Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-639-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland
Piotr Krzywiec
CORRESPONDING AUTHOR
Institute of Geological Sciences, Polish Academy of Sciences, ul.
Twarda 51/55, 00-818 Warsaw, Poland
Mateusz Kufrasa
Institute of Geological Sciences, Polish Academy of Sciences, ul.
Twarda 51/55, 00-818 Warsaw, Poland
Paweł Poprawa
Faculty of Geology, Geophysics and Environmental Protection, AGH
University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków,
Poland
Stanisław Mazur
Institute of Geological Sciences, Polish Academy of Sciences, ul.
Senacka 1, 31-002 Kraków, Poland
Małgorzata Koperska
PGNiG S.A., Plac Staszica 9, 64-920 Piła, Poland
Piotr Ślemp
PGNiG S.A., Plac Staszica 9, 64-920 Piła, Poland
Related authors
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Łukasz Słonka and Piotr Krzywiec
Solid Earth, 11, 1097–1119, https://doi.org/10.5194/se-11-1097-2020, https://doi.org/10.5194/se-11-1097-2020, 2020
Short summary
Short summary
This paper shows the results of seismic interpretations that document the presence of large Upper Jurassic carbonate buildups in the Miechów Trough (S Poland). Our work fills the gap in recognition of the Upper Jurassic carbonate depositional system of southern Poland. The results also provide an excellent generic reference point, showing how and to what extent seismic data can be used for studies of carbonate depositional systems, in particular for the identification of the carbonate buildups.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Michael Warsitzka, Prokop Závada, Fabian Jähne-Klingberg, and Piotr Krzywiec
Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, https://doi.org/10.5194/se-12-1987-2021, 2021
Short summary
Short summary
A new analogue modelling approach was used to simulate the influence of tectonic extension and tilting of the basin floor on salt tectonics in rift basins. Our results show that downward salt flow and gravity gliding takes place if the flanks of the rift basin are tilted. Thus, extension occurs at the basin margins, which is compensated for by reduced extension and later by shortening in the graben centre. These outcomes improve the reconstruction of salt-related structures in rift basins.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Łukasz Słonka and Piotr Krzywiec
Solid Earth, 11, 1097–1119, https://doi.org/10.5194/se-11-1097-2020, https://doi.org/10.5194/se-11-1097-2020, 2020
Short summary
Short summary
This paper shows the results of seismic interpretations that document the presence of large Upper Jurassic carbonate buildups in the Miechów Trough (S Poland). Our work fills the gap in recognition of the Upper Jurassic carbonate depositional system of southern Poland. The results also provide an excellent generic reference point, showing how and to what extent seismic data can be used for studies of carbonate depositional systems, in particular for the identification of the carbonate buildups.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Tectonics
Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers
Conditional probability of distributed surface rupturing during normal-faulting earthquakes
Contrasting exhumation histories and relief development within the Three Rivers Region (south-east Tibet)
Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania
Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy
Relative timing of uplift along the Zagros Mountain Front Flexure (Kurdistan Region of Iraq): Constrained by geomorphic indices and landscape evolution modeling
Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Xiong Ou, Anne Replumaz, and Peter van der Beek
Solid Earth, 12, 563–580, https://doi.org/10.5194/se-12-563-2021, https://doi.org/10.5194/se-12-563-2021, 2021
Short summary
Short summary
The low-relief, mean-elevation Baima Xueshan massif experienced slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma and then regional rock uplift at 0.25 km/Myr since ~10 Ma. The high-relief, high-elevation Kawagebo massif shows much stronger local rock uplift related to the motion along a west-dipping thrust fault, at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. Mekong River incision plays a minor role in total exhumation in both massifs.
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020, https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Short summary
The Patos-Marinza oil field in Central Albania (40.71° N, 19.61° E) is one of the largest onshore oil fields in Europe. More than 7 million oil barrels are extracted per year from sandstone formations in western Albania. The regional seismicity culminated in December 2016, when a seismic sequence developed in the oil field, triggering the opening of a public inquiry. We take advantage of the Sentinel-1 radar images to show that a strong subsidence, probably induced, is taking place in the field.
Maurizio Ercoli, Emanuele Forte, Massimiliano Porreca, Ramon Carbonell, Cristina Pauselli, Giorgio Minelli, and Massimiliano R. Barchi
Solid Earth, 11, 329–348, https://doi.org/10.5194/se-11-329-2020, https://doi.org/10.5194/se-11-329-2020, 2020
Short summary
Short summary
We present a first application of seismic attributes, a well-known technique in the oil and gas industry, to vintage seismic reflection profiles in a seismotectonic study. Our results improve data interpretability, allowing us to detect peculiar geophysical signatures of faulting and a regional seismogenic layer. We suggest a new tool for both seismotectonic research and assessments of the seismic hazard, not only in the central Apennines (Italy), but also in seismically active areas abroad.
Mjahid Zebari, Christoph Grützner, Payman Navabpour, and Kamil Ustaszewski
Solid Earth, 10, 663–682, https://doi.org/10.5194/se-10-663-2019, https://doi.org/10.5194/se-10-663-2019, 2019
Short summary
Short summary
Here, we assessed the maturity level and then relative variation of uplift time of three anticlines along the hanging wall of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq. We also estimated the relative time difference between the uplift time of more mature anticlines and less mature ones to be around 200 kyr via building a landscape evolution model. These enabled us to reconstruct a spatial and temporal evolution of these anticlines.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Cited articles
Ahlrichs, N., Hübscher, C., Noack, V., Schnabel, M., Damm, V., and
Krawczyk, C. M.: Structural Evolution at the Northeast North German Basin
Margin: From Initial Triassic Salt Movement to Late Cretaceous-Cenozoic
Remobilization, Tectonics, 39, e2019TC005927, https://doi.org/10.1029/2019TC005927, 2020.
Antonowicz, L., Iwanowska, E., and Rendak, A.: Tensional tectonics in the
Pomeranian section of the T-T Zone and the implications for hydrocarbon
exploration, Kwart. Geol., 38, 289–305, 1994.
Babaahmadi, A., Sliwa, R., Esterle, J., and Rosenbaum, G.: The evolution of a
Late Cretaceous–Cenozoic intraplate basin (Duaringa Basin), eastern
Australia: evidence for the negative inversion of a pre-existing
fold–thrust belt, Int. J. Earth Sci., 107, 1895–1910,
https://doi.org/10.1007/s00531-017-1577-3, 2018.
Bally, A. W.: Tectogenese et sismique reflexion, B. Soc. Geol. Fr., S7-XXVI, 279–285,
https://doi.org/10.2113/gssgfbull.s7-xxvi.2.279, 1984 (in French with
English summary).
Betz, D., Führer, F., Greiner, G., and Plein, E.: Evolution of the Lower
Saxony Basin, Tectonophysics, 137, 127–170,
https://doi.org/10.1016/0040-1951(87)90319-2, 1987.
Bilmes, A., D'Elia, L., Franzese, J. R., Veiga, G. D., and Hernández, M.:
Miocene block uplift and basin formation in the Patagonian foreland: The
Gastre Basin, Argentina, Tectonophysics, 601, 98–111,
https://doi.org/10.1016/j.tecto.2013.05.001, 2013.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional
reactivation of inherited normal faults: A review based on previous and new
experimental models, Tectonophysics, 522–523, 55–88,
https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Bosworth, W. and Tari, G.: Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western Desert (Egypt) and the western Black Sea, Solid Earth, 12, 59–77, https://doi.org/10.5194/se-12-59-2021, 2021.
Brun, J.-P. and Nalpas, T.: Graben inversion in nature and experiments,
Tectonics, 15, 677–687, https://doi.org/10.1029/95TC03853, 1996.
Buchanan, J. G. and Buchanan, P. G. (Eds.): Basin Inversion, Geol. Soc. Spec.
