Articles | Volume 13, issue 9
https://doi.org/10.5194/se-13-1371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-1371-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
School of Earth Sciences and Resources, China University of
Geosciences (Beijing), Beijing 100083, China
Ningxia Institute of Geological Survey, Yinchuan 750021, China
Xianrui Li
Department of Earth and Space Sciences, Southern University of
Science and Technology, Shenzhen 518055, China
Fanyan Yang
Ningxia Institute of Geological Survey, Yinchuan 750021, China
Lili Pan
School of Earth Sciences and Engineering, Sun Yat-Sen University,
Zhuhai 519082, China
Jingxiong Tian
Ningxia Institute of Geological Survey, Yinchuan 750021, China
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Tectonics
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
The topographic signature of temperature-controlled rheological transitions in an accretionary prism
3D crustal stress state of Germany according to a data-calibrated geomechanical model
Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins
Marine Larrey, Frédéric Mouthereau, Damien Do Couto, Emmanuel Masini, Anthony Jourdon, Sylvain Calassou, and Véronique Miegebielle
Solid Earth, 14, 1221–1244, https://doi.org/10.5194/se-14-1221-2023, https://doi.org/10.5194/se-14-1221-2023, 2023
Short summary
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022, https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Short summary
This study investigates one of the key processes that may lead to the destruction and destabilization of continental tectonic plates: the infiltration of buoyant, hot, molten rock (magma) into the base of the plate. Using simple calculations, I suggest that heating during melt–rock interaction may thermally perturb the tectonic plate, weakening it and potentially allowing it to be reshaped from beneath. Geochemical, petrologic, and geologic observations are used to guide model parameters.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022, https://doi.org/10.5194/se-13-535-2022, 2022
Short summary
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen
Solid Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, https://doi.org/10.5194/se-12-1211-2021, 2021
Short summary
Short summary
The borders between oceans and continents, called margins, can be convergent, divergent, or horizontally sliding. The formation of oceans occurs in a divergent context. However, some divergent margin structures display an accommodation of horizontal sliding during the opening of oceans. To study and understand how the horizontal sliding part occurring during divergence influences the margin structure, we performed 3D high-resolution numerical models evolving during tens of millions of years.
Cited articles
Achache, J., Courrillot, V., and Zhou, Y.: Paleogeographic and tectonic
evolution of southern Tibet since Middle Cretaceous time: new paleomagnetic
data and synthesis, J. Geophys. Res.-Sol. Ea., 89, 10311–10339,
https://doi.org/10.1029/JB089iB12p10311, 1984.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Germany according to a data-calibrated geomechanical model, Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, 2021.
Aki, K. and Richards, P. G.: Quantitative Seismology, second ed, University
Science Books, California, USA, ISBN 978-1-891389-63-4, 2002.
Armijo, R., Flerit, F., King, G., and Meyer, B.: Linear elastic fracture
mechanics explains the past and present evolution of the Aegean, Earth
Planet Sc. Lett., 217, 85–95,
https://doi.org/10.1016/S0012-821X(03)00590-9, 2004.
Bai, M., Chevalier, M., Pan, J., Replumaz, A., Leloup, P. H., Métois, M., and
Li, H.: Southeastward increase of the late Quaternary slip-rate of the
Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications,
Earth Planet. Sc. Lett., 485, 19–31,
https://doi.org/10.1016/j.epsl.2017.12.045, 2018.
Bao, G., Chen, H., Hu, J., and Zhu, G.: Quaternary Activity and Segmentation of
the Yellow River Fault of the Eastern Margin of Yinchuan Graben, Acta
Geosci. Sin., 40, 614–628, 2019.
Bao, X., Song, X., Xu, M., Wang, L., Sun, X., Mi, N., Yu, D., and Li, H.: Crust and
upper mantle structure of the North China Craton and the NE Tibetan Plateau
and its tectonic implications, Earth Planet. Sc. Lett., 369–370, 129–137,
https://doi.org/10.1016/j.epsl.2013.03.015, 2013.
Brotons, V., Tomas, R., Ivorra, S., Grediaga, A., Martínez-Martínez, J., Benavente, D., and Goómez-Heras, M.: Improved correlation between the static and dynamic elastic
modulus of different types of rocks, Mater. Struct., 49, 3021–3037, 2016.
Buchmann, T. J. and Connolly, P. T.: Contemporary kinematics of the Upper
Rhine Graben: A 3D finite element approach, Glob. Planet. Change, 58,
287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007.
Burchfiel, B. C., Zhang, P., Wang, Y., Zhang, W., Song, F., Deng, Q., Molnar, P.,
and Royden, L.: Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous
Region, China, and its relation to the evolution of the Northeastern Margin
of the Tibetan Plateau, Tectonics, 10, 1091–1110,
https://doi.org/10.1029/90TC02685,1991.
Chen, P. and Lin, A.: Tectonic topography and Late Pleistocene activity of
the West Qinling Fault, northeastern Tibetan Plateau, J. Asian Earth Sci.,
176, 68–78, https://doi.org/10.1016/j.jseaes.2019.02.007, 2019.
