Blum, A. E., Yund, R. A., and Lasaga, A. C.: The effect of dislocation
density on the dissolution rate of quartz, Geochim. Cosmochim. Ac., 54,
283–297, https://doi.org/10.1016/0016-7037(90)90318-F, 1990.
Boulton, G., Dobbie, K., and Zatsepin, S.: Sediment deformation beneath
glaciers and its coupling to the subglacial hydraulic system, Quaternary Int., 86, 3–28, https://doi.org/10.1016/S1040-6182(01)00048-9, 2001.
Brady, P. V. and Walther, J. V.: Kinetics of quartz dissolution at low
temperatures, Chem. Geol., 82, 253–264,
https://doi.org/10.1016/0009-2541(90)90084-K, 1990.
Brantley, S. L.: Reaction Kinetics of Primary Rock-Forming Minerals under
Ambient Conditions, in: Surface and Ground Water, Weathering, and Soils,
edited by: Drever, J. I., Treatise on Geochemistry, 5, 73–117, https://doi.org/10.1016/B0-08-043751-6/05075-1, 2005.
Brantley, S. L., Crane, S. R., Crerar, D. A., Hellmann, R., and Stallard, R.:
Dissolution at dislocation etch pits in quartz, Geochim. Cosmochim. Ac.,
50, 2349–2361, https://doi.org/10.1016/0016-7037(86)90087-6, 1986.
Brew, D. R. M. and Glasser, F. P.: Synthesis and characterisation of
magnesium silicate hydrate gels, Cement Concrete Res., 35, 85–98,
https://doi.org/10.1016/j.cemconres.2004.06.022, 2005.
Casey, W. H., Westrich, H. R., Banfield, J. F., Ferruzzi, G., and Arnold, G.
W.: Leaching and reconstruction at the surfaces of dissolving chain-silicate
minerals, Nature, 366, 253–256, https://doi.org/10.1038/366253a0, 1993.
Daval, D., Sissmann, O., Menguy, N., Saldi, G. D., Guyot, F., Martinez, I.,
Corvisier, J., Garcia, B., Machouk, I., Knauss, K. G., and Hellmann, R.:
Influence of amorphous silica layer formation on the dissolution rate of
olivine at 90
∘C and elevated pCO
2, Chem. Geol., 284,
193–209, https://doi.org/10.1016/j.chemgeo.2011.02.021, 2011.
de Meer, S., Spiers, C. J., and Nakashima, S.: Structure and diffusive
properties of fluid-filled grain boundaries: An in-situ study using infrared
(micro) spectroscopy, Earth Planet. Sci. Lett., 232, 403–414,
https://doi.org/10.1016/j.epsl.2004.12.030, 2005.
Dove, P. M. and Nix, C. J.: The influence of the alkaline earth cations,
magnesium, calcium, and barium on the dissolution kinetics of quartz,
Geochim. Cosmochim. Ac., 61, 3329–3340,
https://doi.org/10.1016/S0016-7037(97)00217-2, 1997.
Evans, D. J. A., Phillips, E. R., Hiemstra, J. F., and Auton, C. A.:
Subglacial till: Formation, sedimentary characteristics and classification,
Earth-Science Rev., 78, 115–176, https://doi.org/10.1016/J.EARSCIREV.2006.04.001,
2006.
Fisher, Q. J., Knipe, R. J., and Worden, R. H.: Microstructures of Deformed
and Non-Deformed Sandstones from the North Sea: Implications for the Origins
of Quartz Cement in Sandstones, in: Quartz Cementation in Sandstones, edited
by: Worden, R. H. and Morad, S., Special Publication of the International
Association of Sedimentology, 29, 129–146, https://doi.org/10.1002/9781444304237, 2000.
Gaschnig, R. M., Rudnik, R. L., McDonough, W. F., Kaufman, A. J. Valley, J. W., Hu, Z., Gao, S., and Beck, M. L.: Compositinal evolution of the upper continental crust through time, as constrained by ancient glacial diamictites, Geochim. Cosmochim. Ac., 186, 316–343, https://doi.org/10.1016/j.gca.2016.03.020, 2016.
Gautier, J. M., Oelkers, E. H., and Schott, J.: Are quartz dissolution rates
proportional to B.E.T. surface areas?, Geochim. Cosmochim. Ac., 65,
1059–1070, https://doi.org/10.1016/S0016-7037(00)00570-6, 2001.
Goldschmidt, V. M.: Grundlagen der Quantitativen Geoshemie, Fortssh. Miner. Krist. Retrogr., XVII, 112–115 1933.
