Articles | Volume 13, issue 3
https://doi.org/10.5194/se-13-681-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-13-681-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland
Zbyszek Remin
CORRESPONDING AUTHOR
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Michał Cyglicki
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Polish Geological Institute – National
Research Institute, Rakowiecka 4, 00-975 Warsaw, Poland
Mariusz Niechwedowicz
Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
What does it take to restore geological models with “natural” boundary conditions?
Impact of stress regime change on the permeability of a naturally fractured carbonate buildup (Latemar, the Dolomites, northern Italy)
The influence of extraction of various solvents on chemical properties on Chang 7 shale, Ordos Basin, China
Miocene high elevation in the Central Alps
What makes seep carbonates ignore self-sealing and grow vertically: the role of burrowing decapod crustaceans
Dawn and dusk of Late Cretaceous basin inversion in central Europe
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)
Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)
Tectonic processes, variations in sediment flux, and eustatic sea level recorded by the 20 Myr old Burdigalian transgression in the Swiss Molasse basin
Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits
Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?
Precipitation of dolomite from seawater on a Carnian coastal plain (Dolomites, northern Italy): evidence from carbonate petrography and Sr isotopes
The Ogooue Fan (offshore Gabon): a modern example of deep-sea fan on a complex slope profile
Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece
Melchior Schuh-Senlis, Guillaume Caumon, and Paul Cupillard
Solid Earth, 15, 945–964, https://doi.org/10.5194/se-15-945-2024, https://doi.org/10.5194/se-15-945-2024, 2024
Short summary
Short summary
This paper presents the application of a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method is applied to a model based on a laboratory experiment. The results show that using force conditions in the computation of the deformation allows us to assess the value of some previously unknown physical parameters of the different materials inside the model.
Onyedika Anthony Igbokwe, Jithender J. Timothy, Ashwani Kumar, Xiao Yan, Mathias Mueller, Alessandro Verdecchia, Günther Meschke, and Adrian Immenhauser
Solid Earth, 15, 763–787, https://doi.org/10.5194/se-15-763-2024, https://doi.org/10.5194/se-15-763-2024, 2024
Short summary
Short summary
We present a workflow that models the impact of stress regime change on the permeability of fractured Latemar carbonate buildup using a displacement-based linear elastic finite-element method (FEM) and outcrop data. Stress-dependent heterogeneous apertures and effective permeability were calculated and constrained by the study area's stress directions. Simulated far-field stresses at NW–SE subsidence deformation and N–S Alpine deformation increased the overall fracture aperture and permeability.
Yan Cao, Zhijun Jin, Rukai Zhu, and Kouqi Liu
Solid Earth, 14, 1169–1179, https://doi.org/10.5194/se-14-1169-2023, https://doi.org/10.5194/se-14-1169-2023, 2023
Short summary
Short summary
Fourier transform infrared (FTIR) was performed on shale before and after solvent extraction. The extraction yield from shale with THF is higher than other solvents. The organic-C-normalized yield of a mature sample is higher than other samples. The aromaticity of organic matter increases, and the length of organic matter aliphatic chains does not vary monotonically with increasing maturity. The results will help in the selection of organic solvents for oil-washing experiments of shale.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Jean-Philippe Blouet, Patrice Imbert, Sutieng Ho, Andreas Wetzel, and Anneleen Foubert
Solid Earth, 12, 2439–2466, https://doi.org/10.5194/se-12-2439-2021, https://doi.org/10.5194/se-12-2439-2021, 2021
Short summary
Short summary
Biochemical reactions related to hydrocarbon seepage are known to induce carbonates in marine sediments. Seep carbonates may act as seals and force lateral deviations of rising hydrocarbons. However, crustacean burrows may act as efficient vertical fluid channels allowing hydrocarbons to pass through upward, thereby allowing the vertical growth of carbonate stacks over time. This mechanism may explain the origin of carbonate columns in marine sediments throughout hydrocarbon provinces worldwide.
Thomas Voigt, Jonas Kley, and Silke Voigt
Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, https://doi.org/10.5194/se-12-1443-2021, 2021
Short summary
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Georg Schwamborn, Kai Hartmann, Bernd Wünnemann, Wolfgang Rösler, Annette Wefer-Roehl, Jörg Pross, Marlen Schlöffel, Franziska Kobe, Pavel E. Tarasov, Melissa A. Berke, and Bernhard Diekmann
Solid Earth, 11, 1375–1398, https://doi.org/10.5194/se-11-1375-2020, https://doi.org/10.5194/se-11-1375-2020, 2020
Short summary
Short summary
We use a sediment core from the Gobi Desert (Ejina Basin, NW China) to illustrate the landscape history of the area. During 2.5 million years a sediment package of 223 m thickness has been accumulated. Various sediment types document that the area turned from a playa environment (shallow water environment with multiple flooding events) to an alluvial–fluvial environment after the arrival of the Heihe in the area. The river has been diverted due to tectonics.
