Articles | Volume 13, issue 1
https://doi.org/10.5194/se-13-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Andrei Maksymowicz
CORRESPONDING AUTHOR
Departamento de Geofísica, Universidad de Chile, Blanco Encalada
2002, Santiago, Chile
Daniela Montecinos-Cuadros
Departamento de Geofísica, Universidad de Chile, Blanco Encalada
2002, Santiago, Chile
Daniel Díaz
Departamento de Geofísica, Universidad de Chile, Blanco Encalada
2002, Santiago, Chile
María José Segovia
Departamento de Geofísica, Universidad de Chile, Blanco Encalada
2002, Santiago, Chile
Tomás Reyes
Departamento de Geología, Universidad de Chile, Plaza
Ercilla 803, Santiago, Chile
Instituto de Geocronología y Geología Isotopica
(INGEIS-CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Related authors
No articles found.
F. Martínez, A. Maksymowicz, H. Ochoa, and D. Díaz
Solid Earth, 6, 1259–1276, https://doi.org/10.5194/se-6-1259-2015, https://doi.org/10.5194/se-6-1259-2015, 2015
Short summary
Short summary
This paper discusses an integrated approach that provides new ideas about the structure of the eastern Coastal Cordillera in the western Central Andes of northern Chile (27º–28ºS). The integration of gravity and geological information shows that the architecture of this sector is related to the inversion of a Cretaceous rift system. Ages of the synorogenic deposits exposed unconformably over the inversion structure have confirmed a Late Cretaceous age for the Andean deformation in the region.
D. Díaz, A. Maksymowicz, G. Vargas, E. Vera, E. Contreras-Reyes, and S. Rebolledo
Solid Earth, 5, 837–849, https://doi.org/10.5194/se-5-837-2014, https://doi.org/10.5194/se-5-837-2014, 2014
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Reli Wald, Amit Segev, Zvi Ben-Avraham, and Uri Schattner
Solid Earth, 10, 225–250, https://doi.org/10.5194/se-10-225-2019, https://doi.org/10.5194/se-10-225-2019, 2019
Short summary
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Dietrich Lange, Frederik Tilmann, Tim Henstock, Andreas Rietbrock, Danny Natawidjaja, and Heidrun Kopp
Solid Earth, 9, 1035–1049, https://doi.org/10.5194/se-9-1035-2018, https://doi.org/10.5194/se-9-1035-2018, 2018
Short summary
Cited articles
Adriasola, A. C., Thomson, S. N., and Brix, M. R.: Postmagmatic cooling and
late Cenozoic denudation of the North Patagonian Batholith in the Los Lagos
region of Chile, 41∘-42∘15′S, Int. J. Earth.
Sci. (Geol Rundsch), 95, 504–528, https://doi.org/10.1007/s00531-005-0027-9, 2005.
Álvarez, O., Nacif, S., Gimenesz, M., Folguera, A., and Braitenberg, C.:
Goce derived vertical gravity gradient delineates great earthquake rupture zones along
the chilean margin, Tectonophysics, 622, 198–215,
https://doi.org/10.1016/j.tecto.2014.03.011, 2014.
Bangs, N. and Cande, S.: Episodic development of a convergent margin
inferred from structures and processes along the southern Chile margin,
Tectonics, 16, 489–503, 1997.
Bangs, N., Morgan, J. K., Tréhu, A. M., Contreras-Reyes, E., Arnul, A.,
Han, S., Olsen, K. M., and Zhang, E.: Basal accretion along the
south-central Chilean margin and its relationship to great earthquakes, J.
Geophys. Res., 125, 1–21, https://doi.org/10.1029/2020JB019861, 2020.
Bassett, D. and Watts, A. B.: Gravity anomalies, crustal structure, and
seismicity at subduction zones: 2. Interrelationships between fore-arc
structure and seismogenic behavior, Geochem. Geophy. Geosy.,
16, 1541–1576, https://doi.org/10.1002/2014GC005685, 2015.
Bassett, D., Sandwell, D. T., Fialko, Y., and Watts, A. B.: Upper–plate
controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake,
Nature, 531, 92–96, 2016.
Becerra, J., Contreras-Reyes, E., and Arriagada, C.: Seismic structure and
tectonics of the southern Arauco Basin, south-central Chile (∼38∘S), Tectonophysics, 592, 53–66, 2013.