Gratz, A. J., Manne, S., and Hansma, P. K.: Atomic force microscopy of
atomic-scale ledges and etch pits formed during dissolution of quartz,
Science, 251, 1343–1346, https://doi.org/10.1126/science.251.4999.1343, 1991.
Greene, G. W., Kristiansen, K., Meyer, E. E., Boles, J. R., and
Israelachvili, J. N.: Role of electrochemical reactions in pressure
solution, Geochim. Cosmochim. Ac., 73, 2862–2874,
https://doi.org/10.1016/j.gca.2009.02.012, 2009.
Gruber, C., Zhu, C., Georg, R. B., Zakon, Y., and Ganor, J.: Resolving the
gap between laboratory and field rates of feldspar weathering, Geochim.
Cosmochim. Ac., 147, 90–106, https://doi.org/10.1016/j.gca.2014.10.013, 2014.
Hellmann, R., Penisson, J. M., Hervig, R. L., Thomassin, J. H., and Abrioux,
M. F.: An EFTEM/HRTEM high-resolution study of the near surface of
labradorite feldspar altered at acid pH: Evidence for interfacial
dissolution-reprecipitation, Phys. Chem. Miner., 30, 192–197,
https://doi.org/10.1007/s00269-003-0308-4, 2003.
Hellmann, R., Wirth, R., Daval, D., Barnes, J. P., Penisson, J. M.,
Tisserand, D., Epicier, T., Florin, B., and Hervig, R. L.: Unifying natural
and laboratory chemical weathering with interfacial
dissolution-reprecipitation: A study based on the nanometer-scale chemistry
of fluid-silicate interfaces, Chem. Geol., 294–295, 203–216,
https://doi.org/10.1016/j.chemgeo.2011.12.002, 2012.
Hickman, H. and Evans, B.: Kinetics of pressure solution at halite-silica
interfaces and intergranular clay films, J. Geophys. Res., 100,
13113–13132, 1995.
House, W. A. and Orr, D. R.: Investigation of the pH dependence of the
kinetics of quartz dissolution at 25
∘C, J. Chem. Soc. Faraday
Trans., 88, 233–241, https://doi.org/10.1039/ft9928800233, 1992.
Hövelmann, J., Putnis, C. V., Ruiz-Agudo, E., and Austrheim, H.: Direct
nanoscale observations of CO
2 sequestration during brucite [Mg(OH)
2]
dissolution, Environ. Sci. Technol., 46, 5253–5260,
https://doi.org/10.1021/es300403n, 2012.
Iler, R. K.: The Chemistry of Silica: Solubility, Polymerization, Colloid
and Surface Properties, and Biochemistry, Wiley, New York, 1979.
Imbabi, M. S., Carrigan, C., and McKenna, S.: Trends and developments in
green cement and concrete technology, Int. J. Sustain. Built Environ., 1,
194–216, https://doi.org/10.1016/j.ijsbe.2013.05.001, 2012.
Jin, F. and Al-Tabbaa, A.: Strength and hydration products of reactive
MgO-silica pastes, Cement Concrete Comp., 52, 27–33,
https://doi.org/10.1016/j.cemconcomp.2014.04.003, 2014.
Jonas, L., John, T., King, H. E., Geisler, T., and Putnis, A.: The role of
grain boundaries and transient porosity in rocks as fluid pathways for
reaction front propagation, Earth Planet. Sci. Lett., 386, 64–74,
https://doi.org/10.1016/j.epsl.2013.10.050, 2014.
Jordan, G., Higgins, S. R., Eggleston, C. M., Swapp, S. M., Janney, D. E.
and Knauss, K. G.: Acidic dissolution of plagioclase: In-situ observations
by hydrothermal atomic force microscopy, Geochim. Cosmochim. Ac.,
63, 3183–3191, https://doi.org/10.1016/S0016-7037(99)00225-2, 1999.
Knauss, K. G. and Wolery, T. J.: The dissolution kinetics of quartz as a
function of pH and time at 70
∘C, Geochim. Cosmochim. Ac, 52,
43–53, https://doi.org/10.1016/0016-7037(88)90055-5, 1988.
Kristiansen, K., Valtiner, M., Greene, G. W., Boles, J. R., and
Israelachvili, J. N.: Pressure solution – The importance of the
electrochemical surface potentials, Geochim. Cosmochim. Ac., 75,
6882–6892, https://doi.org/10.1016/j.gca.2011.09.019, 2011.
Lasaga, A. C.: Chemical kinetics of water-rock interactions, J. Geophys.
Res-Sol. Ea., 89, 4009–4025, https://doi.org/10.1029/JB089iB06p04009, 1984.