Philippos Garefalakis and Fritz Schlunegger
Solid Earth, 10, 2045–2072, https://doi.org/10.5194/se-10-2045-2019, https://doi.org/10.5194/se-10-2045-2019, 2019
Short summary
Short summary
The controls on the 20 Myr old Burdigalian transgression in the Swiss Molasse basin have been related to a reduction in sediment flux, a rise in global sea level, or tectonic processes in the adjacent Alps. Here, we readdress this problem and extract stratigraphic signals from the Upper Marine Molasse deposits in Switzerland. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression, which is related to a deepening and widening of the basin.
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary
Short summary
The Aar and Mont Blanc regions in the Alps are large granitoid massifs characterized by high topography. We analyse when these granitoids were first exhumed to the surface. We test this by tracking specific garnet grains, which are exclusively found in the granitoid massifs, in the sediments contained in the alpine foreland basin. This research ties in with ongoing debates on the timing and mechanisms of mountain building.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Salomé Mignard, Thierry Mulder, Philippe Martinez, and Thierry Garlan
Solid Earth, 10, 851–869, https://doi.org/10.5194/se-10-851-2019, https://doi.org/10.5194/se-10-851-2019, 2019
Short summary
Short summary
A large quantity a continental material is transported to the oceans by the world rivers. Once in the ocean, these particles can be transported down the continental shelf thanks to underwater avalanches. The repetition of such massive events can form very important sedimentary deposits at the continent–ocean transition. Data obtained during an oceanic cruise in 2010 allowed us to study such a system located offshore of Gabon and to evaluate the importance sediment transport in this area.
Sutieng Ho, Martin Hovland, Jean-Philippe Blouet, Andreas Wetzel, Patrice Imbert, and Daniel Carruthers
Solid Earth, 9, 1437–1468, https://doi.org/10.5194/se-9-1437-2018, https://doi.org/10.5194/se-9-1437-2018, 2018
Short summary
Short summary
A newly discovered type of hydrocarbon leakage structure is investigated following the preliminary works of Ho (2013; et al. 2012, 2013, 2016): blade-shaped gas chimneys instead of classical cylindrical ones. These so-called
Linear Chimneysare hydraulic fractures caused by overpressured hydrocarbon fluids breaching cover sediments along preferential directions. These directions are dictated by anisotropic stresses induced by faulting in sediments and pre-existing salt-diapiric structures.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Ernest Chi Fru, Stephanos Kilias, Magnus Ivarsson, Jayne E. Rattray, Katerina Gkika, Iain McDonald, Qian He, and Curt Broman
Solid Earth, 9, 573–598, https://doi.org/10.5194/se-9-573-2018, https://doi.org/10.5194/se-9-573-2018, 2018
Short summary
Short summary
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record ca. 600 million years ago. Here, we report on the formation mechanisms of a modern BIF analog in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, demonstrating that rare environmental redox conditions, coupled to submarine hydrothermal activity and microbial processes, are required for these types of rocks to form in the modern marine biosphere.
Cited articles
Allen, G. P., Laurier, D., and Thouvenin, J.: Sediment distribution patterns
in the modern Mahakam delta, Proc. Indonesian Petrol. Assoc.,
5, 159–178, 1977.
Andò, S., Garzanti, E., Padoan, M., and Limonta, M.: Corrosion of heavy
minerals during weathering and diagenesis: A catalog for optical analysis,
Sediment. Geol., 280, 165–178, 2012.
Andò, S., Morton, A. C., and Garzanti, E.: Metamorphic grade of source
rocks revealed by chemical fingerprints of detrital amphibole and garnet,
Geol. Soc. Lond. Spec. Publ., 386, 351–371, 2013.
Błaszkiewicz, A.: Campanian and Maastrichtian ammonites of the Middle
Vistula River valley, Poland: a stratigraphic and paleontological study,
Prace Instytutu Geologicznego, 92, 1–63, 1980.
Brackenridge, R. E., Nicholson, U., Sapiie, B., Stow, D., and Tappin, D. R.:
Indonesian Throughflow as a preconditioning mechanism for submarine
landslides in the Makassar Strait, Geol. Soc. Lond. Spec.
Publ., 500, 195–217, 2020.
Buła, Z. and Habryn, R.: Precambrian and Palaeozoic basement of the
Carpathian Foredeep and the adjacent Outer Carpathians (SE Poland and
western Ukraine), Ann. Soc. Geol. Pol., 81, 221–239, 2011.
Buła, Z., Byś, I., Florek, R., Habryn, R., Jachowicz, M.,
Kwarciński, J., Laskowicz, R., Liszka, B., Madej, K., Maksym, A.,
Markowiak, M., Pietrusiak, M., Probulski, J., Ryłko, W., Salwa, S.,
Sikora, R., Staryszak, G., Tabol-Wójcik, P., Tomaś, A., and Zacharski,
J.: Geological-structural atlas of the Palaeozoic basement of the Outer
Carpathians and Carpathian Foredeep, Polish Ministry of Environment,
Warszawa, 104, 775–796, 2008.