Bilek, S. L., Schwartz, S. Y., and Deshon, H. R.: Control of seafloor
roughness on earthquake rupture behavior, Geology, 31, 455–458,
https://doi.org/10.1130/0091-7613(2003)031<0455:COSROE>2.0.CO;2, 2003.
Blakely, R. J.: Potential Theory in Gravity & Magnetic Applications,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511549816, 1995.
Bostick, F. X.: A simple almost exact method of MT analysis, Workshop on
electrical methods in geothermal exploration, US Geol. Surv., Contract No. 14080001-8, 359, 174–183, 1977.
Brocher, T. M.: Empirical Relations between Elastic Wavespeeds and Density
in the Earth's Crust, B. Seismol. Soc. Am., 95, 2081–2092, https://doi.org/10.1785/0120050077, 2005.
Cembrano, J., Herve, F., and Lavenu, A.: The Liquiñe-Ofqui fault zone: a
long-lived intra-arc fault system in southern Chile, Tectonophysics, 259,
55–66, 1996.
Charrier, R., Pinto, L., and Rodríguez, M. P.: Tectonostratigraphic
evolution of the Andean Orogen in Chile, edited by: Moreno, T. and Gibbons, W., The Geology of Chile, Geol. Soc. Lond., 21–114, 2007.
Comte, D., Farías, M., Roecker, S., and Russo, R. M.: The Nature of the
subduction wedge in an erosive margin: Insights from the analysis of
aftershocks of the 2015 Mw 8.3 Illapel earthquake beneath the Chilean
Coastal Range, Earth Planet. Sc. Lett., 520, 50–62, 2019.
Constable, S. C., Parker, R. L., and Constable, C. G.: Occam's inversion: A
practical algorithm for generating smooth models from electromagnetic
sounding data, Geophysics, 52, 289–300, 1987.
Contreras-Reyes, E., Grevemeyer, I., Flueh, E. R., and Reichert, C.: Upper
lithospheric structure of the subduction zone offshore of southern Arauco
peninsula, Chile at ∼38∘ S, J. Geophys. Res., 113, B07303,
https://doi.org/10.1029/2007JB005569, 2008.
Contreras-Reyes, E., Flueh, E., and Grevemeyer, I.: Tectonic
control on sediment accretion and subduction off south central Chile: implications for co-seismic rupture processes of the 1960 and 2010 megathrust earthquakes, Tectonics, 29, 1–27,
https://doi.org/10.1029/2010TC002734, 2010.
Contreras-Reyes, E. and Carrizo, D.: Control of high oceanic features and
subduction channel on earthquake ruptures along the Chile–Peru subduction
zone, Phys. Earth Planet. Int., 186, 49–58, https://doi.org/10.1016/j.pepi.2011.03.002, 2011.
Contreras-Reyes, E., Maksymowicz, A., Lange, D., Grevemeyer, I.,
Muñoz-Linford, P., and Moscoso, E.: On the relationship between
structure, morphology and large co-seismic slip: A case study of the Mw 8.8
Maule, Chile 2010 earthquake, Earth Planet. Sc. Lett., 478, 27–39, https://doi.org/10.1016/j.epsl.2017.08.028, 2017.
Cubas, N., Avouac, J. P., Leroy, Y. M., and Pons, A.: Low friction along the
high slip patch of the 2011 Mw 9.0 Tohoku-Oki earthquake required from the
wedge structure and extensional splay faults, Geophys. Res. Lett., 40,
4231–4237, https://doi.org/10.1002/grl.50682, 2013a.
Cubas, N., Avouac, J. P., Souloumiac, P., and Leroy, Y. M.: Megathrust
friction determined from mechanical analysis of the forearc in the Maule
earthquake area, Earth Planet. Sc. Lett., 381, 92–103,
https://doi.org/10.1016/j.epsl.2013.07.037, 2013b.
Dahlen, F. A.: Noncohesive critical Coulomb wedges: an exact solution, J.
Geophys. Res., 89, 125–133, 1984.
Deckart, D., Hervé, F., Fanning, C. M., Ramírez, V., Calderón,
M., and Godoy, E.: U-Pb geochronology and Hf-O isotopes of zircons from the
Pennsylvanian Coastal Batholith, South-Central Chile, Andean Geol., 41, 49–82, 2014.