Lasaga, A. C. and Luttge, A.: Variation of Crystal Dissolution Rate Based on
a Dissolution Stepwave Model, Science, 80, 2400–2404,
https://doi.org/10.1126/science.1058173, 2001.
Meyer, E. E., Greene, G. W., Alcantar, N. A., Israelachvili, J. N. and
Boles, J. R.: Experimental investigation of the dissolution of quartz by a
muscovite mica surface: Implications for pressure solution, J. Geophys. Res.-Sol. Ea., 111, 2–5, https://doi.org/10.1029/2005JB004010, 2006.
Moore, A. C. and Hultin, I.: Petrology, mineralogy, and origin of the
Feragen ultramafic body, Sor-Trondelag, Norway., Nor. Geol. Tidsskr., 60,
235–254, 1980.
Moore, J., Lichtner, P. C., White, A. F., and Brantley, S. L.: Using a
reactive transport model to elucidate differences between laboratory and
field dissolution rates in regolith, Geochim. Cosmochim. Ac., 93, 235–261,
https://doi.org/10.1016/j.gca.2012.03.021, 2012.
Nugent, M. A., Brantley, S. L., Pantano, C. G. and Maurice, P. A.: The
influence of natural mineral coatings on feldspar weathering, Nature,
395, 588–591, https://doi.org/10.1038/26951, 1998.
Parkhurst, B. D. L. and Appelo, C. A. J.: User's Guide To PHREEQC (version 2)
– a Computer Program for Speciation, and Inverse Geochemical Calculations,
US Geol. Surv.-Water-Resources Investig, Reports, 99–4259,
1999.
Piccini, L. and Mecchia, M.: Solution weathering rate and origin of karst
landforms and caves in the quartzite of Auyan-tepui (Gran Sabana,
Venezuela), Geomorphology, 106, 15–25,
https://doi.org/10.1016/J.GEOMORPH.2008.09.019, 2009.
Pokrovsky, O. S. and Schott, J.: Experimental study of brucite dissolution
and precipitation in aqueous solutions: Surface speciation and chemical
affinity control, Geochim. Cosmochim. Ac., 68, 31–45,
https://doi.org/10.1016/S0016-7037(03)00238-2, 2004.
Pope, G. A.: Newly discovered submicron-scale weathering in quartz:
Geographical implications, Prof. Geogr., 47, 375–387,
https://doi.org/10.1111/j.0033-0124.1995.00375.x, 1995.
Proust, D., Caillaud, J., and Fontaine, C.: Clay minerals in early amphibole
weathering: tri- to dioctahedral sequence as a function of crystallization
sites in the amphibole, Clays Clay Miner., 54, 351–362, 2006.
Putnis, A.: Mineral Replacement Reactions, Rev. Mineral. Geochem.,
70, 87–124, https://doi.org/10.2138/rmg.2009.70.3, 2009.
Renard, F. and Ortoleva, P.: Water films at grain-grain contacts:
Debye-Hückel, osmotic model of stress, salinity, and mineralogy
dependence, Geochim. Cosmochim. Ac, 61, 1963–1970,
https://doi.org/10.1016/S0016-7037(97)00036-7, 1997.
Rimstidt, J. D.: Rate equations for sodium catalyzed quartz dissolution,
Geochim. Cosmochim. Ac., 167, 195–204, https://doi.org/10.1016/j.gca.2015.07.030,
2015.
Roosz, C., Grangeon, S., Blanc, P., Montouillout, V., Lothenbach, B.,
Henocq, P., Giffaut, E., Vieillard, P., and Gaboreau, S.: Crystal structure
of magnesium silicate hydrates (M-S-H): The relation with 2:1 Mg-Si
phyllosilicates, Cement Concrete Res., 73, 228–237,
https://doi.org/10.1016/j.cemconres.2015.03.014, 2015.
de Ruiter, L. and Austrheim, H.: Formation of magnesium silicate hydrate
cement in nature, J. Geol. Soc. London., 175, 308–320,
https://doi.org/10.1144/jgs2017-089, 2018.
Ruiz-Agudo, E., Putnis, C. V., Rodriguez-Navarro, C., and Putnis, A.:
Mechanism of leached layer formation during chemical weathering of silicate
minerals, Geology, 40, 947–950, https://doi.org/10.1130/G33339.1, 2012.
Ruiz-Agudo, E., Putnis, C. V., and Putnis, A.: Coupled dissolution and
precipitation at mineral–fluid interfaces, Chem. Geol., 383, 132–146,
https://doi.org/10.1016/J.CHEMGEO.2014.06.007, 2014.