Coleman, J. M. and Wright, L. D. (Eds): Modern river deltas: variability of
processes and sand bodies, edited by: M. L. Broussard, Deltas, 2nd Edn., Houston Geological Society, 99–150, 1975.
Cyglicki, M. and Remin, Z.: Provenance of heavy minerals in the middle
Campanian (Cretaceous) siliciclastic deposits of the Roztocze Hills, SE
Poland, in: X Baltic Stratigraphic Conference, Chęciny, 28–29, 2016.
Cyglicki, M. and Remin, Z.: HRHMA (high-resolution heavy mineral analysis)
zastosowana dla górno-kampańskich skałsilikoklastycznych
krawędziowej części Roztocza Środkowego, SE Polska, Pokos,
VII, 67, 2018.
Dadlez, R.: Mesozoic thickness pattern in the Mid-Polish Trough, Geol.
Q., 47, 223–240, 2003.
Dadlez, R., Marek, S., and Pokorski, J. (Eds.): Geological map of Poland
without Cenozoic deposits at 1:1 000 000 scale, Warszawa, Polish Geological
Institute, 2000.
Dadlez, R., Narkiewicz, M., Stephenson, R. A. Visser, M. T. M., and van
Wess, J. D.: Tectonic evolution of the Mid-Polish Trough: modelling
implications and significance for central European geology, Tectonophysics,
252, 179–195, 1995.
Dadlez, R., Marek, S., and Pokorski, J. (Eds.): Palaeographical Atlas of the
Epicontinental Permian and Mesozoic in Poland (1:2 500 000), Polish
Geological Institute, Warszawa, Poland,
1998 (in Polish with English summary).
Downie, C., Hussain, M. A., and Williams, G. L.: Dinoflagellate cyst and
acritarch associations in the Paleogene of southeast England, Geosci.
Man., 3, 29–35, 1971.
Dubicka, Z., Peryt, D., and Szuszkiewicz, M.: Foraminiferal evidence for
paleogeographic and paleoenvironmental changes across the
Coniacian–Santonian boundary in western Ukraine, Palaeogeogr.
Palaeocl., 401, 43–56, 2014.
Dziadzio, P. and Jachowicz, M.: Budowa podłoża utworów
mioceńskich na SW od wyniesienia Lubaczowa, Przegląd
Geologiczny, 44, 1124–1130, 1996.
Dziadzio, P., Maksym, A., and Olszewska, B.: Miocene deposition in the
eastern part of the Carpathian Foredeep in Poland, Przegląd
Geologiczny, 54, 413–420, 2006.
Eshet, Y., Almogi-Labin, A., and Bein, A.: Dinoflagellate cysts,
paleoproductivity and upwelling systems: A Late Cretaceous example from
Israel, Mar. Micropaleontol., 23, 231–240, 1994.
Galloway, W. E.: Process framework for describing the morphologic and
stratigraphic evolution of deltaic depositional systems, in: Deltas, Models
for Exploration, edited by: Broussard, M. L., Houston Geological Society,
Houston, TX, 87–98, 1975.
Garzanti, E.: The maturity myth in sedimentology and provenance analysis,
J. Sediment. Res., 87, 353–365, 2017.
Garzanti, E. and Andò, S.: Heavy mineral concentration in modern sands:
implications for provenance interpretation, in: Heavy minerals in use,
edited by: Mange, M. and Wright, D. T., Elsevier, 517–545, https://doi.org/10.1016/S0070-4571(07)58020-9, 2007.
Garzanti, E. and Andò, S.: Heavy minerals for Junior Woodchucks,
Minerals, 9, 148, 1–25, 2019
Hakenberg, M. and Świdrowska, J.: Evolution of the Holy Cross segment of
the Mid-Polish Trough during the Cretaceous, Geol. Q., 42,
239–262, 1998.
Hakenberg, M. and Świdrowska, J.: Cretaceous basin evolution in the
Lublin area along the Teisseyre-Tornquist Zone (SE Poland), Ann.
Soc. Geol. Pol., 71, 1–20, 2001.
Halamski, A. T.: Latest Cretaceous leaf floras from Southern Poland and
Western Ukraine, Acta Paleontol. Pol., 58, 407–433, 2013.
Hardy, M. J. and Wrenn, J. H.: Palynomorph distribution in modern tropical
deltaic and shelf sediments – Mahakam Delta, Borneo, Indonesia, Palynology,
33, 19–42, 2009.
Henry, D. J. and Guidotti, C. V.: Tourmaline as a petrogenetic indicator
mineral: an example from the staurolite-grade metapelites of NW Maine,
Am. Mineral., 70, 1–15, 1985.