Chen, T.: Application of airborne LiDAR (light detection and ranging) for
quantitative tectonic geomorphology, PH.D. thesis, Institute of Geology
China Earthauake Administration, Beijing, PH.D. thesis, 2014.
Cianetti, S., Gasperini, P., Giunchi, C., and Boschi, E.: Numerical modelling of
the Aegean-Anatolian region: geodynamical constraints from observed
rheological heterogeneities, Geophys. J. Int., 146, 760–780,
https://doi.org/10.1046/j.1365-246X.2001.00492.x, 2001.
Ding, G., Tian, Q., Kong, F., Xie, X., Zhang, L., and Wang, L.: Segmentation of
active fault, Seismological Press, Beijing, ISBN 7-5028-1082-X, 1993.
Du, F., Wen, X., Feng, J., Liang, M., Long, F., and Wu, J.: Seismo-tectonics and
seismic potential of the Liupanshan fault zone (LPSFZ), China, Chinese J.
Geophys. Ch., 61, 545–559, 2018.
Du, P.: Studying on the active characteristics and paleoearthquake of the
eastern piedmont fault of Helan Mountain in the late Quaternary, M.S.
thesis, China University of Geosciences (Beijing), Beijing, M.S. thesis, 2010.
Gan, W. and Liu, B.: Probability of large earthquake recurrence along the
Jingtai-Tianzhu active fault, Seismol. Geol., 24, 45–58, 2002.
Gao, Z.: Late Quaternary activity characteristics and risk analysis of large
earthquakes of the Zhuozishan West Piedmont Fault, M.S. thesis, Lanzhou
Institute of Seismology, China Earthauake Administration, Lanzhou, https://doi.org/10.27491/d.cnki.gzdls.2020.000004, 2020.
Guo, P., Han, Z., Mao, Z., Xie, Z., Dong, S, Gao, F., and Gai, H.: Paleoearthquakes
and rupture behavior of the Lenglongling Fault: implications for seismic
hazards of the northeastern margin of the Tibetan Plateau, J. Geophys. Res.-Sol. Ea., 124, 1520–1543, https://doi.org/10.1029/2018JB016586, 2019.
Guo, P., Han, Z., Gao, F., Zhu, C., and Gai, H.: A new tectonic model for the
1927 M 8.0 Gulang Earthquake on the NE Tibetan Plateau, Tectonics, 39,
e2020TC006064, https://doi.org/10.1029/2020TC006064, 2020.
Hao, M., Li, Y., Wang, Q., Zhuang, W., and Qu, W.: Present-day crustal
deformation within the Western Qinling mountains and its kinematic
implications, Surv. Geophys., 42, 1–19,
https://doi.org/10.1007/s10712-020-09621-5, 2021.
He, J., Lu, S., and Wang, W.: Three-dimensional mechanical modeling of the GPS
velocity field around the northeastern Tibetan plateau and surrounding
regions, Tectonophysics, 584, 257–266,
https://doi.org/10.1016/j.tecto.2012.03.025, 2013.
He, W., Liu, B., Yuan, D., and Yang, M.: Research on slip rates of the
Lenglongling active fault zone, NW Seismol. J., 22,
90–97, 2000.
He, W., Yuan, D., Ge, W., and Luo, H.: Determination of the slip rate of the
Lenglongling fault in the middle and eastern segments of the Qilian mountain
active fault zone, Earthquake, 30, 131–137, https://doi.org/10.3969/j.issn.1000-3274.2010.01.015, 2010.
He, X., Wang, D., and Wan, F.: Discussion on the characteristics of the
fracture zone of the Lanzhou M 7.0 earthquake in 1125 and the problems
concerned, North China Earth. Sci., 15, 37–44, 1997.
Hergert, T.: Numerical modelling of the absolute stress state in the Marmara
Sea region – a contribution to seismic hazard assessment, PH.D thesis,
Universität Karlsruhe, Karlsruhe, https://doi.org/10.5445/IR/1000012170, 2009.
Hergert, T. and Heidbach, O.: Slip-rate variability and distributed
deformation in the Marmara Sea fault system, Nat. Geosci., 3, 132–135,
https://doi.org/10.1038/ngeo739, 2010.
Hergert, T. and Heidbach, O.: Geomechanical model of the Marmara Sea
region – II. 3-D contemporary background stress field, Geophys. J. Int., 185,
1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011.
Hergert, T., Heidbach, O., Bécel, A., and Laigle, M.: Geomechanical model of
the Marmara Sea region – I. 3-D contemporary kinematics, Geophys. J. Int.,
185, 1073–1089, https://doi.org/10.1111/j.1365-246X.2011.04991.x, 2011.
Hou, K., Yuan, D., and Li, S.: Segmentation and deformation characteristics of
Wuwei-Tianzhu-Zhuanglanghe fault zone, Crust. Deform. Earth.,
19, 55–63, 1999.