Publ., 88, Geological Society, London, UK, 596 pp., ISBN-13
978-1-8977-9929-1, 1995.
Buiter, S. J. H. and Pfiffner, A. O.: Numerical models of the inversion of
half-graben basins, Tectonics, 22, 1057,
https://doi.org/10.1029/2002TC001417, 2003.
Buiter, S. J. H., Pfiffner, O. A., and Beaumont, C.: Inversion of
extensional sedimentary basins: A numerical evaluation of the localization
of shortening, Earth Planet. Sc. Lett., 288, 492–504,
https://doi.org/10.1016/j.epsl.2009.10.011, 2009.
Burgess, P. M. and Gayer, R. A.: Late Carboniferous tectonic subsidence in
South Wales: Implications for Variscan basin evolution and tectonic history
in SW Britain, J. Geol. Soc. Lond., 157, 93–104,
https://doi.org/10.1144/jgs.157.1.93, 2000.
Burliga, S., Koyi, H. A., and Krzywiec, P.: Modelling cover deformation and
decoupling during inversion, using the Mid-Polish Trough as a case study, J.
Struct. Geol., 42, 62–73, https://doi.org/10.1016/j.jsg.2012.06.013, 2012.
Chadwick, R. A. and Evans, D. J.: A seismic atlas of southern Britain –
Images of subsurface structure, British Geological Survey Occasional
Publication, 7, British Geological Survey, Keyworth., 196 pp., ISBN
0852725124, 2005.
Chadwick, R. A. and Smith, N. J. P.: Evidence of negative structural
inversion beneath central England from new seismic reflection data, J. Geol. Soc. Lond., 145, 519–522, 1988.
Cloetingh, S., Beekman, F., Ziegler, P. A., van Wees, J.-D., and Sokoutis,
D.: Post-rift compressional reactivation potential of passive margins and
extensional basins, Geol. Soc. Lond. Spec. Publ., 306, 27–70,
https://doi.org/10.1144/SP306.2, 2008.
Connors, D. C. and Houseknecht, D. W.: Structural Inheritance in the Chukchi
Shelf, Alaska, Mar. Petrol. Geol., in press, 2022.
Constenius, K. N.: Relationship between the Kishenehn basin, and the
Flathead listric normal fault system and Lewis thrust salient, Geologic
Studies of the Cordilleran Thrust Belt, Rocky Mountain Association of
Geologists, 2, 817–830, 1982.
Constenius, K. N.: Late Paleogene extensional collapse of the Cordilleran
foreland fold and thrust belt, Geol. Soc. Am. Bull., 108,
20–39, https://doi.org/10.1130/0016-7606(1996)108<0020:LPECOT>2.3.CO;2, 1996.
Cooper, M. and Warren, M. J.: The geometric characteristics, genesis and
petroleum significance of inversion structures, Geol. Soc. Lond. Spec.
Publ., 335, 827–846, https://doi.org/10.1144/SP335.33, 2010.
Cooper, M. and Warren, M. J.: Inverted fault systems and inversion tectonic
settings, in: Regional Geology and Tectonics: Principles of Geologic
Analysis, edited by: Scarselli, N., Adam, J., Chiarella, D., Roberts, D. G.,
and Bally, A. W., Elsevier, Amsterdam, the Netherlands, 169–204,
https://doi.org/10.1016/B978-0-444-64134-2.00009-2, 2020.
Cooper, M. A. and Williams, G. D.: Inversion tectonics, Geol. Soc. Lond.
Spec. Publ., 44, 375 pp., 1989.
Cooper, M. A., Williams, G. D., de Graciansky, P. C., Murphy, R. W.,
Needham, T., de Paor, D., Stoneley, R., Todd, S. P., Turner, J. P., and
Ziegler, P. A.: Inversion tectonics – a discussion, Geol. Soc. Lond.
Spec. Publ., 44, 335–347, https://doi.org/10.1144/GSL.SP.1989.044.01.18,
1989.
Corfield, S. M., Gawthorpe, R. L., Gage, M., Fraser, A. J., and Besly, B. M.:
Inversion tectonics of the Variscan foreland of the British Isles, J. Geol.
Soc. Lond., 153, 17–32, https://doi.org/10.1144/gsjgs.153.1.0017, 1996.
Corti, G., Lucia, S., Bonini, M., Sani, F., and Mazzarini, F.: Interaction
between normal faults and pre-existing thrust systems in analogue models,
Geol. Soc. Lond. Spec. Publ., 253, 65–78,
https://doi.org/10.1144/GSL.SP.2006.253.01.03, 2006.
Cosgrove, J. W., Morgan, T. O., and Ghail, R.: The deformation history of
southern England, and its implications for ground engineering in the London
Basin, Q. J. Eng. Geol. Hydroge., 55, qjegh2020-144, https://doi.org/10.1144/qjegh2020-144, 2021.
Costa, M., Chicco, J., Invernizzi, C., Teloni, S., and Pierantoni, P. P.:
Plio–Quaternary Structural Evolution of the Outer Sector of the Marche
Apennines South of the Conero Promontory, Italy, Geosciences, 11, 184,
https://doi.org/10.3390/geosciences11050184, 2021.
Coward, M. P., Enfield, M. A., and Fischer, M. W.: Devonian basins of
Northern Scotland: extension and inversion related to Late Caledonian –
Variscan tectonics, Geol. Soc. Lond. Spec. Publ., 44, 275–308, https://doi.org/10.1144/GSL.SP.1989.044.01.16, 1987.
Czarnocki, J.: Tectonics of the Święty Krzyż Mountains,
Stratigraphy and tectonics of the Święty Krzyż Mountains, Pr.
Geol. Inst. Geol., 18, 11–133, 1957 (in Polish with English summary).
Dadlez, R.: Sub-Permian rock complexes in the Koszalin–Chojnice zone,
Geol. Q., 22, 269–301, 1978 (in Polish with English summary).
Dadlez, R. and Marek, S.: Development of the Permian and Mesozoic basins,
Pr. Inst. Geol., 153, 403–409, 1997 (in Polish with English summary).
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and van
Wees, J. D.: Tectonic evolution of the Mid-Polish Trough: Modelling
implications and significance for central European geology, Tectonophysics,
252, 179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995.
Dadlez, R., Jóźwiak, W., and Młynarski, S.: Subsidence and
inversion in the western part of Polish Basin – data from seismic
velocities, Kwart. Geol., 41, 197–208, 1997.
Dadlez, R., Marek, S., and Pokorski, J.: Geological map of Poland without
Cainozoic deposits, 1 : 1 000 000, Państwowy Instytut Geologiczny,
Warszawa, Poland, 2000.
Deckers, J. and Rombaut, B.: Late Carboniferous differential subsidence in
the Campine Basin as part of the Variscan foreland system, Int. J. Earth
Sci., 110, 875–888, https://doi.org/10.1007/s00531-021-01996-z, 2021.
Deeks, N. R. and Thomas, S. A.: Basin inversion in a strike-slip regime: The
Tornquist Zone, Southern Baltic Sea, Geol. Soc. Lond. Spec. Publ., 88,
319–338, https://doi.org/10.1144/GSL.SP.1995.088.01.18, 1995.
Delgado, A., Mora, A., and Reyes-Harker, A.: Deformation partitioning in the
Llanos foreland basin during the Cenozoic and its correlation with mountain
building in the hinterland, J. S. Am. Earth Sci., 39, 228–244,
https://doi.org/10.1016/j.jsames.2012.04.011, 2012.
Del Ventisette, C., Bonini, M., Maestrelli, D., Sani, F., Iavarone, E., and
Montanari, D.: 3D-thrust fault pattern control on negative inversion: An
analogue modelling perspective on central Italy, J. Struct.
Geol., 143, 104254, https://doi.org/10.1016/j.jsg.2020.104254, 2021.