Hubert, J. F.: A zircon-tourmaline-rutile maturity index and interdependence
of the composition of heavy mineral assemblages with the gross composition
and textures of sandstones, J. Sediment. Res., 32, 440–450,
1962.
Jaskowiak-Schoeneichowa, M. and Krassowska, A.: Paleomiąższości,
litofacje i paleotektonika epikontynentalnej kredy górnej w Polsce,
Geol. Q., 32, 177–198, 1988.
Jurkowska, A. and Barski, M.: Maastrichtian island in the Central European
Basin-new data inferred from palynofacies analysis and inoceramid
stratigraphy, Facies, 63, 1–20, 2017.
Jurkowska, A., Świerczewska-Gładysz, E., Bąk, M., and Kowalik, S.:
The role of biogenic silica in the formation of Upper Cretaceous pelagic
carbonates and its palaeoecological implications, Cretaceous Res., 93,
170–187, 2019b.
Kamieński, M.: Przyczynek do znajomości kredy żurawieńskiej.
Contribution a'la connaissance du facies Sablonneux des cauches cre'tace'es
de Żurawno (Pologne), Kosmos, 50, 1408–1425, 1925.
Kiersnowski, H., Paul, J., Peryt, T. M., and Smith, D. B.: Facies,
paleogeography, and sedimentary history of the Southern Permian Basin in
Europe, in: The
Permian of Northern Pangea, edited by: Scholle, P., Peryt, T. M., and Ulmer-Scholle, D., Vol. 2, Sedimentary Basins and Economic
Resources, Springer, Berlin, 119–136, https://doi.org/10.1007/978-3-642-78590-0_7, 1995.
Kley, J. and Voigt, T.: Late Cretaceous intraplate thrusting in Central
Europe: Effect of Africa-Iberia-Europe convergence, not Alpine collision,
Geology, 36, 839–842, 2008.
Komar, P., D.: The entrainment, transport, and sorting of heavy minerals by
waves and currents, in: Heavy minerals in use, edited by: Mange, M. and
Wright, D. T., Elsevier, 3–48, https://doi.org/10.1016/S0070-4571(07)58001-5, 2007.
Kowalska, S., Kranc, A., Maksym, A., and Śmist, P.: Geology of the
north-eastern part of the Carpathian Foredeep basement, the
Lubaczów-Biszcza Region, Nafta-Gaz, 54, 158–178, 2000 (in Polish).
Krzywiec, P.: Miocene tectonic evolution of the Eastern Carpathian Foredeep
Basin (Przemyśl–Lubaczów) in light of seismic data interpretation,
Prace Państwowego Instytutu Geologicznego, 168, 249–276,
1999 (in Polish).
Krzywiec, P.: O mechanizmach inwersji bruzdy śródkowopolskiej –
wyniki interpretacji danych sejsmicznych (On mechanism of the Mid-Polish
Trough inversion), Biuletyn Państwowego Instytutu Geologicznego, 393,
135–166, 2000.
Krzywiec, P.: Mid-Polish Trough inversion – Seismic examples, main
mechanisms and its relationship to the Alpine Carpathian collision,
Continental collision and the tectonosedimentary evolution of forelands,
European Geophysical Society Special Publication, 1, 151–165, 2002.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough–lateral variations in timing and structural style,
Geol. Q., 50, 151–168, 2006.
Krzywiec, P.: Devonian–Cretaceous repeated subsidence and uplift along the
Teisseyre–Tornquist zone in SE Poland—Insight from seismic data
interpretation, Tectonophysics, 475, 142–159, 2009.
Krzywiec, P. and Stachowska, A.: Late Cretaceous inversion of the NW segment
of the Mid-Polish Trough – how marginal troughs were formed, and does it
matter at all?, Z. Dtsch. Ges. Geowiss., 167, 107–119, https://doi.org/10.1127/zdgg/2016/0068, 2016.
Krzywiec, P., Gutkowski, J., Walaszczyk, I., Wróbel, G., and Wybraniec,
S.: Tectonostratigraphic model of the Late Cretaceous-inversion along the
Nowe Miasto–Zawichost fault zone, SE Mid-Polish Trough, Kwartalnik
Geologiczny, 53, 27–48, 2009.
Krzywiec, P., Peryt, T. M., Kiersnowski, H., Pomianowski, P., Czapowski, G.,
and Kwolek, K.: Permo-Triassic evaporites of the Polish Basin and their
bearing on the tectonic evolution and hydrocarbon system, an overview, in:
Permo-Triassic Salt
Provinces of Europe, North Africa and the Central Atlantic: Tectonics and
Hydrocarbon Potential, edited by: Soto, J. I., Flinch, J. F., and Tari, G., Elsevier, Amsterdam, 243–261, https://doi.org/10.1016/B978-0-12-809417-4.00012-4, 2017.