Hubert-Ferrari, A., King G., Manighetti I., Armijo R., Meyer B., and
Tapponnier P.: Long-term elasticity in the continental lithosphere;
modelling the Aden Ridge propagation and the Anatolian extrusion process,
Geophys. J. Int., 153, 111–132,
https://doi.org/10.1046/j.1365-246X.2003.01872.x, 2003.
Jamison, D. B. and Cook, N. G. W.: Note on measured values for the state of
stress in the Earth's crust, J. Geophys. Res.-Sol. Ea., 85, 1833–1838,
https://doi.org/10.1029/JB085iB04p01833, 1980.
Jia, W., Liu, H., Liu, Y., and Yuan, D.: Preliminary study on activity of the
Wudu-Kangxian fault zone, NW Seismol. J., 34, 142–149,
2012.
Laske, G., Masters, G., Ma, Z., and Mike, P.: Update on CRUST1.0 – A 1-degree
Global Model of Earth's Crust, Geophys. Res. Abstr., 15, 2658, Abstract
EGU2013-2658 [data set], https://igppweb.ucsd.edu/~gabi/crust1.html (last access: 25 August 2022), 2013.
Lasserre, C., Morel, P. H., Gaudemer, Y., Tapponnier, P., Ryerson, F. J., King, G.
C. P., Métivier, F., Kasser, M., Kashgarian, M., Liu, B., Lu, T., and Yuan, D.:
Postglacial left slip rate and past occurrence of M ≥ 8 earthquakes on
the Western Haiyuan Fault, Gansu, China, J. Geophys. Res.-Sol. Ea., 104,
17633–17651, https://doi.org/10.1029/1998JB900082, 1999.
Lease, R. O., Burbank, D. W., Zhang, H., Liu J., and Yuan, D.: Cenozoic
shortening budget for the northeastern edge of the Tibetan Plateau: Is lower
crustal flow necessary?, Tectonics, 31, TC3011,
https://doi.org/10.1029/2011TC003066, 2012.
Lei, J.: Research on activity of the West Helanshan fault, M.S. thesis, The
Institute of Crustal Dynamics, China Eearthquake Administration, Beijing, M.S. thesis,
2015.
Lei, Q.: The extension of the Arc Tectonic Belt in the Northeastern margin of
the Tibet Plateau and the evolution of the Yinchuan Basin in the western
margin of the North China, PH.D thesis, Institute of Geology, China
Earthquake Administration, Beijing, PH.D. thesis, 2016.
Lei, Q., Chai, C., Meng, G., Du, P., Wang, Y., Xie, X., and Zhang, X.: Composite
drilling section exploration of Yinchuan buried fault, Seismol.
Geol., 30, 250–263, 2008.
Lei, Q., Chai, C., Du, P., Wang, Y., and Meng G.: Activity characteristics of
Luhuatai buried fault since late quaternary revealed by drilling, Seismol. Geol., 33, 602–614, https://doi.org/10.3969/j.issn.0253-4967.2011.03.010, 2011.
Lei, Q., Chai, C., Zheng, W., Du, P., Xie, X., Wang, Y., Cui, J., and Meng, G.: Activity
and slip rate of the northern section of Yellow River fault revealed by
drilling, Seismol. Geol., 36, 464–477,
https://doi.org/10.3969/j.issn.0253-4967.2014.02.015, 2014.
Lei, Q., Zhang, P., Zheng, W., Chai, C., Wang, W., Du, P., and Yu, J.: Dextral
strike-slip of Sanguankou-Niushoushan fault zone and extension of arc
tectonic belt in the northeastern margin of the Tibet Plateau, Sci. China
Earth Sci., 59, 1025–1040, https://doi.org/10.1007/s11430-016-5272-1, 2016.
Li, C.: Quantitative studies on major active fault zones in Northeastern
Qinghai-Tibet Plateau, PH.D. thesis, Institute of Geology, China Earthquake
Administration, Beijing, PH.D. thesis, 2005.
Li, C.: The long-term faulting behavior of the eastern segment (Maqin-Maqu)
of the east Kunlun fault since the late quaternary, PH.D. thesis, China
Earthquake Administration, Beijing, PH.D. thesis, 2009.
Li, C., Zhang, P., Yin, J., and Min, W.: Late Quaternary left-lateral slip rate
of the Haiyuan fault, northeastern margin of the Tibetan Plateau, Tectonics,
28, TC5010, https://doi.org/10.1029/2008TC002302, 2009.
Li, H., Xue, L., Brodsky, E. E., Mori, J. J., Fulton, P. M., Wang, H., Kano, Y.,
Yun, K., Harris, R. N., Gong, Z., Li, C., Si, J., Sun, Z., Pei, J., Zheng, Y., and Xu,
Z.: Long-term temperature records following the Mw 7.9 Wenchuan (China)
earthquake are consistent with low friction, Geology, 43, 163–166,
https://doi.org/10.1130/G35515.1, 2015.