DGA: Estudio cuencas principales Región de los Ríos / Ministerio de
Obras Públicas, Dirección General de Aguas, División de Estudios
y Planificación, S.I.T. No 293, 1–291, 2012.
Díaz, D., Zúñiga, F., and Castruccio, A.: The interaction
between active crustal faults and volcanism: A case study of the
Liquiñe-Ofqui Fault Zone and Osorno volcano, southern Andes, using
magnetotellurics, J. Volcanol. Geoth. Res., 393,
106806, https://doi.org/10.1016/j.jvolgeores.2020.106806, 2020.
Duhart, P., McDonough, M., Muñoz, J., Martin, M., and Villeneuve, M.: El
Complejo Metamórfico Bahía Mansa en la Cordillera de la Costa del
centro-sur de Chile (39∘30′-42∘00′S):
geocronología K-Ar, Ar/Ar y U-Pb e implicancias en la evolución del
margen sur-occidental de Gondwana, Revista Geológica de Chile, 28,
179–208, 2001.
Dzierma, Y., Thorwart, M., and Rabbel, W.: Moho topography and subducting
oceanic slab of the Chilean continental margin in the maximum slip segment
of the 1960 Mw 9.5 Valdivia (Chile) earthquake from P-receiver functions,
Tectonophysics, 530, 180–192, 2012a.
Dzierma, Y., Rabbel, W., Thorwart, M., Koulakov, I., Wehrmann, H., Hoernle,
K., and Comte, D.: Seismic velocity structure of the slab and continental
plate in the region of the 1960 Valdivia (Chile) slip maximum – Insights
into fluid release and plate coupling, Earth Planet. Sc. Lett.,
331, 164–176, 2012b.
Dzierma, Y., Thorwart, M., Rabbel, W., Siegmund, C., Comte, D., Bataille,
K., Iglesia, P., and Prezzi, C.: Seismicity near the slip maximum of the
1960Mw 9.5 Valdivia earthquake (Chile): Plate interface lock and
reactivation of the subducted Valdivia Fracture Zone, J. Geophys. Res., 117,
B06312, https://doi.org/10.1029/2011JB008914, 2012c.
Egbert, G. and Booker, J.: Robust estimation of geomagnetic transfer
functions, Geophysics, 87, 173–194, 1989.
Encinas, A., Sagripanti, L., Rodríguez, M.P., Orts, D., Anavalón,
A., Giroux, P., Otero, J., Echaurren, A., Zambrano, P. and Valencia, V.:
Tectonosedimentary evolution of the Coastal Cordillera and Central
Depression of south-Central Chile (36∘30′-42∘S), Earth-Sci. Rev., 213, 103465, https://doi.org/10.1016/j.earscirev.2020.103465, 2021.
Flueh, E. and Grevemeyer, I.: FS SONNE Cruise Report SO 181 Tipteq – from
the incoming plate to megathrust earthquakes, Berichte aus dem
Leibniz-Institut für Meereswissenschaften an der
Christian-Albrechts-Universität zu Kiel, 42, 1–539,
https://doi.org/10.3289/IFM-GEOMAR_REP_42_2011, 2005.
Geersen, J., Behrmann, J. H., Völker, D., Krastel, S., Ranero, C. R.,
Diaz-Naveas, J., and Weinrebe, W.: Active tectonics of the South Chilean
marine fore arc (35∘S–40∘S), Tectonics, 30,
TC3006, https://doi.org/10.1029/2010TC002777, 2011.
Glodny, J., Lohrmann, J., Echtler, H., Grafe, k., Seifert, W., Collao, S.,
and Figueroa, O.: Internal dynamics of a paleoaccretionary wedge: Insights
from combined isotope tectonochronology and sandbox modelling of the
south-central Chilean forearc, Earth Planet. Sc. Lett., 231, 23–39,
2005.
Glodny, J., Gräfe, K., Echtler, H., and Rosenau, M.: Mesozoic to
Quaternary continental margin dynamics in south-central Chile
(36–42∘ S): The apatite and zircon fission track perspective,
Int. J. Earth Sci., 97, 1271–1291, https://doi.org/10.1007/s00531-007-0203-1, 2008.
González, E.: Hydrocarbon resources in the coastal zone of Chile, in:
Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources,
edited by: Ericksen, G. E., Cañas, M., and Reinemund, J. A., Cricum-Pac. Counc. for
Energy and Miner. Resour., Houston, Tex., 383–404, 1989.