Krzywiec P., Stachowska A., and Stypa A.: The only way is up – on Mesozoic
uplifts and basin inversion events in SE Poland, in: Mesozoic Resource
Potential in the Southern Permian Basin, edited by: Kilhams, B., Kukla, P.
A., Mazur, S., McKie, T., Mijnlieff, H. F., and van Ojik, K., Geol.
Soc. Lond. Spec. Publ., 469, https://doi.org/10.1144/SP469.14, 2018.
Kutek, J. and Głazek, J.: The Holy Cross area, Central Poland, in the
Alpine cycle, Acta Geol. Pol., 22, 603–652, 1972.
Kvale, E. P.: Tidal Constituents of Modern and Ancient Tidal Rhythmites:
Criteria for Recognition and Analyses, in: Principles of Tidal Sedimentology, edited by: Davis Jr., R. A. and Dalrymple,
R. W., Springer, 1–17, https://doi.org/10.1007/978-94-007-0123-6_1, 2012.
Leszczyński, K.: The Upper Cretaceous carbonate-dominated sequences of
the Polish Lowlands, Geol. Q., 41, 521–532, 1997.
Leszczyński, K.: Lithofacies evolution of the Late Cretaceous basin in
the Polish Lowlands, Biuletyn Państwowego Instytutu Geologicznego, 443,
33–54, 2010 (in Polish with English summary).
Leszczyński, K.: The internal geometry and lithofacies pattern of the
Upper Cretaceous–Danian sequence in the Polish Lowlands, Geol.
Q., 56, 363–386, 2012.
Leszczyński, K. and Dadlez, R.: Subsidence and the problem of
incipient inversion in the Mid-Polish Trough based on thickness maps and
Cretaceous lithofacies analysis – discussion, Przegląd Geologiczny, 47,
625–628, 1999 [in Polish with English summary].
Lewis, J., Dodge, J. D., and Powell, A. J.: Quaternary dinoflagellate cysts
from the upwelling system offshore Peru, Hole 686B, ODP Leg 112, Proceedings
of the Ocean Drilling Program, Scientific Results, 112, 323–328, 1990.
Łuszczak, K., Wyglądała, M., Śmigielski, M., Waliczek, M.,
Matyja, B. A., Konon, A., and Ludwiniak, M.: How to deal with missing
overburden – Investigating exhumation of the fragment of the Mid-Polish
Anticlinorium by a multi-proxy approach, Mar. Petrol. Geol., 114,
104–229, 2020.
Machalski, M. and Malchyk, O.: Relative bathymetric position of the opoka
and chalk in the Late Cretaceous European Basin, Cretaceous Res., 102,
30–36, 2019.
Mange, M. A. and Maurer, H. F. W.: Heavy mineral in colour, Springer Science
& Business Media, https://doi.org/10.1007/978-94-011-2308-2, 1992.
Mange, M. A. and Morton, A. C.: Geochemistry of heavy minerals, in: Heavy
minerals in use, edited by: Mange, M. and Wright, D. T., Elsevier, 345–391, https://doi.org/10.1016/S0070-4571(07)58013-1, 2007.
Mange, M. A. and Wright, D. T.: High-resolution heavy mineral analysis
(HRHMA): a brief summary, in: Heavy minerals in use, edited by: Mange M. and
Wright D. T., Elsevier, 433–436, https://doi.org/10.1016/S0070-4571(07)58016-7, 2007.
Meres, Š.: Garnets – important information resource about source area
and parental rocks of the siliciclastic sedimentary rocks, in: Conference
“Cambelove dni 2008”, Abstract Book, edited by: Jurkovič, L.,
Comenius University, Bratislava, 37–43, 2008 (in Slovak with English
abstract).
Narkiewicz, M. and Petecki, Z.: Basement structure of the Paleozoic Platform
in Poland, Geol. Q., 61, 502–520, 2017.
Narkiewicz, M., Resak, M., Littke, R., and Marynowski, L.: New constraints
on the Middle Palaeozoic to Cenozoic burial and thermal history of the Holy
Cross Mts. (Central Poland): results from numerical modelling, Geol.
Acta, 8, 189–205, 2010.
Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki,
Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W.,
Gaczyński, E., and Jankowski, L.: Transcurrent nature of the
Teisseyre–Tornquist Zone in Central Europe: results of the POLCRUST-01 deep
reflection seismic profile, Int. J. Earth Sci., 104,
775–796, 2015.
Niechwedowicz, M., Cyglicki, M., and Remin, Z.: Zmiany zespołów cyst
dinoflagellata z osadów deltowych środkowego kampanu Roztocza, SE
Polska – implikacje środowiskowe, in: III Polski Kongres Geologiczny,
Wrocław, 267–268, 2016.
Nielsen, S. B. and Hansen, D. L.: Physical explanation of the formation and
evolution of inversion zones and marginal troughs, Geology, 28, 875–878,
2000.