Li, J., Cai, Y., and Zhang, J.: Geometric structure and slip gradient model of
the Tazang fault in the east Kunlun fault zone, Earthquake, 39, 20–28,
2019.
Li, L., Li, X., Li, M., Liang, Z., Tian, J., Zeng, Z., Zeng, X, Yan, G., Lu, M., Yang,
F., and Tan, Z.: Spatial variability of modern tectonic stress fields in the
north-eastern margin of Tibetan Plateau, Geol. J., 55, 7167–7192,
https://doi.org/10.1002/gj.3818, 2020.
Li, X., Li, C., Wesnousky, S. G., Zhang, P., Zheng, W., Pierce, I. K. D., and Wang,
X.: Paleoseismology and slip rate of the western Tianjingshan fault of NE
Tibet, China, J. Asian Earth Sci., 146, 304–316,
https://doi.org/10.1016/j.jseaes.2017.04.031, 2017.
Li, X., Zhang, P., Zheng, W., Feng, X., Li, C., Pierce, I. K. D., Xu, H., Li, X., Ai,
M., Chen, G., Dong, J., Liu, J., and Ren, G.: Kinematics of late quaternary slip
along the Qishan-Mazhao fault: implications for tectonic deformation on the
southwestern Ordos, China, Tectonics, 37, 2983–3000,
2018.
Li, X., Li, C., Pierce, I. K. D., Zhang, P., Zheng, W., Dong, J., Chen, G., Ai, M.,
Ren, G., and Luo, Q.: New slip rates for the Tianjingshan fault using
optically stimulated luminescence, GPS, and paleoseismic data, NE Tibet,
China. Tectonophysics, 755, 64–74,
https://doi.org/10.1016/j.tecto.2019.02.007, 2019.
Li, X., Pierce, I. K. D., Bormann, J. M., Hammond, W. C., Zhang, Z., Li, C., Zheng,
W., and Zhang, P.: Tectonic deformation of the Northeastern Tibetan Plateau
and its surroundings revealed with GPS block modeling, J. Geophys. Res.-Sol.
Ea., 126, e2020JB020733, https://doi.org/10.1029/2020JB020733, 2021a.
Li, X., Hergert, T., Henk, A., and Zeng, Z.: Contemporary kinematics in the
eastern Tibetan Plateau: Insights from 3D geomechanical modeling,
Tectonophysics, 819, 229109, https://doi.org/10.1016/j.tecto.2021.229109,
2021b.
Li, X., Hergert, T., Henk, A., and Zeng, Z.: Contemporary background stress
field in the eastern Tibetan Plateau: Insights from 3D geomechanical
modeling, Tectonophysics, 822, 229177,
https://doi.org/10.1016/j.tecto.2021.229177, 2022.
Li, Y., Ran, R., Wang, H., and Wu, F.: Paleoseismic records of large earthquakes
on the cross-basin fault in the salt lake pull-apart basin and cascade
rupture events on the Haiyuan fault, Seismol. Geol., 38,
830–843, https://doi.org/10.3969/j.issn.0253-4967.2016.04.003, 2016.
Li, Y., Shan, X., Qu, C., Zhang, Y., Song, X., Jiang, Y., Zhang, G., Nocquet, J. M.,
Gong, W., Gan, W., and Wang, C.: Elastic block and strain modeling of GPS data
around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau, J. Asian
Earth Sci., 150, 87–97, https://doi.org/10.1016/j.jseaes.2017.10.010, 2017.
Li, Y., Nocquet, J. M., Shan, X., and Song, X.: Geodetic observations of shallow
creep on the Laohushan-Haiyuan Fault, Northeastern Tibet, J. Geophys. Res.-Sol. Ea., 126, e2020JB021576, https://doi.org/10.1029/2020JB021576, 2021.
Li, Y., Nocquet, J. M., and Shan, X.: Crustal deformation across the western
Altyn Tagh fault (86∘ E) from GPS and InSAR, Geophys. J. Int.,
228, 1361–1372, https://doi.org/10.1093/gji/ggab403, 2022.
Liang, M., Yuan, D., Liu, B., and Lei, Z.: Seismic risk estimates for the
Maxianshan north-margin fault, NW Seismol. J., 30,
337–343, https://doi.org/10.3969/j.issn.1000-0844.2008.04.006, 2008.
Liu, B., Feng, S., Ji, J., Wang, S., Zhang, J., Yuan, H., and Yang, G.:
Lithospheric structure and faulting characteristics of the Helan Mountains
and Yinchuan Basin: Results of deep seismic reflection profiling, Sci. China
Earth Sci., 60, 589–601, https://doi.org/10.1007/s11430-016-5069-4, 2017.
Liu, J., Ren, Z., Zhang, H., Li, C., Zhang, Z., Zheng, W., Li, X., and Liu, C.: Late
quaternary slip rate of the Laohushan fault within the Haiyuan fault zone
and its tectonic implications, Chinese J. Geophys. Ch., 61, 1281–1297,
https://doi.org/10.6038/cjg2018L0364, 2018.