Haberland, C., Rietbrock, A., Lange, D., Bataille, K., and Hofmann, S.:
Interaction between forearc and oceanic plate at the south-central Chilean
margin as seen in local seismic data, Geophys. Res. Lett., 33, L23302,
https://doi.org/10.1029/2006GL028189, 2006.
Hackney, R., Echtler, H., Franz, G., Götze, H. J., Lucassen, F.,
Marchenko, D., Melnick, D., Meyer, U., Schmidt, S., Tašárová,
Z., Tassara, A., and Wienecke, S.: The Segmented Overriding Plate and
Coupling at the South-Central Chilean Margin (36-42∘S), in: The Andes-Active Subduction Orogeny,
edited by: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H. J., Ramos, V. A., Strecker, M. R., and Wigger, P., Springer-Verlag, Berlin, Heidelberg, New York, 355–374, 2006.
Hayes, G.: Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S.
Geological Survey data release,
https://doi.org/10.5066/F7PV6JNV, 2018.
Hervé, F.: Late Paleozoic subduction and accretion in Southern Chile,
Episodes, 11, 183–188, 1988.
Hervé, F., Calderón, M., Fanning, C. M., Pankhurst, R. J., and
Godoy, E.: Provenance variations in the Late Paleozoic accretionary complex
of Central Chile as indicated by detrital zircons, Gondwana Res., 23,
1122–1135, 2013.
Hervé, F., Calderón, M., Fanning, C.M., Pankhurst, R.J., Fuentes,
F., Rapela, C. W., Correa, J., Quezada, P., and Marambio, C.: Devonian
magmatism in the accretionary complex of southern Chile, J. Geol. Soc. Lond., 173, 587–602, https://doi.org/10.1144/jgs2015-163, 2016.
Hervé, F., Calderon, M., Fanning, C. M., Pankhurst, R. J., Rapela, C.
W., and Quezada, P.: The country rocks of Devonian magmatism in the north
Patagonian massif and Chaitenia, Andean Geol., 45, 301–317,
https://doi.org/10.5027/andgeoV45n3-3117, 2018.
Hicks, S. P., Rietbrock, A., Ryder, I. M. A., Chao-Shing, L., and Miller,
M.: Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture
zone imaged using seismic tomography, Earth Planet. Sc. Lett., 405,
142–155, 2014.
Honores, C., Pérez, Y., Lemus, M., and Aguilera, F.: Caracterización
termal de las cuencas terciarias en la Depresión Central de la
Región de Los Lagos mediante información geofísica, Congreso
Geológico Chileno, 14, La Serena, Chile, 4–8 Octubre 2015, 503–506, 2015.
Hyppolito, T., Juliani, C., García-Casco, A., Meira, V. T., Bustamante,
A., and Hervé, F.: The nature of the Palaeozoic oceanic basin at the
southwestern margin of Gondwana and implications for the origin of the
Chilenia terrane (Pichilemu region, central Chile), Int. Geol. Rev., 56, 1097–1121, https://doi.org/10.1080/00206814.2014.919612, 2014.
Im, K., Saffer, D., Marone, C., and Avouac, J.-P.: Slip-rate-dependent friction
as a universal mechanism for slow slip events, Nat. Geosci., 13, 705–710,
https://doi.org/10.1038/s41561-020-0627-9, 2020.
Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Holelled SRTM for
the globe Version 4, available from the CGIAR-CSI SRTM 90 m Database,
available at: http://srtm.csi.cgiar.org (last access: 20 December 2021), 2008.
Jordan, T. E., Burns, W. M., Veiga, R., Pángaro, F., Copeland, P.,
Kelley, S., and Mpodozis, C.: Extension and basin formation in the southern
Andes caused by increased convergence rate: A mid-Cenozoic trigger for the
Andes, Tectonics, 20, 308–324, 2001.
Kapinos, G., Montahaei, M., Meqbel, N., and Brasse, H.: Three-dimensional
electrical resistivity image of the South-Central Chilean subduction zone,
Tectonophysics, 666, 76–89, 2016.
Kelleher, J. A.: Rupture zones of large South American earthquakes and some
predictions, J. Geophys. Res., 77, 2087–2103,
https://doi.org/10.1029/JB077i011p02087, 1972.