Nowak, J.: Przyczynek do znajomości kredy Lwowsko-Rawskiego Roztocza,
Kosmos, 32, 160–169, 1907.
Nowak, J.: Spostrzeżenia w sprawie wieku kredy zachodniego Podola,
Kosmos, 33, 279–285, 1908.
Olde, K., Jarvis, I., Uličný, D., Pearce, M. A., Trabucho-Alexandre,
J., Čech, S., Gröcke, D. R., Laurin, J., Švábenická, L.,
and Tocher, B. A.: Geochemical and palynological sea-level proxies in
hemipelagic sediments: A critical assessment from the Upper Cretaceous of
the Czech Republic, Palaeogeog. Palaeocl., 435,
222–243, 2015.
Omran, E. F.: The Nile delta: Processes of heavy mineral sorting and
depositional patterns, in: Heavy minerals in use, edited by: Mange M. and
Wright D. T., Elsevier, 49–74, https://doi.org/10.1016/S0070-4571(07)58002-7, 2007.
Pharaoh, T. C., Dusar, M, Geluk, M. C., Kockel, F., Krawczyk, C. M., Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbæk, O. V., and Van Wees, J. D.: Tectonic evolution, in: Petroleum Geological Atlas of the Southern
Permian Basin Area, edited by: Doornenbal, J. C.
and Stevenson, A. A., European Association of Geoscientists and Engineers
(EAGE), Houten, the Netherlands, 25–57, https://doi.org/10.3997/2214-4609.20145798, 2010.
Pasternak, S. I.: Biostratygrafiya kreydovykh vidkladiv Volyno-Podilskoi
plyty, Akademia Nauk Ukrainskoi RSR, Kiev, 3–98, 1959.
Pasternak, S. I., Gavrylyshyn, V. I., Ginda, V. A., Kotsyubinsky, S. P., and
Senkovskyi, Y. M.: Stratygrafia i fauna kredowych vidkladiv zachodu Ukrainy,
Naukova Dumka, Kiev, 1–272, 1968.
Pasternak, S. I., Senkovskyi, Y. M., and Gavrylyshyn, V. I.: Volyno-Podillya
u kreydovomu periodi, Naukova Dumka, Kiev, 3–258, 1987.
Powell, A. J., Dodge, J. D., and Lewis, J.: Late Neogene to Pleistocene
palynological facies of the Peruvian continental margin upwelling, Leg 112,
Proceedings of the Ocean Drilling Program, Scientific Results, 112, 297–321,
1990.
Powell, A. J., Lewis, J., and Dodge, J. D.: The palynological expressions of
post-Palaeogene upwelling: a review, in: Upwelling Systems: Evolution Since
the Early Miocene, edited by: Summerhayes, C. P., Prell, W. L., and Emeis,
K. C., Geol. Soc. Spec. Publ., 64, 215–226, 1992.
Pożaryski, W.: Kreda, in: Regionalna geologia Polski, 2, edited by:
Książkiewicz, M. and Dżułyński, S., Polskie Towarzystwo
Geologiczne, Państwowe Wydawnictwo Naukowe, Kraków, 1956.
Pożaryski, W.: Zarys stratygrafii i paleogeografii na Niżu Polskim,
Prace Instytutu Geologicznego, 30, 377–418, 1960.
Pożaryski, W.: Kreda, in: Atlas geologiczny Polski. Zagadnienia
stratygraficzno-facjalne, Instytut Geologiczny, 10, 1962.
Pożaryski, W.: Tectonics, Part 1. Polish Lowlands, in: Geology of Poland IV, edited by: Pożaryski, W., Wydawnictwa Geologiczne, Warszawa, 2–34, 1974.
Preston, J., Hartley, A., Mange-Rajetzky, M., Hole, M., May, G., Buck, S.,
and Vaughan, L.: The provenance of Triassic continental sandstones from the
Beryl Field, northern North Sea: mineralogical, geochemical, and
sedimentological constraints, J. Sediment. Res., 72, 18–29,
2002.
Rebesco, M., Hernández-Molina, F. J., Van Rooij, D., and Wåhlin, A.:
Contourites and associated sediments controlled by deep-water circulation
processes: State-of-the-art and future considerations, Mar. Geol., 352, 111–154, 2014.
Remin, Z.: The Belemnella stratigraphy of the Campanian–Maastrichtian
boundary; a new methodological and taxonomic approach, Acta Geol.
Pol., 62, 495–533, 2012.
Remin, Z.: The Belemnitella stratigraphy of the Upper Campanian–basal
Maastrichtian of the Middle Vistula section, central Poland, Geol.
Q., 59, 783–813, 2015.
Remin, Z.: Understanding coleoid migration patterns between eastern and
western Europe–belemnite faunas from the upper lower Maastrichtian of
Hrebenne, southeast Poland, Cretaceous Res., 87, 368–384, 2018.