Liu, X., Yuan, D., Shao, Y., and Wu, Z.: Characteristics of late quaternary
tectonic activity in the middle-eastern segment of the southern branch of
Diebu-Bailongjiang fault, Gansu, J. Earth Sci. Environ.,
37, 111–119, https://doi.org/10.3969/j.issn.1672-6561.2015.06.010, 2015.
Liu, Z., Tian, X., Gao, R., Wang, G., Wu, Z., Zhou, B., Tan, P., Nie, S., Yu, G., Zhu,
G., and Xu, X.: New images of the crustal structure beneath eastern Tibet
fromahigh-density seismic array, Earth Planet Sc. Lett., 480, 33–41,
https://doi.org/10.1016/j.epsl.2017.09.048, 2017.
Liu-Zeng, J., Shao, Y., Klinger, Y., Xie, K., Yuan, D., and Lei, Z.: Variability
in magnitude of paleoearthquakes revealed by trenching and historical
records, along the Haiyuan Fault, China, J. Geophys. Res.-Sol. Ea., 120,
8304–8333, https://doi.org/10.1002/2015JB012163, 2015.
Ma, X., Yin, G., Wei, C., Qiang, X., Ma, Y., Liu, C., Zhao, Z., Gong, L., Wang, L.,
Ji, H., Bai, M., Mao, J., and Li, G.: High-resolution late Pliocene-quaternary
magnetostratigraphy of the Yinchuan Basin, NE Tibetan Plateau, Quaternary
Int., 607, 120–127, https://doi.org/10.1016/j.quaint.2021.09.009, 2021.
Matrau, R., Klinger, Y., Van der Woerd, J., Liu-Zeng, J., Li, Z., Xu, X., and
Zheng, R.: Late Pleistocene-Holocene Slip Rate Along the Hasi Shan
Restraining Bend of the Haiyuan Fault: Implication for Faulting Dynamics of
a Complex Fault System, Tectonics, 38, 4127–4154,
https://doi.org/10.1029/2019TC005488, 2019.
Meade, B. J. and Loveless, J. P.: Block modeling with connected fault-network
geometries and a linear
elastic coupling estimator in spherical coordinates, B. Seismol. Soc. Am.,
99, 3124–3139, https://doi.org/10.1785/0120090088, 2009.
Meng, X., Shi, L., Guo, L., Tong, T., and Zhang, S.: Multi-scale analyses of
transverse structures based on gravity anomalies in the northeastern margin
of the Tibetan Plateau, Chinese J. Geophys., 55, 3933–3941,
https://doi.org/10.6038/j.issn.0001-5733.2012.12.006, 2012.
Min, W., Jiao, D., Chai, C., Zhang, P., and Mao, F.: Characteristics of the
active Luoshan Fault since Late Pleistocene, North Central China, Ann.
Geophys., 46, 997–1013, https://doi.org/10.4401/ag-3442, 2003.
Pang, Y., Cheng, H., Zhang, H., and Shi, Y.: Numerical analysis of the influence
of lithospheric structure on surface vertical movements in Eastern Tibet,
Chinese J. Geophys. Ch., 62, 1256–1267,
https://doi.org/10.6038/cjg2019M0555, 2019a
Pang, Y., Yang, S., Li, H., Cheng, H., and Shi, Y.: Numerical modeling of current
crustal stress state in Haiyuan-Liupanshan fault system of NE Tibet, Acta
Petrol. Sin., 35, 1848–1856, https://doi.org/10.18654/1000-0569/2019.06.13,
2019b.
Patriat, P. and Achache, J.: India-Eurasia collision chronology has
implications for crustal shortening and driving mechanism of plates, Nature,
311, 615–621, https://doi.org/10.1038/311615a0, 1984.
Purcaru, G. and Berckhemer, H.: A magnitude scale for very large earthquakes,
Tectonophysics, 49, 189–198, https://doi.org/10.1016/0040-1951(78)90177-4,
1978.
Rajabi, M., Heidbach, O., Tingay, M., and Reiter, K.: Prediction of the
present-day stress field in the Australian continental crust using 3D
geomechanical-numerical models, Aust. J. Earth Sci., 64, 435–454,
https://doi.org/10.1080/08120099.2017.1294109, 2017.
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014.
Ren, J., Xu, X., Yeats, R. S., and Zhang, S.: Millennial slip rates of the
Tazang fault, the eastern termination of Kunlun fault: Implications for
strain partitioning in eastern Tibet, Tectonophysics, 608, 1180–1200,
https://doi.org/10.1016/j.tecto.2013.06.026, 2013.
Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and
Liu, Y.: Surface Deformation and Lower Crustal Flow in Eastern Tibet,
Science, 276, 788–790, https://doi.org/10.1126/science.276.5313.788, 1997.