Kendrick, E., Bevis, M., Smalley, R., Brooks, B., Vargas, R. B., Laura, E.,
and Fortes, L. P. S.: The Nazca South America Euler vector and its rate of
change, J. S. Am. Earth Sci., 16, 125–131, 2003.
Kane, M. F.: A comprehensive system of terrain corrections using a digital
computer, Geophysics, 455–462, 1962.
Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S.,
Takahashi, N., Kaneda, Y., and Taira, A.: Coseismic fault rupture at the
trench axis during the 2011 Tohoku-oki earthquake, Nat. Geosci., 5, 646–650, https://doi.org/10.1038/ngeo1547, 2012.
Krawczyk, C. M., Mechie, J., Lüth, S., Tašárová, Z., Wigger,
P., Stiller, M., Brasse, H., Echtler, H. P., Araneda, M., and Bataille, K.:
Geophysical signatures and active tectonics at the south-central Chilean
margin, edited by: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H. J., Ramos, V. A., Strecker, M. R., and Wigger, P., The Andes-Active Subduction Orogeny,
Frontiers in Earth Sciences, Springer-Verlag, Berlin, Heidelberg, New York,
171–192, 2006.
Lange, D.: The South Chilean subduction zone between 41∘S and 43.5∘S:
seismicity, structure and state of stress, PhD thesis, University of
Potsdam, available at: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/1738 (last access: 20 December 2021),
2008.
Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., and
Bataille, K.: First seismic record for intra-arc strike-slip tectonics along
the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of
the southern Andes, Tectonophysics, 455, 14–24, 2008.
Lange, D., Ruiz, J., Carrasco, S., and Manríquez, M.: The Chiloé Mw
7.6 earthquake of 2016 December 25 in Southern Chile and its relation to the
Mw 9.5 1960 Valdivia earthquake, Geophys. J. Int.,
213, 210–221,
https://doi.org/10.1093/gji/ggx514, 2018.
Lara, L. E. and Folguera, A.: The Pliocene to Quaternary narrowing of the
Southern Andean volcanic arc between 37∘ and 41∘ S
latitude, in: Evolution of an Andean
margin: A tectonic and magmatic view from the Andes to the Neuquén Basin
(35∘–39∘S lat, edited by: Kay, S. M. and Ramos, V. A., Geol. S. Am. S., 407, 299–315, https://doi.org/10.1130/2006.2407(14), 2006.
León-Ríos, S., Ruiz, S., Maksymowicz, A., Leyton, F., Fuenzalizada,
A., and Madariaga, R.: Diversity of the Iquique's foreshocks and
aftershocks: a clue about complex rupture process of a Mw 8.1 earthquake, J.
Seismol, 20, 1059–1073, https://doi.org/10.1007/s10950-016-9568-6, 2016.
Li, D. and Liu, Y.: Modeling slow-slip segmentation in cascadia subduction
zone constrained by tremor locations and gravity anomalies, J. Geophys.
Res., 122, 3138–3157, 2017.
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data, Geophysics,
63, 109–119, 1998.
Lomnitz, C.: Major Earthquakes of Chile: A Historical Survey, 1535-1960,
Seismol. Res. Lett., 75, 368–378, https://doi.org/10.1785/gssrl.75.3.368, 2004.
Longman, I. M.: Formulas for computing the tidal acceleration due to the Moon
and Sun, J. Geophys. Res., 64, 2351–2355. 1959
Lowrie, W.: Fundamentals of Geophysics, 2nd edition, Cambridge
University Press, Cambridge, 381 pp., 2007.
Maksymowicz, A.: The geometry of the Chilean continental wedge: tectonic
segmentation of subduction processes off Chile, Tectonophysics, 659,
183–196, 2015.
Maksymowicz, A.: Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake, [code] https://doi.org/10.17605/OSF.IO/Y9APH, 2021.
Maksymowicz, A., Tréhu, A. M., Contreras-Reyes, E., and Ruiz, S.:
Density-depth model of the continental wedge at the maximum slip segment of
the Maule Mw 8.8 megathrust earthquake, Earth Planet. Sc. Lett., 409, 265–277, 2015.