Deng, C., Zhu, R., Han, J., Shu, Y., Wu, Y., Hou, K., and Long, W.: Impact of basement thrust faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl River Basin, Solid Earth, 12, 2327–2350, https://doi.org/10.5194/se-12-2327-2021, 2021.
Deutschmann, A., Meschede, M., and Obst, K.: Fault system evolution in the
Baltic Sea area west of Rügen, NE Germany, Geol. Soc. Lond. Spec.
Publ., 469, 83–98, https://doi.org/10.1144/SP469.24, 2018.
Dewey, J. F.: Kinematics and dynamics of basin inversion, in: Inversion
Tectonics, edited by: Cooper, M. A. and Williams, G. D., Geol. Soc. Lond.
Spec. Publ., 44, 352, https://doi.org/10.1144/GSL.SP.1989.044.01.20, 1989.
Dichiarante, A. M., Holdsworth, R. E., Dempsey, E. D., McCaffrey, K. J. W., and Utley, T. A. G.: Outcrop-scale manifestations of reactivation during multiple superimposed rifting and basin inversion events: the Devonian Orcadian Basin, northern Scotland, J. Geol. Soc., 178, jgs2020-089, https://doi.org/10.1144/jgs2020-089, 2020.
Di Domenica, A., Petricca, P., Trippetta, F., Carminati, E., and Calamita,
F.: Investigating fault reactivation during multiple tectonic inversions
through mechanical and numerical modeling: An application to the
Central-Northern Apennines of Italy, J. Struct. Geol., 67,
167–185, https://doi.org/10.1016/j.jsg.2014.07.018, 2014.
Dooley, T. P. and Hudec, M. R.: Extension and inversion of salt-bearing rift systems, Solid Earth, 11, 1187–1204, https://doi.org/10.5194/se-11-1187-2020, 2020.
Doornenbal, H. and Stevenson, A. (Eds.): Petroleum Geological Atlas of the
Southern Permian Basin Area, EAGE Publications BV, Houten, the Netherlands,
342 pp., ISBN 978-90-73781-61-0, 2010.
Dula, W. F. J.: Geometric Models of Listric Normal Faults and Rollover Folds
(1), Am. Assoc. Petr. Geol. B., 75, 1609–1625,
https://doi.org/10.1306/0C9B29B1-1710-11D7-8645000102C1865D, 1991.
Edel, J. B., Schulmann, K., Lexa, O., and Lardeaux, J. M.: Late Palaeozoic
palaeomagnetic and tectonic constraints for amalgamation of Pangea
supercontinent in the European Variscan belt, Earth-Sci. Rev., 177,
589–612, https://doi.org/10.1016/j.earscirev.2017.12.007, 2018.
Faccenna, C., Nalpas, T., Brun, J.-P., Davy, P., and Bosi, V.: The influence
of pre-existing thrust faults on normal fault geometry in nature and in
experiments, J. Struct. Geol., 17, 1139–1149,
https://doi.org/10.1016/0191-8141(95)00008-2, 1995.
Fazlikhani, H., Bauer, W., and Stollhofen, H.: Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany, Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, 2022.
Fossen, H.: Extensional tectonics in the North Atlantic Caledonides: a
regional view, Geol. Soc. Lond. Spec. Publ., 335, 767–793,
https://doi.org/10.1144/SP335.31, 2010.
Franke, W.: Topography of the Variscan orogen in Europe: Failed–not
collapsed, Int. J. Earth Sci., 103, 1471–1499,
https://doi.org/10.1007/s00531-014-1014-9, 2014.
Fyhn, M. B. W., Cuong, T. D., Hoang, B. H., Hovikoski, J., Olivarius, M.,
Tuan, N. Q., Tung, N. T., Huyen, N. T., Cuong T. X., Nytoft, H. P., Abatzis,
I., and Nielsen, L. H.: Linking Paleogene rifting and inversion in the
northern Song Hong and Beibuwan Basins, Vietnam, with left-lateral motion on
the Ailao Shan-Red River Shear Zone, Tectonics, 37, 2559–2585,
https://doi.org/10.1029/2018TC005090, 2018.
Gibson, G. M. and Edwards, S.: Basin inversion and structural architecture as constraints on fluid flow and Pb–Zn mineralization in the Paleo–Mesoproterozoic sedimentary sequences of northern Australia, Solid Earth, 11, 1205–1226, https://doi.org/10.5194/se-11-1205-2020, 2020.
Glen, R. A., Hancock, P. L., and Whittaker, A.: Basin inversion by
distributed deformation: The southern margin of the Bristol Channel Basin,
England, J. Struct. Geol., 27, 2113–2134,
https://doi.org/10.1016/j.jsg.2005.08.006, 2005.
Glennie, K. W. and Boegner, P. L. E.: Sole Pit inversion tectonics, in:
Petroleum Geology of the Continental Shelf of Northwest Europe, edited by:
Illing, L. V. and Hobson, G. D., Institute of Petroleum, London, 110–120, ISBN 0855-016566,
1981.
Głuszyński, A. and Aleksandrowski, P.: Late Cretaceous – Early Palaeogene inversion-related tectonic structures at the NE margin of the Bohemian Massif (SW Poland and northern Czechia), Solid Earth Discuss. [preprint], https://doi.org/10.5194/se-2021-99, in review, 2021.
Grad, M. and Polkowski, M.: Seismic basement in Poland, Int. J. Earth Sci.,
105, 1199–1214, https://doi.org/10.1007/s00531-015-1233-8, 2016.
Grad, M., Guterch, A., and Mazur, S.: Seismic refraction evidence for crustal
structure in the central part of the Trans-European Suture Zone in Poland,
Geol. Soc. Lond. Spec. Publ., 201, 295–309,
https://doi.org/10.1144/GSL.SP.2002.201.01.14, 2002.
Guterch, A. and Grad, M.: Lithospheric structure of the TESZ in Poland based
on modern seismic experiments, Geol. Q., 50, 23–32, 2006.
Guterch, A., Grad, M., Thybo, H., and Keller, G. R.: POLONAISE '97 – an
international seismic experiment between Precambrian and Variscan Europe in
Poland, Tectonophysics, 314, 101–121,
https://doi.org/10.1016/S0040-1951(99)00239-5, 1999.
Guterch, A., Wybraniec, S., Grad, M., Chadwick, R. A., Krawczyk, C. M.,
Ziegler, P. A., Thybo, H., and De Vos, W.: Crustal structure and structural
framework, in: Petroleum Geological Atlas of the Southern Permian Basin
Area, edited by: Doornenbal, H. and Stevenson, A., EAGE Publications BV,
Houten, the Netherlands, 11–23, ISBN 978-90-73781-61-0, 2010.
Hansen, T. H., Clausen, O. R., and Andresen, K. J.: Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics, Solid Earth, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021, 2021.
Henk, A. and Nemčok, M.: Stress and fracture prediction in inverted
half-graben structures, J. Struct. Geol., 30, 81–97,
https://doi.org/10.1016/j.jsg.2007.10.006, 2008.
Hindle, D. and Kley, J.: The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate, Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021, 2021.
Holdsworth, R. E., Butler, C. A., and Roberts, A. M.: The recognition of
reactivation during continental deformation, J. Geol.
Soc. Lond., 154, 73–78, https://doi.org/10.1144/gsjgs.154.1.0073,
1997.
Iaffa, D. N., Sàbat, F., Muñoz, J. A., Mon, R., and Gutierrez, A. A.:
The role of inherited structures in a foreland basin evolution. The
Metán Basin in NW Argentina, J. Struct. Geol., 33, 1816–1828,
https://doi.org/10.1016/j.jsg.2011.09.005, 2011.
Ivins, E. R., Dixon, T. H., and Golombek, M. P.: Extensional reactivation of
an abandoned thrust: a bound on shallowing in the brittle regime, J.