Shen, Z., Sun, J., Zhang, P., Wan, Y., Wang, M., Bürgmann, R., Zeng, Y., Gan,
W., Liao, H., and Wang, Q.: Slip maxima at fault junctions and rupturing of
barriers during the 2008 Wenchuan earthquake, Nat. Geosci., 2, 718–724,
https://doi.org/10.1038/ngeo636, 2009.
Sheorey, P. R.: A Theory for In Situ Stresses in Isotropic and Transversely
Isotropic Rock, Int. J. Rock Mech. Min., 31, 23–34, 1994.
Shi, Z., Yuan, D., Li, T., Geng, S., Lei, Z., Liu, X., He, W., and Jin, Q.: Textual
research of A.D. 600 Qin-Long earthquake and discussion on its seismogenic
structure, Sci. Technol. Rev., 31, 48–52,
https://doi.org/10.3981/j.issn.1000-7857.2013.12.008, 2013.
Shi, Z., Li, Y., Yuan, D., Liu, X., Ding, X., and Geng, S.: The recent active time
of the south segment of the eastern Liupanshan piedmont fault: constraints
from the characteristics of rhythmic deposits in the fault grooves, Acta
Geosci. Sin., 35, 31–37, https://doi.org/10.3975/cagsb.2014.01.05,
2014.
Song, F., Yuan, D., Chen, G., Cheng, J., Zhang, L., He, W., Ge, W., Su, H., and Lu,
B.: Geometric structures and recent activity along the northwest segment of
north marginal fault of Maxianshan mountains, Gansu province, Seismol.
Geol., 28, 547–560, https://doi.org/10.3969/j.issn.0253-4967.2006.04.003,
2006.
Stromeyer, D., Heidbach, O., and Ziegler, M.: Tecplot 360 Add-on GeoStress
v2.0. V. 2.0. GFZ Data Services, https://doi.org/10.5880/wsm.2020.001, 2020.
Sun, Y. and Luo, G.: Spatial-temporal migration of earthquakes in the
northeastern Tibetan Plateau: insights from a finite element model, Chinese
J. Geophys. Ch., 61, 2246–2264, https://doi.org/10.6038/cjg2018L0401, 2018.
Sun, Y., Luo, G., Yin, L., and Shi, Y.: Migration probability of big earthquakes
and segmentation of slip rates on the fault system in northeastern Tibetan
Plateau, Chinese J. Geophys. Ch., 62, 1663–1679,
2019.
Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P.:
Propagating extrusion tectonics in Asia: new insights from simple
experiments with plasticine, Geology, 10, 611–616,
https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2, 1982.
Tian, J., Li, M., Liang, Z., Li, L., Yan, G., Lu, M., and Tan, Z.: Tectonic
evolution of the Qingshuihe Basin since the Late Miocene: Relationship with
north-eastward expansion of the Tibetan Plateau, Geol. J., 55, 7148–7166,
https://doi.org/10.1002/gj.3650, 2020.
Wang, C., Flesch, L. M., Silver, P. G., Chang, L., and Chan, W. W.: Evidence for
mechanically coupled lithosphere in central Asia and resulting implications,
Geology, 36, 363–366, https://doi.org/10.1130/G24450A.1, 2008.
Wang, K.: On the strength of subduction megathrusts, Chinese J. Geophys., 64,
3452–3465, https://doi.org/10.6038/cjg2021P0515, 2021.
Wang, M. and Shen, Z.: Present-Day Crustal Deformation of Continental China
Derived From GPS and Its Tectonic Implications, J. Geophys. Res.-Sol. Ea.,
125, e2019JB018774, https://doi.org/10.1029/2019JB018774, 2020.
Wang, S.: Tectonic deformation in late Cenozoic of Liupanshan-Baoji fault zone
in the NE margin of Tibet Plateau, PH.D thesis, Northwest University, Xi'an, PH.D. thesis,
2018.
Wang, S., Liu, B., Tian, X., Liu, B., Song, X., Deng, X., Sun, Y., Ma, C., and Yang,
Y.: Crustal P-wave velocity structure in the northeastern margin of the
Qinghai-Tibetan Plateau and insights into crustal deformation, Sci. China
Earth Sci., 61, 1221–1237, https://doi.org/10.1007/s11430-017-9227-7, 2018.
Wang, S., Shi, Y., Feng, X., and Tian, Z.: Late Quaternary sinistral
strike-slipping of the Liupanshan-Baoji fault zone: Implications for the
growth of the northeastern Tibetan Plateau, Geomorphology, 380, 107628,
https://doi.org/10.1016/j.geomorph.2021.107628, 2021.
Wang, W., Zhang, P., Kirby, E., Wang, L., Zhang, G., Zheng, D., and Chai, C.: A
revised chronology for Tertiary sedimentation in the Sikouzi basin:
Implications for the tectonic evolution of the northeastern corner of the
Tibetan Plateau, Tectonophysics, 505, 100–114,
https://doi.org/10.1016/j.tecto.2011.04.006, 2011.
Wang, W., Zhang, P., and Lei, Q.: Deformational characteristics of the
Niushoushan-Luoshan fault zone and its tectonic implications, Seismol.