Maksymowicz, A., Chadwell, C. D., Ruiz, J., Tréhu, A. M.,
Contreras-Reyes, E., Weinrebe, W., Díaz-Naveas, J., Gibson, J. C.,
Lonsdale, P., and Tryon, M. D.: Coseismic seafloor deformation in the trench
region during the Mw 8.8 Maule megathrust earthquake, Sci. Rep.,
7, 45918, https://doi.org/10.1038/srep45918, 2017.
Maksymowicz, A., Ruiz, J., Vera, E., Contreras-Reyes, E., Ruiz, S.,
Arriagada, C., Bonvalot, S., and Bascuñan, S.: Heterogeneous structure
of the Northern Chile marine forearc and its implications for megathrust
earthquakes, Geophys. J. Int., 215, 1080–1097, https://doi.org/10.1093/gji/ggy325,
2018.
Maksymowicz, A., Contreras-Reyes, E., Díaz, D., Comte, D., Bangs, N.,
Tréhu, A. M., Vera, E., Hervé, F., Rietbrock, A.: Deep structure of
the continental plate in the south-central Chilean margin: Metamorphic wedge
and implications for megathrust earthquakes, J. Geophys. Res.-Sol. Ea., 126, e2021JB021879,
https://doi.org/10.1029/2021JB021879, 2021.
Martínez-Loriente, S., Sallarès, V., Ranero, R. C., Ruh, B., Barckhausen, J.,
Grevemeyer, U. I., and Bangs, N.: Influence of incoming plate
relief on overriding plate deformation and earthquake nucleation: Cocos
Ridge subduction (Costa Rica), Tectonics, 38, 4360–4377,
https://doi.org/10.1029/2019TC005586, 2019.
McDonough, M., Duhart, P., and Crignola, P.: Naturaleza del alzamiento del
basamento costero y la apertura de la cuenca Osorno-Llanquihue, Xa
Región: nuevos antecedentes sísmicos y observaciones de terreno, in:
Congreso Geológico Chileno, No. 8, Actas, 1, 164–168, 1997.
Melnick, D. and Echtler, H. P.: Morphotectonic and geologic digital map
compilations of the south-central Andes (36–42∘ S), in: The Andes – Active Subduction Orogeny, edited by: Oncken,
O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A., Strecker,
M., Wigger, P., Springer-Verlag, Berlin, Heidelberg, New York,
565–568, 2006.
Melnick, D., Bookhagen, B., Strecker, M. R., and Echtler, H. P.: Segmentation
of megathrust rupture zones from fore-arc deformation patterns over hundreds
to millions of years, Arauco peninsula, Chile., J. Geophys. Res., 114,
B01407, https://doi.org/10.1029/2008JB005788, 2009.
Menant, A., Angiboust, S., and Gerya, T.: Stress-driven fluid flow controls
long-term megathrust strength and deep accretionary dynamics, Sci. Rep.,
9, 9714, https://doi.org/10.1038/s41598-019-46191-y, 2019.
Molina, D., Tassara, A., Abarca, R., Melnick, D., and Madella, A.:.
Frictional segmentation of the Chilean megathrust from a multivariate
analysis of geophysical, geological, and geodetic data, J. Geophys. Res.-Sol. Ea., 126, e2020JB020647,
https://doi.org/10.1029/2020JB020647, 2021.
Moreno, M. S., Bolte, J., Klotz, J., and Melnick, D.: Impact of megathrust
geometry on inversion of coseismic slip from geodetic data: Application to
the 1960 Chile earthquake, Geophys. Res. Lett., 36, L16310, https://doi.org/10.1038/s41561-018-0089-5, 2009.
Moreno, M., Li, S., Melnick, D., Bedford, J. R., Baez, J. C., Motagh, M.,
Metzger, S., Vajedian, S., Sippl, C., Gutknecht, B. D., Contreras-Reyes, E.,
Deng, Z., Tassara, A., and Oncken, O.: Chilean megathrust earthquake
recurrence linked to frictional contrast at depth, Nat. Geosci., 11,
11, 285–290, https://doi.org/10.1038/s41561-018-0089-5, 2018.
Moscoso, E., Grevemeyer, I., Contreras-Reyes, E., Flueh, E.R., Dzierma, Y.,
Rabbel, W., and Thorwart, M.: Revealing the deep structure and rupture plane
of the 2010 Maule, Chile earthquake (Mw=8.8) using wide angle seismic
data, Earth Planet. Sc. Lett., 307, 147–155,
https://doi.org/10.1016/j.epsl.2011.04.025, 2011.
