, P.: Deep seismic reflection
profiling in the Swiss Alps: explosion seismology results for line NFP
20-East, Geology, 16, 987–990, 1988. a
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the
Alpine-Mediterranean area, J. Geophys. Res.-Sol. Ea., 108, 2065,
https://doi.org/10.1029/2002JB001757, 2003. a, b
Polish Academy of Sciences (PAN) Polskiej Akademii Nauk: Polish Seismological
Network, available at: https://www.igf.edu.pl/stacje-en.php (last access: 3 September 2021), 1990. a
Rawlinson, N. and Sambridge, M.: The fast marching method: An effective tool
for tomographic imaging and tracking multiple phases in complex layered
media, Explor. Geophys., 36, 4, https://doi.org/10.1071/EG05341,
2005. a, b
Rawlinson, N., Reading, A. M., and Kennett, B. L.: Lithospheric structure of
Tasmania from a novel form of teleseismic tomography, J. Geophys. Res.-Sol. Ea., 111, B2, https://doi.org/10.1029/2005jb003803, 2006. a
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network
and other seismic stations in metropolitan France, https://doi.org/10.15778/RESIF.FR,
1995. a
RESIF: CEA/DASE broad-band permanent network in metropolitan France,
https://doi.org/10.15778/RESIF.RD, 2018. a
Schmid, C., van der Lee, S., VanDecar, J., Engdahl, E., and Giardini, D.:
Three-dimensional S velocity of the mantle in the Africa-Eurasia plate
boundary region from phase arrival times and regional waveforms, J.
Geophys. Res., 113, B033306, https://doi.org/10.1029/2005JB004193, 2008. a
Schmid, S., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and
overall architecture of the Alpine orogen, Eclogae Geol. Helv, 97, 93–117,
2004. a
Schmid, S. M., Kissling, E., Diehl, T., Hinsbergen, D. J. J., and Molli, G.:
Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the
Alps–Apennines orogenic system, Swiss J. Geosci., 110, 581–612,
https://doi.org/10.1007/s00015-016-0237-0, 2017. a
Slovenian Environment Agency: Seismic Network of the Republic of Slovenia,
https://doi.org/10.7914/SN/SL, 2001. a
Spada, M., Bianchi, I., Kissling, E., Agostinetti, N. P., and Wiemer, S.:
Combining controlled-source seismology and receiver function information to
derive 3D Moho topography for Italy, Geophys. J. Int.,
194, 1050–1068, https://doi.org/10.1093/gji/ggt148, 2013. a, b, c
Stehly, L., Fry, B., Campillo, M., Shapiro, N. M., Guilbert, J., Boschi, L.,
and Giardini, D.: Tomography of the Alpine region from observations of
seismic ambient noise, Geophys. J. Int., 178, 338–350,
https://doi.org/10.1111/j.1365-246x.2009.04132.x, 2009. a
Swiss Seismological Service (SED) At ETH Zurich: National Seismic Networks of
Switzerland, https://doi.org/10.12686/SED/NETWORKS/CH, 1983. a
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: EuCRUST-07: A new
reference model for the European crust, Geophys. Res. Lett., 35, 5,
https://doi.org/10.1029/2007GL032244, 2008. a, b, c, d
TRANSALP Working Group, Gebrande, H., Lüschen, E., Bopp, M., Bleibinhaus,
F., Lammerer, B., Oncken, O., Stiller, M., Kummerow, J., Kind, R., et al.:
First deep seismic reflection images of the Eastern Alps reveal giant crustal
wedges and transcrustal ramps, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001GL014911, 2002. a
University Of Genova: Regional Seismic Network of North Western Italy,
https://doi.org/10.7914/SN/GU, 1967. a
University Of Trieste: Friuli Venezia Giulia Accelerometric Network,
https://doi.org/10.7914/SN/RF, 1993. a
University Of Zagreb: Croatian Seismograph Network, https://doi.org/10.7914/SN/CR,
2001. a
Waldhauser, F., Lippitsch, R., Kissling, E., and Ansorge, J.: High-resolution
teleseismic tomography of upper-mantle structure using an a priori
three-dimensional crustal model, Geophys. J. Int., 150,
403–414, https://doi.org/10.1046/j.1365-246X.2002.01690.x,
2002.
a
ZAMG – Central Institute for Meteorology and Geodynamics: Province Südtirol,
available at: https://www.fdsn.org/networks/detail/SI/ (last access: 3 September 2021), 2006. a
ZAMG – Zentralanstalt Für Meterologie Und Geodynamik: Austrian Seismic
Network, https://doi.org/10.7914/SN/OE, 1987. a
Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S., Guillot,
S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli, S., Wang,
Q., and Zhu, R.: Continuity of the Alpine slab unraveled by high-resolution P
wave tomography, J. Geophys. Res.-Sol. Ea., 121,
8720–8737, https://doi.org/10.1002/2016JB013310, 2016. a, b, c, d, e, f, g, h, i, j, k
Zhu, H., Bozdağ, E., Peter, D., and Tromp, J.: Structure of the European
upper mantle revealed by adjoint tomography, Nat. Geosci., 5, 493–498,
https://doi.org/10.1038/ngeo1501, 2012. a
Download
- Article
(45769 KB) - Full-text XML
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the...