Geol., 35, 195–207, https://doi.org/10.3969/j.issn.0253-4967.2013.02.001,
2013.
Wang, W., Qiao, X., Yang, S., and Wang, D.: Present-day velocity field and block
kinematics of Tibetan Plateau from GPS measurements, Geophys. J. Int., 208,
1088–1102, https://doi.org/10.1093/gji/ggw445, 2017.
Wang, Y. and Liu, B.: Analysis on seismic risk for faults in the mid-eastern
Qilianshan area, NW Seismol. J., 23, 19–27,
https://doi.org/10.3969/j.issn.1000-0844.2001.04.003, 2001.
Wu, G., Tan, H., Sun, K., Wang, J., Xi, Y., and Shen, C.: Characteristics and
tectonic significance of gravity anomalies in the Helanshan-Yinchuan Graben
and adjacent areas, Chinese J. Geophys., 63, 1002–1013,
https://doi.org/10.6038/cjg2020N0233, 2020.
Xiao, J. and He, J.: 3D Finite-Element Modeling of Earthquake Interaction and
Stress Accumulation on Main Active Faults around the Northeastern Tibetan
Plateau Edge in the Past ∼ 100 Years, B. Seismol. Soc. Am., 105,
2724–2735, https://doi.org/10.1785/0120140342, 2015.
Xu, H., Wang, H., and Cao, J.: Slip rates of the major faults in the
northeastern Tibetan Plateau and their geodynamic implications, Earthquake,
38, 13–23, 2018.
Xu, X., Han, Z., Yang, X., Zhang, S., Yu, G., Zhou, B., Li, F., Ma, B., Chen, G., and
Ran, R.: Seismotectonic Map in China and its Adjacent Regions, Seismological
Press [data set], Beijing, https://www.activefault-datacenter.cn/map (last access: 25 August2022), 2016.
Yang, W., Zeng, Z., Li, D., Xing, J., Wang, J., and Luo, W.: Three-level tectonic
model for intraplate earthquakes, Earth Sci. Front., 16, 206–217, ISBN 9787502846411,
2009.
Yang, X.: The study of the deformation characteristic of the Helanshan
Tectonic Belts, PH.D thesis, Northwest University, Xi'an, PH.D. thesis, 2018.
Ye, Z., Gao, R., Li, Q., Zhang, H., Shen, X., Liu, X., and Gong, C.: Seismic
evidence for the North China plate underthrusting beneath northeastern Tibet
and its implications for plateau growth, Earth Planet. Sc. Lett., 426,
109–117, https://doi.org/10.1016/j.epsl.2015.06.024, 2015.
Ye, Z., Li, Q., Gao, R., Zhang, H., Shen, X., Liu, X., and Gong, C.: Anisotropic
regime across northeastern Tibet and its geodynamic implications,
Tectonophysics, 671, 1–8, https://doi.org/10.1016/j.tecto.2016.01.011,
2016.
Yuan, D., Liu, B., Cai, S., Liu, X., and Wang, Y.: Principal features of recent
activity of the active northern marginal fault zone of Maxianshan mountains,
Lanzhou, Gansu province, Seismol. Geol., 24, 315–323,
https://doi.org/10.3969/j.issn.0253-4967.2002.03.003, 2002a.
Yuan, D., Liu, B., Zhang, P., Liu, X., Cai, S., and Liu, X.: The neotectonic
deformation and earthquake activity in Zhuanglang river active fault zone of
Lanzhou, Acta Seismol. Sin., 24, 441–444, 2002b.
Yuan, D., Liu, X., Zheng, W., Liu, X., and Liu, B.: Tectonic deformation feature
and mechanism of the Maxianshan-Xinglongshan active fault system in the
Lanzhou area, Earth. Res. China, 19, 125–131, 2003.
Yuan, D., Zhang, P., Lei, Z., Liu, B., and Liu, X.: A preliminary study on the
new activity features of the Lajishan mountain fault zone in Qinghai
province, Earth. Res. China, 21, 93–102, 2005.
Yuan, D., Lei, Z., He, W., Xiong, Z., Ge, W., Liu, X., and Liu, B.: Textual
research of Wudu earthquake in 186 B.C. in Gansu Province, China and
discussion on its causative structure, Acta Seismol. Sin., 20,
696–707, 2007.
Zeng, Z., Chen, Z., Lu, C., Yang, Y., Chen, K., Xiang, S., Dai, Q., Zhang, J., Deng,
Y., Fu, Y., Du, Q., Liu, L., and Yang, W.: Earth system science research on
earthquake mechanisms: Theory and validation of a new model, Earth Sci.
Front., 28, 263–282, https://doi.org/10.13745/j.esf.sf.2021.9.5,
2021.
Zhan, Y., Zhao, G., Wang, J., Tang, J., Chen, X., Deng, Q., Xuan, F., and Zhao, J.:
Crustal electric structure of Haiyuan arcuate tectonic region in the
northeastern margin of Qinghai-Xizang Plateau, China, Acta Seismol.