Nagy, D.: The prism method for terrain corrections using digital computers,
Pure Appl. Geophys., 63, 31–39, https://doi.org/10.1007/BF00875156, 1966.
Orts, D. L., Folguera, A., Encinas, A., Ramos, M., Tobal, J., and Ramos, V.
A.: Tectonic development of the North Patagonian Andes and their related
Miocene foreland basin (41∘30′-43∘S),
Tectonics, 31, https://doi.org/10.1029/2011TC003084, 2012.
Peacock, S. M. and Hyndman, R. D.: Hydrous minerals in the mantle wedge and
the maximum depth of subduction thrust earthquakes, Geophys. Res. Lett., 26,
2517–2520, 1999.
Perfettini, H. and Avouac, J.-P.: Stress transfer and strain rate
variations during the seismic cycle, J. Geophys. Res., 109, B06402,
https://doi.org/10.1029/2003JB002917, 2004.
Plissart, G., González-Jiménez, J. M., Garrido, L. N. F., Colás,
V., Berger, J., Monnier, C., Diot, H., and Padrón-Navarta, J. A.:
Tectono-metamorphic evolution of subduction channel serpentinites from
South-Central Chile, Lithos, 336, 221–241, https://doi.org/10.1016/j.lithos.2019.03.023, 2019.
Poli, P., Maksymowicz, A., and Ruiz, S.: The Mw 8.3 Illapel earthquake
(Chile): Preseismic and postseismic activity associated with hydrated slab
structures, Geology, 45, 247–250, https://doi.org/10.1130/G38522.1, 2017.
Ramos, V. A., Jordan, T. E., Allmendinger, R. W., Mpodozis, C., Kay, S. M.,
Cortés, J. M., and Palma, M.: Paleozoic terranes of the central
Argentine-Chilean Andes, Tectonics, 5, 855–880,
https://doi.org/10.1029/TC005i006p00855, 1986.
Ramos, C., Mechie, J., and Stiller, M.: Reflection seismic images and
amplitude ratio modelling of the Chilean subduction zone at 38.25∘ S, Tectonophysics, 747, 115–127, 2018.
Rapalini, A. E.: The accretionary history of southern South America from the
latest Proterozoic to the Late Paleozoic: some paleomagnetic constraints,
edited by: Vaughan, A. P. M., Leat, P. T., Pankhurst, R. J., Terrane Processes at the
Margins of Gondwana, J. Geol. Soc. London, 243, 305–328, 2005.
Sánchez, P., Pérez-Flores, P., Arancibia, G., Cembrano, J., and
Reich, M.: Crustal deformation effects on the chemical evolution of
geothermal systems: the intra-arc Liquiñe–Ofqui fault system, Southern
Andes. International Geology Review, 55,
1384–1400, https://doi.org/10.1080/00206814.2013.775731, 2013.
Sandwell, D. T. and Smith, W. H. F.: Global marine gravity from retracked
Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate, J.
Geophys. Res., 114, B01411,
https://doi.org/10.1029/2008JB006008, 2009.
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., and
Francis, R.: New global marine gravity model from CryoSat-2 and Jason-1
reveals buried tectonic structure, Science, 346, 65–67,
https://doi.org/10.1126/science.1258213, 2014.
Scholz, C. H.: Earthquakes and friction laws, Nature, 391, 37–42, 1998.
Schurr, B., Moreno, M., Tréhu, A. M., Bedford, J., Kummerow, J., Li, S.,
and Oncken, O.: Forming a Mogi doughnut in the years prior to and
immediately before the 2014 M8.1 Iquique, northern Chile earthquake,
Geophys. Res. Lett., 47, e2020GL088351,
https://doi.org/10.1029/2020GL088351, 2020.
SEGMAR: Mapa Geologico de la Republica Argentina, Escala 1:2.500.000, Servicio Geologico y Minero, Buenos Aires, Argentina, 1–2, 1997.
Segovia, M. J., Diaz, D., Slezak, K., and Zuñiga, F.: Magnetotelluric
study in the Los Lagos Region (Chile) to investigate volcano-tectonic
processes in the Southern Andes, Earth Planets Space, 73, 1–14,
https://doi.org/10.1186/s40623-020-01332-w, 2021.