Ruiz-Agudo, E., King, H. E., Patiño-López, L. D., Putnis, C. V.,
Geisler, T., Rodriguez-Navarro, C., and Putnis, A.: Control of silicate
weathering by interface-coupled dissolution-precipitation processes at the
mineral-solution interface, Geology, 44, 567–570, https://doi.org/10.1130/G37856.1,
2016.
Schaefer, J., Backus, E. H. G., and Bonn, M.: Evidence for auto-catalytic
mineral dissolution from surface-specific vibrational spectroscopy, Nat.
Commun., 9, 1–6, https://doi.org/10.1038/s41467-018-05762-9, 2018.
Schwarz, S. and Stöckhert, B.: Pressure solution in siliciclastic HP-LT
metamorphic rocks constraints on the state of stress in deep levels of
accretionary complexes, Tectonophysics, 255, 203–209,
https://doi.org/10.1016/0040-1951(95)00137-9, 1996.
Steefel, C. I. and Van Cappellen, P.: A new kinetic approach to modeling
water-rock interaction: The role of nucleation, precursors
, and Ostwald
ripening, Geochim. Cosmochim. Ac., 54, 2657–2677,
https://doi.org/10.1016/0016-7037(90)90003-4, 1990.
Tosca, N. J. and Masterson, A. L.: Chemical controls on incipient
Mg-silicate crystallization at 25
∘C: Implications for early and
late diagenesis, Clay Miner., 49, 165–194,
https://doi.org/10.1180/claymin.2014.049.2.03, 2014.
Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J.,
Beinlich, A., Fallon, S. J., Dipple, G. M., and Southam, G.: Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on
carbonate mineralogy and efficiency of CO
2 air capture in mine tailings,
Int. J. Greenh. Gas Control, 79, 38–60, https://doi.org/10.1016/j.ijggc.2018.09.015,
2018.
Ulven, O. I., Beinlich, A., Hövelmann, J., Austrheim, H., and Jamtveit,
B.: Subarctic physicochemical weathering of serpentinized peridotite, Earth
Planet. Sci. Lett., 468, 11–26, https://doi.org/10.1016/j.epsl.2017.03.030, 2017.
Velbel, M. A. and Barker, W. W.: Pyroxene weathering to smectite:
Conventional and cryo-field emission scanning electron microscopy, Koua
Bocca ultramafic complex, Ivory Coast, Clays Clay Miner., 56, 112–127,
https://doi.org/10.1346/CCMN.2008.0560110, 2008.
Walling, S. A. and Provis, J. L.: Magnesia-based cements: A journey of 150
years, and cements for the future?, Chem. Rev., 116, 4170–4204,
https://doi.org/10.1021/acs.chemrev.5b00463, 2016.
White, A. F. and Brantley, S. L.: The effect of time on the weathering of
silicate minerals: why do weathering rates differ in the laboratory and
field?, Chem. Geol., 202, 479–506, https://doi.org/10.1016/J.CHEMGEO.2003.03.001,
2003.
White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G.,
and Peters, N. E.: Differential rates of feldspar weathering in granitic
regoliths, Geochim. Cosmochim. Ac., 65, 847–869,
https://doi.org/10.1016/S0016-7037(00)00577-9, 2001.
Wray, R. A. L. and Sauro, F.: An updated global review of solutional
weathering processes and forms in quartz sandstones and quartzites,
Earth-Sci. Rev., 171, 520–557, https://doi.org/10.1016/j.earscirev.2017.06.008,
2017.
Yanina, S. V., Rosso, K. M., and Meakin, P.: Defect distribution and
dissolution morphologies on low-index surfaces of
α-quartz, Geochim.
Cosmochim. Ac., 70, 1113–1127, https://doi.org/10.1016/J.GCA.2005.11.019, 2006.
Zhang, T., Vandeperre, L. J., and Cheeseman, C. R.:
Magnesium-silicate-hydrate cements for encapsulating problematic aluminium
containing wastes, J. Sustain. Cem. Mater., 1, 34–45,
https://doi.org/10.1080/21650373.2012.727322, 2012.
Zhang, T., Zou, J., Wang, B., Wu, Z., Jia, Y., and Vandeperre, C. R.:
Microstructure Characterization of Magnesium Silicate Hydrate Phase,
Materials-Basel., 11, 1–15, https://doi.org/10.3390/ma11060909, 2018.
Zhu, C., Veblen, D. R., Blum, A. E., and Chipera, S. J.: Naturally weathered
feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona:
Electron microscopic characterization, Geochim. Cosmochim. Ac., 70,
4600–4616, https://doi.org/10.1016/j.gca.2006.07.013, 2006.