Struct. Geol., 12, 303–314,
https://doi.org/10.1016/0191-8141(90)90015-Q, 1990.
Jackson, C. A. L. and Larsen, E.: Temporal constraints on basin inversion
provided by 3D seismic and well data: a case study from the South Viking
Graben, offshore Norway, Basin Res., 20, 397–417,
https://doi.org/10.1111/j.1365-2117.2008.00359.x, 2008.
Jackson, C.-L., Chua, S.-T., Bell, R., and Magee, C.: Structural style and
early stage growth of inversion structures: 3D seismic insights from the
Egersund Basin, offshore Norway, J. Struct. Geol., 46, 167–185, 2013.
Jagger, L. J. and McClay K. R.: Analogue modelling of inverted domino-style
basement fault systems, Basin Res., 30, 363–381,
https://doi.org/10.1111/bre.12224, 2018.
Jarosiński, M., Poprawa, P., and Ziegler, P. A.: Cenozoic dynamic
evolution of the Polish Platform, Geol. Q., 53, 3–26, 2009.
Katzung, G., Giese, U., Walter, R., and Von Winterfeld, C.: The Rügen
Caledonides, northeast Germany, Geol. Mag., 130, 725–730,
https://doi.org/10.1017/S0016756800021038, 1993.
Kiersnowski, H.: Depositional architecture of the Rotliegend Basin in
Poland, Pr. Państwowego Inst. Geol., 165, 113–128, 1998 (in Polish with
English summary).
Kiersnowski, H. and Buniak, A.: Evolution of the Rotliegend Basin of
northwestern Poland, Geol. Q., 50, 119–138,
2006.
Kley, J.: Timing and spatial patterns of Cretaceous and Cenozoic inversion
in the Southern Permian Basin, Geol. Soc. Lond. Spec. Publ., 469, 19–31,
https://doi.org/10.1144/SP469.12, 2018.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1, 2008.
Kockel, F.: Inversion structures in Central Europe – Expressions and
reasons, an open discussion, Netherlands J. Geosci., 82,
351–366, https://doi.org/10.1017/S0016774600020187, 2003.
Koehl, J.-B. P., Bergh, S. G., Henningsen, T., and Faleide, J. I.: Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea, Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, 2018.
Kombrink, H., Besly, B. M., Collinson, J. D., Den Hartog Jager, D. G.,
Drozdzewski, G., Dusar, M., Hoth, P., Pagnier, H. J. M., Stemmerik, L.,
Waksmundzka, M. I., and Wrede, V.: Carboniferous, in: Petroleum Geological
Atlas of the Southern Permian Basin Area, edited by: Doornenbal, H. and
Stevenson, A., EAGE Publications BV, Houten, the Netherlands, 81–99, ISBN 978-90-73781-61-0, 2010.
Konon, A.: Buckle folding in the Kielce Unit, Holy Cross Mountains, central
Poland, Acta Geol. Pol., 56, 375–405, 2006.
Konon, A.: Strike-slip faulting in the Kielce Unit, Holy Cross Mountains,
central Poland, Acta Geol. Pol., 57, 415–441, 2007.
Kossow, D. and Krawczyk, C. M.: Structure and quantification of processes
controlling the evolution of the inverted NE-German Basin, Mar. Petrol. Geol.,
19, 601–618, https://doi.org/10.1016/S0264-8172(02)00032-6, 2002.
Krantz, R. W.: Normal fault geometry and fault reactivation in tectonic
inversion experiments, Geol. Soc. Spec. Publ., 56, 219–229,
1991.
Kröner, U., Mansy, J.-L., Mazur, S., Aleksandrowski, P., Hann, H. P.,
Huckriede, H., Lacquement, F., Lamarche, J., Ledru, P., Pharaoh, T. C.,
Zedler, H., Zeh, A., and Zulauf, G.: Variscan tectonics, in: The Geology of
Central Europe Volume 1: Precambrian and Palaeozoic, edited by: McCann, T.,
The Geological Society of London, London, UK, 599–664,
https://doi.org/10.1144/CEV1P.11, 2008.
Krzywiec, P.: Oświno structure (NW Mid-Polish Trough) – salt diapir or
inversion-related compressional structure?, Geol. Q., 46,
337–346, 2002a.
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main
mechanisms, and its relationship to the Alpine-Carpathian collision, Stephan
Mueller Spec. Publ. Ser., 1, 151–165,
https://doi.org/10.5194/smsps-1-151-2002, 2002b.
Krzywiec, P.: Triassic-Jurassic evolution of the Pomeranian segment of the
Mid-Polish Trough – Basement tectonics and subsidence patterns, Geol.
Q., 50, 139–150, 2006a.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough – Lateral variations in timing and structural
style, Geol. Q., 50, 151–168, 2006b.
Krzywiec, P.: Mesozoic and Cenozoic evolution of salt structures within the
Polish basin: An overview, Geol. Soc. Lond. Spec. Publ., 363, 381–394,
https://doi.org/10.1144/SP363.17, 2012.
Krzywiec, P. and Kufrasa, M.: External Variscides in South-Eastern Poland
and Western Ukraine, in: Geology of the Central European Variscides and its
Avalonian-Cadomian precursors, edited by: Linnemann, U., Springer-Verlag,
Berlin, Heidelberg, Germany, submitted, 2022.
Krzywiec, P. and Stachowska, A.: Late Cretaceous inversion of the NW segment of the Mid-Polish Trough – how marginal trough was formed, and does it matter at all?, Z. Dtsch. Ges. Geowiss., 167, 107–119, https://doi.org/10.1127/zdgg/2016/0068, 2016.
Krzywiec, P., Kramarska, R., and Zientara, P.: Strike-slip tectonics within
the SW Baltic Sea and its relationship to the inversion of the Mid-Polish
Trough – evidence from high-resolution seismic data, Tectonophysics, 373,
93–105, https://doi.org/10.1016/S0040-1951(03)00286-5, 2003.
Krzywiec, P., Wybraniec, S., and Petecki, Z.: Basement tectonics of the
Mid-Polish trough in central and northern Poland – Results of analysis of
seismic reflection, gravity and magnetic data, Pr. Państwowego Inst.
Geol., 188, 107–130, 2006 (in Polish with English summary).
Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G., and Wybraniec,
S.: Tectonostratigraphic model of the Late Cretaceous inversion along the
Nowe Miasto–Zawichost Fault Zone, SE Mid-Polish Trough, Geol.
Q., 53, 27–48, 2009.
Krzywiec, P., Malinowski, M., Lis, P., Buffenmyer, V., and Lewandowski, M.:
Lower Paleozoic basins developed above the East European Craton in Poland:
new insight from regional high-effort seismic reflection data, SPE/EAGE
European Unconventional Resources Conference and Exhibition, Vienna,
extended abstract, SPE-167739-MS, 2014.
Krzywiec, P., Gągała, Mazur, S., Słonka, Ł., Kufrasa, M.,
Malinowski, M., Pietsch, K., and Golonka, J.: Variscan deformation along the
Teisseyre-Tornquist Zone in SE Poland: Thick-skinned structural inheritance
or thin-skinned thrusting?, Tectonophysics, 718, 83–91,
https://doi.org/10.1016/j.tecto.2017.06.008, 2017a.
Krzywiec, P., Mazur, S., Gągała, Ł., Kufrasa, M., Lewandowski, M.,
Malinowski, M., and Buffenmyer, V.: Late Carboniferous thin-skinned
compressional deformation above the SW edge of the East European Craton as
revealed by reflection seismic and potential fields data – correlations with
the Variscides and the Appalachians, in: Linkages and Feedbacks in Orogenic
Processes, edited by: Law, R., Thigpen, R., Stowell, H., and Merschat,
A., Geol. Soc. Am. Mem., 213, 353–372,
https://doi.org/10.1130/2017.2013(14), 2017b.
Krzywiec, P., Peryt, T. M., Kiersnowski, H., Pomianowski, P., Czapowski, G.,
and Kwolek, K.: Permo-Triassic Evaporites of the Polish Basin and Their
Bearing on the Tectonic Evolution and Hydrocarbon System, an Overview, in:
Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic
Margins, edited by: Soto, J. I., Flinch, J. F., and Tari, G., Elsevier,
Amsterdam, the Netherlands, 243–261,
https://doi.org/10.1016/B978-0-12-809417-4.00012-4, 2017c.
Krzywiec, P., Stachowska, A., and Stypa, A.: The only way is up – On Mesozoic
uplifts and basin inversion events in SE Poland, Geol. Soc. Spec. Publ.,
469, 33–57, https://doi.org/10.1144/SP469.14, 2018.
Krzywiec, P., Kiersnowski, H., and Peryt, T. M.: Fault-controlled Permian
(Rotliegend and Zechstein) sedimentation in central Poland Basin (Bydgoszcz
– Szubin area) – insight from well and seismic data, German Journal of
Geology [Zeitschrift der
Deutschen Gesellschaft für Geowissenschaften], 170, 255–272, https://doi.org/10.1127/zdgg/2019/0198, 2019.
Krzywiec, P., Słonka, Ł., Nguyen, Q., Malinowski, M., Kufrasa, M.,
Stachowska, A., Huebscher, C., and Kramarska, R.: Late Cretaceous – Cenozoic
history of the transition zone between the East European Craton and the
Paleozoic Platform, Polish sector of the Baltic Sea, revealed by new
offshore regional seismic data, EGU General Assembly, Vienna, Austria,
19–30 April 2021, EGU21-13383,
https://doi.org/10.5194/egusphere-egu21-13383, 2021.
Kuberska, M., Kozłowska, A., Maliszewska, A., and Buniak, A.: Evolution of
pore space in the Upper Carboniferous and Lower Permian sandstones from
Western Pomerania, Przegląd Geol., 55, 853–860, 2007 (in Polish with
English summary).
Kufrasa, M., Krzywiec, P., Gągała, Ł., Mazur, S., and Mikołajczak, M.:
Geometry and kinematics of an incipient fold-and-thrust belt from
geophysical data (Lublin Basin, Poland), J. Struct. Geol., 141, 104211,
https://doi.org/10.1016/j.jsg.2020.104211, 2020.
Lamarche, J., Mansy, J.-M., Bergerat, F., Averbuch, O., Hakenberg, M.,
Lewandowski, M., Stupnicka, E., Świdrowska, J., Wajsprych, B., and
Wieczorek, J.: Variscan tectonics in the Holy Cross Mountains (Poland) and
the role of structural inheritance during Alpine tectonics, Tectonophysics,
313, 171–186, https://doi.org/10.1016/S0040-1951(99)00195-X, 1999.
Lassen, A., Thybo, H., and Berthelsen, A.: Reflection seismic evidence for
Caledonian deformed sediments above Sveconorwegian basement in the
southwestern Baltic Sea, Tectonics, 20, 268–276,
https://doi.org/10.1029/2000TC900028, 2001.
Laurent, A., Averbuch, O., Beccaletto, L., Graveleau, F., Lacquement, F.,
Capar, L., and Marc, S.: 3-D structure of the Variscan Thrust Front in
northern France: new insights from seismic reflection profiles, Tectonics, 40, e2020TC006642,
https://doi.org/10.1029/2020TC006642, 2021.
Lazauskienė, J., Stephenson, R., Šliaupa, S., and van Wees, J.-D.:
3-D flexural modelling of the Silurian Baltic Basin, Tectonophysics, 346,
115–135, https://doi.org/10.1016/S0040-1951(01)00231-1, 2002.
Leszczyński, K.: Late Cretaceous inversion and salt tectonics in the
Koszalin-Chojnice and Drawno-Człopa-Szamotuły zones, Pomeranian sector
of the Mid-Polish Trough, Geol. Q., 46, 347–362, 2002.
Leszczyński, K.: The internal geometry and lithofacies pattern of the
Upper Cretaceous-Danian sequence in the Polish Lowlands, Geol.
Q., 56, 363–386, https://doi.org/10.7306/gq.1028, 2012.
Leveridge, B. E. and Hartley, A. J.: The Variscan Orogeny: The development
and deformation of Devonian/ Carboniferous basins in: SW England and South
Wales, in: The Geology of England and Wales, edited by: Brenchley, P. J.,
and Rawson, P. F., The Geological Society of London, London, UK, 225–255,
https://doi.org/10.1144/GOEWP.10, 2006.
Lipiec, M. and Matyja, H.: Depositional architecture of the lower
Carboniferous Sedimentary Basin in Pomerania, Pr. Państwowego Inst.
Geol., 165, 101–112, 1998 (in Polish with English summary).
Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S. (Eds.): Dynamics of
Complex Intracontinental Basins: The Central European Basin System,
Springer-Verlag, Berlin, Heidelberg, Germany, 519 pp.,
https://doi.org/10.1007/978-3-540-85085-4, 2008.
Lohr, T., Krawczyk, C. M., Tanner, D. C., Samiee, R., Endres, H., Oncken,
O., Trappe, H., and Kukla, P. A.: Strain partitioning due to salt: Insights
from interpretation of a 3D seismic data set in the NW German Basin, Basin
Res., 19, 579–597, https://doi.org/10.1111/j.1365-2117.2007.00338.x, 2007.
Maliszewska, A., Jackowicz, E., Kuberska, M., and Kiersnowski, H.: Lower
Permian (Rotliegend) rocks of western Poland – A petrographic monograph,
Pr. Państwowego Inst. Geol., 204, 6–115, 2016 (in Polish with English
summary).
Marsh, N., Imber, J., Holdsworth, R. E., Brockbank, P., and Ringrose, P.: The
structural evolution of the Halten Terrace, offshore Mid-Norway: Extensional
fault growth and strain localisation in a multi-layer brittle-ductile
system, Basin Res., 22, 195–214,
https://doi.org/10.1111/j.1365-2117.2009.00404.x, 2010.
Martínez, F., Arriagada, C., Mpodozis, C., and Peña, M.: The Lautaro
Basin: A record of inversion tectonics in northern Chile, Andean Geology,
39, 258–278, https://doi.org/10.5027/andgeoV39n2-a04, 2012.
Martínez Catalán, J. R., Collett, S., Schulmann, K.,
Aleksandrowski, P., and Mazur, S.: Correlation of allochthonous terranes and
major tectonostratigraphic domains between NW Iberia and the Bohemian
Massif, European Variscan belt, Int. J. Earth Sci., 109, 1105–1131,
https://doi.org/10.1007/s00531-019-01800-z, 2020.
Matyja, H.: Upper Devonian of western Pomerania, Acta Geol. Pol., 43,
27–94, 1993 (in Polish with English summary).
Matyja, H.: Depositional architecture of the Devonian basin in the
Pomorze-Kujawy area, Pr. Państwowego Inst. Geol., 165, 73–88, 1998 (in
Polish with English summary).
Matyja, H.: Stratigraphy and facies development of Devonian and
Carboniferous deposits in the Pomeranian Basin and in the western part of
the Baltic Basin and palaeogeography of the northern TESZ during Late
Palaeozoic times, Pr. Państwowego Inst. Geol., 186, 79–122, 2006 (in
Polish with English summary).
Matyja, H.: Pomeranian basin (NW Poland) and its sedimentary evolution
during Mississippian times, Geol. J., 43, 123–150,
https://doi.org/10.1002/gj.1117, 2008.
Maynard, J. R., Hofmann, W., Dunay, R. E., Benthan, P. N., Dean, K. P., and
Watson, I.: The Carboniferous of Western Europe: The development of a
petroleum system, Petrol. Geosci., 3, 97–115,
https://doi.org/10.1144/petgeo.3.2.97, 1997.
Maystrenko, Y., Stovba, S., Stephenson, R., Bayer, U., Menyoli, E.,
Gajewski, D., Huebscher, C., Rabbel, W., Saintot, A., Starostenko, V.,
Thybo, H., and Tolkunov, A.: Crustal-scale pop-up structure in cratonic
lithosphere: DOBRE deep seismic reflection study of the Donbas fold belt,
Ukraine, Geology, 31, 733–736, https://doi.org/10.1130/G19329.1, 2003.
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the
Late Cretaceous–Early Tertiary inversion in the North German and Polish
basins, Int. J. Earth Sci., 94, 782–798,
https://doi.org/10.1007/s00531-005-0016-z, 2005.
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz,
K., Górecka-Nowak, A., Kurowski, L., Krzywiec, P., Żelaźniewicz,
A., and Fanning, M. C.: Uplift and late orogenic deformation of the Central
European Variscan belt as revealed by sediment provenance and structural
record in the Carboniferous foreland basin of western Poland, Int. J. Earth
Sci., 99, 47–64, https://doi.org/10.1007/s00531-008-0367-3, 2010.
Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V.,
and Lewandowski, M.: Is the Teisseyre-Tornquist Zone an ancient plate
boundary of Baltica?, Tectonics, 34, 2465–2477,
https://doi.org/10.1002/2015TC003934, 2015.
Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M.,
and Buffenmyer, V.: Pomeranian Caledonides, NW Poland – A collisional
suture or thin-skinned fold-and-thrust belt?, Tectonophysics, 692, 29–43,
https://doi.org/10.1016/j.tecto.2016.06.017, 2016.
Mazur, S., Porębski, S. J., Kędzior, A., Paszkowski, M.,
Podhalańska, T., and Poprawa, P.: Refined timing and kinematics for
Baltica-Avalonia convergence based on the sedimentary record of a foreland
basin, Terra Nova, 30, 8–16, https://doi.org/10.1111/ter.12302, 2018.
Mazur, S., Aleksandrowski, P., Gągała, Ł., Krzywiec, P., Żaba,
J., Gaidzik, K., and Sikora, R.: Late Palaeozoic strike-slip tectonics versus
oroclinal bending at the SW outskirts of Baltica: Case of the Variscan
belt's eastern end in Poland, Int. J. Earth Sci., 109, 1133–1160,
https://doi.org/10.1007/s00531-019-01814-7, 2020.
Mazur, S., Malinowski, M., Maystrenko, Y. P., and Gągała, Ł.:
Pre-existing lithospheric weak zone and its impact on continental rifting –
The Mid-Polish Trough, Central European Basin System, Global Planet. Change,
198, 103417, https://doi.org/10.1016/j.gloplacha.2021.103417, 2021.
McCann, T.: The tectonosedimentary evolution of the northern margin of the
Carboniferous foreland basin of NE Germany, Tectonophysics, 313, 119–144,
https://doi.org/10.1016/S0040-1951(99)00193-6, 1999.
McCann, T., Pascal, C., Timmerman, M. J., Krzywiec, P., López-Gómez,
J., Wetzel, L., Krawczyk, C. M., Rieke, H., and Lamarche, J.: Post-Variscan
(end Carboniferous-Early Permian) basin evolution in Western and Central
Europe, Geol. Soc. Lond. Mem., 32, 355–388,
https://doi.org/10.1144/GSL.MEM.2006.032.01.22, 2006.
McCann, T., Skompski, S., Poty, E., Dusar, M., Vozarova, A., Schneider, J.,
Wetzel, A., Krainer, K., Kornpihl, K., Schafer, A., Krings, M., Oplustil, S.,
and Tait, J.: Carboniferous, in: The Geology of Central Europe Volume 1:
Precambrian and Palaeozoic, edited by: McCann, T., The Geological Society of
London, London, UK, 411–529, https://doi.org/10.1144/CEV1P.9, 2008.
McClay, K. R.: The geometries and kinematics of inverted fault systems: a
review of analogue model studies, Geol. Soc. Lond. Spec. Publ., 88,
97–118, https://doi.org/10.1144/GSL.SP.1995.088.01.07, 1995.
McClay, K. R. and Scott, A. D.: Experimental models of hangingwall
deformation in ramp-flat listric extensional fault systems, Tectonophysics,
188, 85–96, https://doi.org/10.1016/0040-1951(91)90316-K, 1991.
Meissner, R., Thybo, H., and Abramovitz, T.: Interwedging and inversion
structures around the trans-European suture zone in the Baltic Sea, a
manifestation of compressive tectonic phases, Tectonophysics, 360, 265–280,
https://doi.org/10.1016/S0040-1951(02)00356-6, 2002.
Minguely, B., Averbuch, O., Patin, M., Rolin, D., Hanot, F., and Bergerat,
F.: Inversion tectonics at the northern margin of the Paris Basin (northern
France): New evidence from seismic profiles and boreholes interpolation in
the Artois area, B. Soc. Geol. Fr., 181, 429–442,
https://doi.org/10.2113/gssgfbull.181.5.429, 2010.
Mitra, S. and Islam, Q. T.: Experimental (clay) models of inversion
structures, Tectonophysics, 230, 211–222,
https://doi.org/10.1016/0040-1951(94)90136-8, 1994.
Muszyński, A., Biernacka, J., Lorenc, S., Protas, A., Urbanek, Z., and
Wojewoda, J.: Petrology and depositional environment of Lower Carboniferous
rocks near Dygowo and Kłanino (the Koszalin-Chojnice Zone), Geologos, 1,
93–126, 1996 (in Polish with English summary).
Narkiewicz, M.: Development and inversion of Devonian and Carboniferous
basins in the eastern part of the Variscan foreland (Poland), Geol.
Q., 51, 231–256, 2007.
Narkiewicz, M.: The Variscan foreland in Poland revisited: New data and new
concepts, Geol. Q., 64, 377–401,
https://doi.org/10.7306/gq.1511, 2020.
Narkiewicz, M., Poprawa, P., Lipiec, M., Matyja, H., and Miłaczewski, L.:
Paleogeographic and tectonic setting and the Devonian-Carboniferous
subsidence development of the Pomerania and Radom-Lublin regions, Pr.
Państwowego Inst. Geol., 165, 31–49, 1998 (in Polish with English
summary).
Norton, M. G., McClay, K. R., and Way, N. A.: Tectonic evolution of Devonian
basins in northern Scotland and southern Norway, Norsk Geol. Tidsskr.,
67, 323–338, 1987.
Okay, A. I. and Topuz, G.: Variscan orogeny in the Black Sea region, Int. J.
Earth Sci., 106, 569–592, https://doi.org/10.1007/s00531-016-1395-z, 2017.
Oncken, O., von Winterfeld, C., and Dittmar, U.: Accretion of a rifted
passive margin: The Late Paleozoic Rhenohercynian fold and thrust belt
(Middle European Variscides), Tectonics, 18, 75–91,
https://doi.org/10.1029/98TC02763, 1999.
Opluštil, S. and Cleal, C. J.: A comparative analysis of some Late
Carboniferous basins of Variscan Europe, Geol. Mag., 144, 417–448,
https://doi.org/10.1017/S0016756807003330, 2007.
Osmundsen, P. T. and Andersen, T. B.: The middle Devonian basins of western
Norway: sedimentary response to large-scale transtensional tectonics?
Tectonophysics, 332, 51–68, https://doi.org/10.1016/S0040-1951(00)00249-3, 2001.
Panien, M., Schreurs, G., and Pfiffner, A.: Sandbox experiments on basin
inversion: Testing the influence of basin orientation and basin fill, J.
Struct. Geol., 27, 433–445, https://doi.org/10.1016/j.jsg.2004.11.001,
2005.
Panien, M., Buiter, S., Schreurs, G., and Pfiffner, O.-A.: Inversion of a
symmetric basin: insights from a comparison between analogue and numerical
experiments, in: Analogue and Numerical Modelling of Crustal Scale
Processes, edited by: Buiter, S. J. H. and Schreurs, G., Geological Society,
London, UK, Geol. Soc. Spec. Publ., 253, 253–270,
https://doi.org/10.1144/gsl.sp.2006.253.01.13, 2006.
Peace, G. R. and Besly, B. M.: End-Carboniferous fold-thrust structures,
Oxfordshire, UK: Implications for the structural evolution of the late
Variscan foreland of south-central England, J. Geol. Soc. Lond., 154,
225–237, https://doi.org/10.1144/gsjgs.154.2.0225, 1997.
Pharaoh, T. C., Dusar, M., Geluk, M. C., Kockel, F., Krawczyk, C. M.,
Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbæk, O. V., and van
Wees, J. D.: Tectonic evolution, in: Petroleum Geological Atlas of the
Southern Permian Basin Area, edited by: Doornenbal, H. and Stevenson, A.,
EAGE Publications BV, Houten, the Netherlands, 25–57, ISBN 978-90-73781-61-0, 2010.
Pharaoh, T. C., Haslam, R., Hough, E., Kirk, K., Leslie, G., Schofield, D.,
and Heafford, A.: The Môn–Deemster–Ribblesdale fold–thrust belt,
central UK: A concealed Variscan inversion belt located on weak Caledonian
crust, Geol. Soc. Lond. Spec. Publ., 490, 153–176,
https://doi.org/10.1144/SP490-2018-109, 2020.
Piwocki, M. and Kramarska, R.: Polish Lowlands and their southern rim –
basics of stratigraphy, in: Geological Setting of Poland, Vol. 1,
Stratigraphy, Part 3a, Cenozoic, Paleogene, Neogene, edited by: Peryt, T.
M. and Piwocki, M., Państwowy Instytut Geologiczny, Warszawa, Poland,
19–22, 2004 (in Polish with English summary).
Podhalańska, T. and Modliński, Z.: Stratigraphy and facies
characteristics of the Ordovician and Silurian deposits of the
Koszalin-Chojnice Zone: Similarities and differences to the western margin
of the East European Craton and the Rügen area, Pr. Państwowego
Inst. Geol., 186, 39–78, 2006 (in Polish with English summary).
Polish Geological Institute: Central Geological Database and National Geological Archive, http://geoportal.pgi.gov.pl, last access: 16 March 2022.
Poprawa, P.: Development of the Caledonian collision zone along the western
margin of Baltica and its relation to the foreland basin, Pr.
Państwowego Inst. Geol., 186, 189–214, 2006 (in Polish with English
summary).
Poprawa, P.: Geological setting and Ediacaran–Palaeozoic evolution of the
western slope of the East European Craton and adjacent regions, Ann. Soc.
Geol. Pol., 89, 347–380, https://doi.org/10.14241/asgp.2019.23, 2019.
Poprawa, P., Šliaupa, S., Stephenson, R., and Lazauskiene, J.: Late
Vendian–Early Palæozoic tectonic evolution of the Baltic Basin:
Regional tectonic implications from subsidence analysis, Tectonophysics,
314, 219–239, https://doi.org/10.1016/S0040-1951(99)00245-0, 1999.
Poprawa, P., Krzemińska, E., Pacześna, J., and Amstrong, R.:
Geochronology of the Volyn volcanic complex at the western slope of the East
European Craton – Relevance to the Neoproterozoic rifting and the break-up
of Rodinia/Pannotia, Precambrian Res., 346, 105817,
https://doi.org/10.1016/j.precamres.2020.105817, 2020.
Powell, C. M. and Williams, G. D.: The Lewis Thrust/Rocky Mountain trench
fault system in Northwest Montana, USA: an example of negative inversion
tectonics?, Geol. Soc. Lond. Spec. Publ., 44, 223–234, 1989.
Resak, M., Narkiewicz, M., and Littke, R.: New basin modelling results from
the Polish part of the Central European Basin system: implications for the
Late Cretaceous–Early Paleogene structural inversion, Int. J.
Earth Sci., 97, 955–972, https://doi.org/10.1007/s00531-007-0246-3,
2008.
Rowan, M. G. and Jarvie, A.: Crustal extension and salt tectonics of the
Danmarkshavn Ridge and adjacent basins, NE Greenland, Mar. Petrol.
Geol., 117, 104339, https://doi.org/10.1016/j.marpetgeo.2020.104339, 2020.
Rowan, M. and Krzywiec, P.: The Szamotuły salt diapir and Mid-Polish
Trough: Decoupling during both Triassic-Jurassic rifting and Alpine
inversion – Interpretation, 2, SM1–SM18,
https://doi.org/10.1190/INT-2014-0028.1, 2014.
Scheck-Wenderoth, M., Krzywiec, P., Zuhlke, R., Maystrenko, Y., and
Froitzheim, N.: Permian to Cretaceous tectonics, in: The Geology of Central
Europe Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., The Geological
Society of London, London, 999–1030, https://doi.org/10.1144/CEV2P.4,
2008.
Schori, M., Zwaan, F., Schreurs, G., and Mosar, J.: Pre-existing Basement
Faults Controlling Deformation in the Jura Mountains Fold-and-Thrust Belt:
Insights from Analogue Models, Tectonophysics, 814, 228980,
https://doi.org/10.1016/j.tecto.2021.228980, 2021.
Scisciani, V.: Styles of positive inversion tectonics in the Central
Apennines and in the Adriatic foreland: Implications for the evolution of
the Apennine chain (Italy), J. Struct. Geol., 31, 1276–1294,
https://doi.org/10.1016/j.jsg.2009.02.004, 2009.
Scisciani, V., Patruno, S., D'Intino, N., and Esestime, P.: Paleozoic basin
reactivation and inversion of the underexplored northern North Sea
platforms: a cross-border approach. Geol. Soc. Lond. Spec. Publ., 494, SP494-2020-252,
https://doi.org/10.1144/SP494-2020-252, 2021.
Seidel, E., Meschede, M., and Obst, K.: The Wiek Fault System east of
Rügen Island: origin, tectonic phases and its relationship to the
Trans-European Suture Zone, Geol. Soc. Lond. Spec. Publ., 469, 59–82,
https://doi.org/10.1144/SP469.10, 2018.
Séranne, M., Chauvet, A., Seguret, M., and Brunel, M.: Tectonics of the
Devonian collapse-basins of western Norway, B. Soc. Geol. Fr., 5,
489–499, https://doi.org/10.2113/gssgfbull.V.3.489, 1989.
Shail, R. K. and Leveridge, B. E.: The Rhenohercynian passive margin of SW
England: Development, inversion and extensional reactivation, C.R.
Geosci., 341, 140–155, https://doi.org/10.1016/j.crte.2008.11.002, 2009.
Smit, J., van Wees, J.-D., and Cloetingh, S.: Early Carboniferous extension in
East Avalonia: 350 My record of lithospheric memory, Mar. Petrol.
Geol., 92, 1010–1027, https://doi.org/10.1016/j.marpetgeo.2018.01.004,
2018.
Smith, N.: Variscan inversion within the Cheshire Basin, England:
Carboniferous evolution north of the Variscan Front, Tectonophysics, 309,
211–225, https://doi.org/10.1016/S0040-1951(99)00140-7, 1999.
Sopher, D., Erlström, M., Bell, N., and Juhlin, C.: The structure and
stratigraphy of the sedimentary succession in the Swedish sector of the
Baltic Basin: New insights from vintage 2D marine seismic data,
Tectonophysics, 676, 90–111, https://doi.org/10.1016/j.tecto.2016.03.012,
2016.
Soto, R., Casas-Sainz, A. M., and Del Río, P.: Geometry of half-grabens
containing a mid-level viscous décollement, Basin Res., 19, 437–450,
https://doi.org/10.1111/j.1365-2117.2007.00328.x, 2007.
Stemmerik, L.: Late Palaeozoic evolution of the north Atlantic margin of
Pangea. Palaeogeogr. Palaeocl., 161, 95–126,
https://doi.org/10.1016/S0031-0182(00)00119-X, 2000.
Stephenson, R. A., Narkiewicz, M., Dadlez, R., van Wees, J.-D., and
Andriessen, P.: Tectonic subsidence modelling of the Polish Basin in the
light of new data on crustal structure and magnitude of inversion,
Sediment. Geol., 156, 59–70,
https://doi.org/10.1016/S0037-0738(02)00282-8, 2003.
Stewart, S. A.: Geometry of thin-skinned tectonic systems in relation to
detachment layer thickness in sedimentary basins, Tectonics, 18, 719–732,
https://doi.org/10.1029/1999TC900018, 1999.
Tari, G., Arbouille, D., Schléder, Z., and Tóth, T.: Inversion tectonics: a brief petroleum industry perspective, Solid Earth, 11, 1865–1889, https://doi.org/10.5194/se-11-1865-2020, 2020.
Tari, G., Bada, G., Beidinger, A., Csizmeg, J., Danišik, M., Gjerazi,
I., Grasemann, B., Kováč, M., Plašienka, D., Šujan, M., and
Szafián, P.: The connection between the Alps and the Carpathians beneath
the Pannonian Basin: Selective reactivation of Alpine nappe contacts during
Miocene extension, Global Planet. Change, 197, 103401,
https://doi.org/10.1016/j.gloplacha.2020.103401, 2021.
Tavarnelli, E.: Normal faults in thrust sheets: pre-orogenic extension,
post-orogenic extension, or both?, J. Struct. Geol., 21,
1011–1018, 1999.
Tomaszczyk, M. and Jarosiński, M.: The Kock Fault Zone as an indicator
of tectonic stress regime changes at the margin of the East European Craton
(Poland), Geol. Q., 61, 908–925,
https://doi.org/10.7306/gq.1380, 2017.
Tomek, F., Vacek, F., Žák, J., Petronis, M. S., Verner, K., and
Foucher, M. S.: Polykinematic foreland basins initiated during orthogonal
convergence and terminated by orogen-oblique strike-slip faulting: An
example from the northeastern Variscan belt, Tectonophysics, 766, 379–397,
https://doi.org/10.1016/j.tecto.2019.05.023, 2019.
Tortorici, G., Romagnoli, G., Grassi, S., Imposa, S., Lombardo, G., Panzera,
F., and Catalano, S.: Quaternary negative tectonic inversion along the
Sibillini Mts. thrust zone: the Arquata del Tronto case history (Central
Italy), Environ. Earth Sci., 78, 37,
https://doi.org/10.1007/s12665-018-8021-2, 2019.
Trela, M., Kasprzyk, M., and Saj, A.: Opracowanie badań sejsmicznych 3D
dla tematów Daszewo N i Białogard, unpublished report, Geofizyka Toruń S.A., 2011.
van Wees, J.-D., Stephenson, R., Ziegler, P., Bayer, U., McCann, T.,
Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., and Scheck, M.: On the
origin of the Southern Permian Basin, Central Europe, Mar. Petrol. Geol., 17,
43–59, https://doi.org/10.1016/S0264-8172(99)00052-5, 2000.
Velasco, M. S., Bennett, R. A., Johnson, R. A., and Hreinsdóttir, S.:
Subsurface fault geometries and crustal extension in the eastern Basin and
Range Province, western U.S., Tectonophysics, 488, 131–142,
https://doi.org/10.1016/j.tecto.2009.05.010, 2010.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Hartmann, H.: Deformation of the Carboniferous on the Oldenburg High and
the Location of the Variscan Front in Northwest Germany, Neth. J.
Geosci., 82, 169–176, https://doi.org/10.1017/S0016774600020722, 2003.
Wagner, R.: Stratigraphy and evolution of the Zechstein basin in the Polish
Lowlands, Pr. Państwowego Inst. Geol., 146, 1–71, 1994 (in Polish with
English summary).
Wagner, R.: Zechstein, in: Paleogeographic atlas of epicontinental Permian
and Mesozoic in Poland, 1 : 2 500 000, edited by: Dadlez, R., Marek, S., and
Pokorski, J., Państwowy Instytut Geologiczny, Warszawa, Poland, 1998.
Warr, L. N.: The Variscan Orogeny: The Welding of Pangaea, in: Geological
History of Britain and Ireland, edited by: Woodcock, N. H. and Strachan, R.
A., John Wiley & Sons, Ltd, Chichester, UK, 274–298,
https://doi.org/10.1002/9781118274064.ch15, 2012.
Warsitzka, M., Závada, P., Jähne-Klingberg, F., and Krzywiec, P.: Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting, Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, 2021.
Williams, G. D., Powell, C. M., and Cooper, M. A.: Geometry and kinematics of
inversion tectonics, Geol. Soc. Lond. Spec. Publ., 44, 3–15,
https://doi.org/10.1144/GSL.SP.1989.044.01.02, 1989.
Withjack, M. O. and Callaway, S.: Active normal faulting beneath a salt
layer: An experimental study of deformation patterns in the cover sequence,
Am. Assoc. Petr. Geol. B., 84, 627–651,
https://doi.org/10.1306/c9ebce73-1735-11d7-8645000102c1865d, 2000.
Withjack, M. O., Baum, M. S., and Schlische, R. W.: Influence of preexisting
fault fabric on inversion-related deformation: A case study of the inverted
Fundy rift basin, southeastern Canada, Tectonics, 29, TC6004,
https://doi.org/10.1029/2010TC002744, 2010.
Xiao, H. and Suppe, J.: Origin of rollover, Am. Assoc. Petr. Geol. B., 76,
509–529, https://doi.org/10.1306/bdff8858-1718-11d7-8645000102c1865d, 1992.
Zayats, K.: The structure of minerals of the Western region of Ukraine on
the basis of seismic studies and the directions for oil and gas exploration
studies (in Ukrainian), USGEI, Lviv, Ukraine, ISBN 978-966-464-003-6, 2015.
Ziegler, P. A.: Geological Atlas of Western and Central Europe, Shell
Internationale Petroleum Maatschappij B.V. and Geological Society Publishing
House, Bath, UK, ISBN 906-6-4412-59, 978-90-66441-255, 1990.
Ziegler, P. A., Bertotti, G., and Cloetingh, S.: Dynamic processes
controlling foreland development – The role of mechanical (de)coupling of
orogenic wedges and forelands, Stephan Mueller Spec. Publ. Ser., 1, 17–56,
https://doi.org/10.5194/smsps-1-17-2002, 2002.
Znosko, J.: The problem of Caledonides and the border of Precambrian
platform in Poland, Biul. Inst. Geol., 188, 5–72, 1965 (in Polish).
Żaba, J. and Poprawa, P.: Deformation history of the Koszalin-Chojnice
zone (Pomeranian segment of TESZ, NW Poland) – constraints from structural
analysis of Palaeozoic and Mesozoic successions in Polskie Łąki PIG-1
and Toruń-1 boreholes, Pr. Państwowego Inst. Geol., 186, 225–252,
2006.
Żelichowski, A. M.: Lithostratigraphy and
sedimentological-paleogeographical development in Western Pomerania, Pr. Państwowego Inst. Geol., 148, 97–100, 1995.
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model...
Special issue