Seno, T.: Variation of downdip limit of the seismogenic zone near the
Japanese islands: Implications for the serpentinization mechanism of the
forearc mantle wedge, Earth Planet. Sc. Lett., 231, 249–262,
https://doi.org/10.1016/j.epsl.2004.12.027, 2005.
SERNAGEOMIN: Geologic map of Chile, digital version, scale
1:1000000, 1–25, 2003.
Schmidt, S. and Götze, H.-J.: Bouger and isostatic maps of the Central
Andes, in: The Andes-active subduction orogeny, edited by: Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V. A., Strecker, M., and Wigger, P., Springer-Verlag, Heidelberg,
1, 559–563,
2006.
Smith, W. H. F. and Sandwell, D. T.: Global seafloor topography from
satellite altimetry and ship depth soundings, Science, 277, 1957–1962,
1997.
Song, T. A. and Simons, M.: Large trench-parallel gravity variations predict
seismogenic behavior in subduction zones, Science, 301, 630–633, 2003.
Tašárová, Z. A.: Towards understanding the lithospheric
structure of the southern Chilean subduction zone (36∘ S–42∘ S) and its role in the gravity field, Geophys. J.
Int., 170, 995–1014, https://doi.org/10.1111/j.1365-246X.2007.03466.x, 2007.
Tassara, A.: Control of forearc density structure on megathrust shear
strength along the Chilean subduction zone, Tectonophysics, 495, 34–47,
2010.
Tassara, A., Götze, H.-J., Schmidt, S., and Hackney, R.:
Three-dimensional density model of the Nazca plate and the Andean
continental margin, J. Geophys. Res., 111, B09404, https://doi.org/10.1029/2005JB003976,
2006.
Tréhu, A. M., Hass, B., de Moor, A., Maksymowicz, A., Contreras-Reyes,
E., Vera, E., and Tryon, M. D.: Geologic controls on up-dip and along-strike
propagation of slip during subduction zone earthquakes from a
high-resolution seismic reflection survey across the northern limit of slip
during the 2010 Mw 8.8 Maule earthquake, offshore Chile, Geosphere, 15, 1751–1773, https://doi.org/10.1130/GES02099.1, 2019.
Tsuji, T., Minato, S., Kamei, R., Tsuru, T., and Kimura, G.: 3D geometry of
a plate boundary fault related to the 2016 Off-Mie earthquake in the Nankai
subduction zone, Japan, Earth. Planet. Sc. Lett., 478, 234–244,
https://doi.org/10.1016/j.epsl.2017.08.041, 2017.
van Dinther, Y., Morra, G., Funiciello, F., Rossetti, F., and Faccenna, C.:
Exhumation and subduction erosion in orogenic wedges: insights from
numerical models, Geochem. Geophys. Geosyst., 13, Q06003,
https://doi.org/10.1029/2011GC004011, 2012.
Vigny, C., Rudloff, A., Ruegg, J.-C., Madariaga, R., Campos, J., and
Alvarez, M.: Upper plate deformation measured by GPS in the Coquimbo Gap,
Chile, Phys. Earth Planet. Int., 175, 86–95,
https://doi.org/10.1016/j.pepi.2008.02.013, 2009.
Wang, K., Huang, T., Tilmann, F., Peacock, S. M., and Lange, D.: Role of
Serpentinized mantle wedge in affecting Megathrust Seismogenic behavior in
the area of the 2010 M=8.8 Maule earthquake, Geophys. Res. Lett., 47, e2020GL090482,
https://doi.org/10.1029/2020GL090482, 2020.
Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., and Dinterman, P.
A.: Basin-centred asperities in great subduction zone earthquakes: A link
between slip, subsidence, and subduction erosion, J. Geophys. Res., 108, 2507–2537, 2003.
Willner, A. P., Glodny, J., Gerya, T. V., Godoy, E., and Massonne, A.: A
counterclockwise PTt-path of high pressure-low temperature rocks from the
coastal Cordillera accretionary complex of South Central Chile: constraints
for the earliest stage of subduction mass flow, Lithos, 75, 283–310, 2004.
Willner, A. P.: Pressure–Temperature Evolution of a Late Palaeozoic Paired
Metamorphic Belt in North–Central Chile (34∘–35∘30′S), J. Petrol., 46, 1805–1833,
https://doi.org/10.1093/petrology/egi035, 2005.
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
This work analyses the density structure of the continental forearc in the northern segment of...