Remin, Z., Cyglicki, M., Cybula, M., and Roszkowska-Remin, J.: Deep versus
shallow? Deltaically influenced sedimentation and new transport directions
– case study from the Upper Campanian of the Roztocze Hills, SE Poland, in:
Proceedings of the 31st IAS Meeting of Sedimentology, Kraków, Poland, p.
438, 2015a.
Remin, Z., Machalski, M., and Jagt, J. W. M.: The stratigraphically earliest
record of Diplomoceras cylindraceum (heteromorph ammonite) – implications
for Campanian/Maastrichtian boundary definition, Geol. Q., 59,
843–848, 2015b.
Remin, Z., Gruszczyński M., and Marshall J. D.: Changes in
paleo-circulation and the distribution of ammonite faunas at the
Coniacian–Santonian transition in central Poland and Western Ukraine, Acta
Geol. Pol., 66, 107–124, 2016.
Resak, M., Narkiewicz, M., and Littke, R.: New basin modelling results from
the Polish part of the Central European Basin system: implications for the
Late Cretaceous–Early Paleogene structural inversion, Int. J. Earth Sci., 97, 955–972, 2008.
Roberts, H. H. and Sydow, J.: Late Quaternary stratigraphy and sedimentology
of the offshore Mahakam delta, East Kalimantan (Indonesia), in: Tropical
Deltas of Southeast Asia – Sedimentology, Stratigraphy, and Petroleum
Geology, edited by: Sidi, F. H., Nummedal, D., Imbert, P., Darman, H., and
Posamentier, H. W., SEPM Special Publication, 76, 125–145, 2003.
Rogala, W.: O stratygrafii utworów kredowych Podola, Kosmos, 34,
1160–1164, 1909.
Ryan, P. D., Mange, M. A., and Dewey, J. F.: Statistical analysis of
high-resolution heavy minerals stratigraphic data from ordovician of western
Ireland and its tectonic consequences, in: Heavy minerals in use, edited by:
Mange M. and Wright D. T., Elsevier, 465–489, https://doi.org/10.1016/S0070-4571(07)58018-0, 2007.
Samsonowicz, J.: Szkic geologiczny okolic Rachowa nad Wisłą,
Sprawozdania Państwowego Instytutu Geologicznego, 3, 45–118, 1925.
Shanmugam, G.: Contourites: Physical oceanography, process sedimentology, and
petroleum geology, Petroleum exploration and development, 44, 183–216,
2017.
Storms, J. E., Hoogendoorn, R. M., Dam, R. A., Hoitink, A. J. F., and
Kroonenberg, S. B.: Late-holocene evolution of the Mahakam delta, East
Kalimantan, Indonesia, Sedimentary Geology, 180, 149–166, 2005.
Surlyk, F. and Lykke-Anderson, H.: Contourite drifts, moats and channels in
the Upper Cretaceous chalk of the Danish Basin, Sedimentology, 54, 405–422, https://doi.org/10.1111/j.1365-3091.2006.00842.x, 2007.
Świdrowska, J.: Kreda w regionie lubelskim-sedymentacja i jej
tektoniczne uwarunkowania, Biuletyn Instytutu Geologicznego, 422, 63–78,
2007.
Świdrowska, J. and Hakenberg, M.: Subsydencja i początki inwersji
bruzdy śrdódpolskiej na podstawie analizy map miąższości
i litofacji osadów górnokredowych, Przegląd Geologiczny, 47,
61–68, 1999.
Świdrowska, J., Hakenberg, M., Poluhtovič, B., Seghedi, A., and
Višnâkov, I.: Evolution of the Mesozoic basins on the southwestern
edge of the East European Craton (Poland, Ukraine, Moldova, Romania), Studia
Geologica Polonica, 130, 3–130, 2008.
Świerczewska-Gładysz, E.: Late Cretaceous siliceous sponges from the
Middle Vistula River Valley (Central Poland) and their palaeoecological
significance, Ann. Soc. Geol. Pol., 76, 227–296, 2006.
Turner, G. and Morton, A. C.: The effects of burial diagenesis on detrital
heavy mineral grain surface textures, in: Heavy minerals in use, edited by:
Mange M. and Wright D. T., Elsevier, 393–412, https://doi.org/10.1016/S0070-4571(07)58014-3, 2007.
Tyson, R. V.: Palynofacies analysis, in: Applied micropaleontology, edited
by: Jenkins, D. G., Kluwer Academic Publishers, Dordrecht, the Netherlands,
153–191, 1993.
Tyson, R. V.: Sedimentary organic matter. Organic facies and palynofacies,
Chapman and Hall, London, 615 pp., https://doi.org/10.1007/978-94-011-0739-6, 1995.
Velbel, M. A.: Bond strength and the relative weathering rates of Simple
orthosilicates, Amer. J. Sci. 299, 679–696, 1999.
Velbel, M. A.: Surface textures and dissolution processes of heavy minerals
in the sedimentary cycle: examples from pyroxenes and amphiboles, in: Heavy
minerals in use, edited by: Mange M. and Wright D. T., Elsevier, 113–150, https://doi.org/10.1016/S0070-4571(07)58004-0,
2007.
Velbel, M. A., Basso Ch. L., and Zieg, M. J.: The natural weathering of
staurolite: crystal-surface textures, relative stability, and the
rate-determining step, American J. Sc. 296, 453–472, 1996.
Velbel, M. A., McGuire, J. T., and Madden, A. S.: Scanning electron
microscopy of garnet from southern Michigan soils: etching rates and
inheritance of pre-glacial and pre-pedogenic grain-surface textures, in:
Heavy minerals in use, edited by: Mange M. and Wright D. T., Elsevier,
413–432, https://doi.org/10.1016/S0070-4571(07)58015-5, 2007.
Voigt, T., von Eynatten, H., and Franzke, H.-J.: Late Cretaceous unconformities
in the Subhercynian Cretaceous Basin (Germany), Acta Geol. Pol., 54,
675–696, 2004.
Voigt, T., Wiese, F., von Eynatten, H., Franzke, H.-J., and Gaupp, R.: Facies
evolution of syntectonic Upper Cretaceous Deposits in the Subhercynian
Cretaceous Basin and adjoining areas (Germany), Z. Dt. Geol. Ges., 157,
203–244, 2006.
Voigt, T., Reicherter, K., von Eynatten, H., Littke, R. Voigt, S., and Kley,
J.: Sedimentation during basin inversion, in: Dynamics of complex sedimentary
basins, The example of the Central European Basin System, edited by: Littke, R., Bayer, U.,
Gajewski, D., and Nelskamp, S., 211–232, 2008.
Voigt, T., Kley, J., and Voigt, S.: Dawn and dusk of Late Cretaceous basin inversion in central Europe, Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, 2021.
von Eynatten, H., Voigt, T., Meier, A., Franzke, H.-J., and Gaupp, R.:
Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to
exhumation of the Harz Mountains and the timing of inversion tectonics in
the Central European Basin, Int. J. Earth Sci., 97, 1315–1330, 2008.
Walaszczyk, I.: Turonian through Santonian deposits of the Central Polish
Upland; their facies development, inoceramid paleontology and stratigraphy,
Acta Geol. Pol., 42, 1–122, 1992.
Walaszczyk, I.: Inoceramids and inoceramid biostratigraphy of the Upper
Campanian to basal Maastrichtian of the Middle Vistula River section,
central Poland, Acta Geol. Pol., 54, 95–168, 2004.
Walaszczyk, I. and Remin, Z.: Kreda obrzeżenia Gór
Świętokrzyskich, Przewodnik LXXXIV Zjazdu Polskiego Towarzystwa
Geologicznego, Chęciny, September 9–11, 41–50, 2015.
Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D., and Remin, Z.:
Integrated biostratigraphy of the Santonian through Maastrichtian (Upper
Cretaceous) of extra-Carpathian Poland, Acta Geol. Pol., 66,
313–350, 2016.
Wall, D., Dale, B., Lohmann, G. P., and Smith, W. K.: The environmental and
climatic distribution of dinoflagellate cysts in modern marine sediments
from regions in the North and South Atlantic Oceans and adjacent seas,
Mar. Micropaleontol., 2, 121–200, 1977.
Wright, W. I.: The composition and occurrence of garnets, Am.
Mineral., 23, 436–449, 1938.
Wyrtki, K.: Indonesian throughflow and the associated pressure
gradient, J. Geophys. Res.-Ocean., 92, 12941–12946,
1987.
Ziegler, P. A.: Geological Atlas of Western and Central Europe, 2nd Edn.
Shell Internationale Petroleum Maatschappij, The Hague, Geol. Soc.,
Lond., 1990.
Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A., and
Żaba, J.: More evidence on Neoproterozoic terranes in southern Poland
and southeastern Romania, Geol. Q., 53, 93–124, 2009.
Żelaźniewicz, A., Aleksandrowski, P., Buła, Z., Karnkowski, P.,
Konon, A., Oszczypko, N., Ślączka, A., Żaba, J., and Żytko,
K.: Regionalizacja tektoniczna Polski, 1–60, Komitet Nauk Geologicznych,
Wrocław, 2011.
Short summary
Traditionally, the axial part of the Polish Basin, i.e. the Mid-Polish Trough, was interpreted as the deepest and most subsiding part of the basin during the Cretaceous times. We interpret this area conversely, as representing a landmass – the Łysogóry–Dobrogea Land. Inversion-related tectonics, uplift on the one hand and enhanced subsidence on the other, drove the development of the Szozdy Delta within the axial part of the basin. New heavy mineral data suggest different burial histories.
Traditionally, the axial part of the Polish Basin, i.e. the Mid-Polish Trough, was interpreted...
Special issue