Sini., 27, 431–440, 2005.
Zhang, P.: Late quaternary tectonic deformation and earthquake hazard in
continental China, Quaternary Sci., 19, 404–413,
https://doi.org/10.1088/0256-307X/15/11/025, 1999.
Zhang, P., Molnar, P., Burchfiel, B. C., Royden, L., Wang, Y., Deng, Q., Song, F.,
Zhang, W., and Jiao, D.: Bounds on the Holocene slip rate of the Haiyuan
fault, North-Central China, Quaternary Res., 30, 151–164,
https://doi.org/10.1016/0033-5894(88)90020-8, 1988.
Zhang, P., Deng, Q., Zhang, G., Ma, J., Gan, W., Min, W., Mao, F., and Wang, Q.:
Active tectonic blocks and strong earthquakes in the continent of China,
Sci. China Ser. D, 46, 13–24, 2003.
Zhang, P., Shen, Z., Wang, M., Gan, W., Bürgmann, R., Molnar, P., Wang, Q., Niu,
Z., Sun, J., Wu, J., Sun, H., and You, X.: Continuous deformation of the Tibetan
Plateau from global positioning system data, Geology, 32, 809–812,
https://doi.org/10.1130/G20554.1, 2004.
Zhang, P., Deng, Q., Zhang, Z., and Li, H.: Active faults, earthquake hazards
and associated geodynamic processes in continental China, Sci. Sin.
Terr., 43, 1607–1620, 2013.
Zhang, P., Zhang, H., Zheng, W., Zheng, D., Wang, W., and Zhang, Z.: Cenozoic
tectonic evolution of continental eastern Asia, Seismol. Geol., 36,
574–585, https://doi.org/10.3969/j.issn.0253-4967.2014.03.003, 2014.
Zhang, W., Jiao, D., Zhang, P. Molnar, P., Burchfield, B. C., Deng, Q., Wang, Y.,
and Song, F.: Displacement along the Haiyuan fault associated with the great
1920 Haiyuan, China, earthquake, B. Seismol. Soc. Am., 77, 117–131, 1987.
Zhang, W., Jiao, D., and Chai, C.: The Tianjingshan active fault zone,
Seismological Press, Beijing, ISBN 9787502845735, 2015.
Zhang, Z., McCaffrey, R., and Zhang, P.: Relative motion across the eastern
Tibetan plateau: Contributions from faulting, internal strain and rotation
rates, Tectonophysics, 584, 240–256,
https://doi.org/10.1016/j.tecto.2012.08.006, 2013.
Zhao, L., Zhan, Y., Chen, X., Yang, H., and Jiang, F.: Deep electrical structure
of the central West Qinling orogenic belt and blocks on its either side,
Chinese J. Geophys., 58, 2460–2472, https://doi.org/10.6038/cjg20150722,
2015.
Zheng, W., Liu, X., Yu, J., Yuan, D., Zhang, P., Ge, W., Pang, J., and Liu, B.:
Geometry and late Pleistocene slip rates of the Liangdang-Jiangluo fault in
the western Qinling mountains, NW China, Tectonophysics, 687, 1–13,
https://doi.org/10.1016/j.tecto.2016.08.021, 2016a.
Zheng, W., Yuan, D., Zhang, P., Yu, J., Lei, Q., Wang, W., Zheng, D., Zhang, H., Li,
X., Li, C., and Liu, X.: Tectonic geometry and kinematic dissipation of the
active faults in the northeastern Tibetan Plateau and their implications for
understanding northeastward growth of the plateau, Quaternary Sci., 36,
775–788, https://doi.org/10.11928/j.issn.1001-7410.2016.04.01, 2016b.
Zhou, B., Peng, J., and Zhang, J.: Development and distribution patterns of
active fault zones in Qinghai province, J. Eng. Geol., 17,
612–618, 2009.
Zhu, A., Zhang, D., and Jiang, C.: Numerical simulation of the segmentation of
the stress state of the Anninghe-Zemuhe-Xiaojiang faults, Sci. China Earth
Sci., 59, 384–396, https://doi.org/10.1007/s11430-015-5157-8, 2016.
Zhu, A., Zhang, D., Zhu, T., and Guo, Y.: Influence of mantle convection to the
crustal movement pattern in the northeastern margin of the Tibetan Plateau
based on numerical simulation, Sci. China Earth Sci., 61, 1644–1658,
https://doi.org/10.1007/s11430-017-9236-7, 2018.
Zhu, S. and Zhang, P.: A study on the dynamical mechanisms of the Wenchuan
MS 8.0 earthquake, 2008, Chinese J. Geophys., 52, 418–427, 2009.
Short summary
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip rates of active faults and crustal velocities in the northeastern Tibetan Plateau. Based on the analysis of the fault kinematics in the study area, we evaluated the possibility of earthquakes occurring in the main faults in the area, and analyzed the crustal deformation mechanism of the northeastern Tibetan Plateau.
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip...