Articles | Volume 13, issue 5
https://doi.org/10.5194/se-13-875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-875-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transient conduit permeability controlled by a shift between compactant shear and dilatant rupture at Unzen volcano (Japan)
Yan Lavallée
CORRESPONDING AUTHOR
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
now at: Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany
Takahiro Miwa
National Research Institute for
Earth Science and Disaster Resilience (NIED), Tsukuba, Japan
James D. Ashworth
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
Paul A. Wallace
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
Department of Geosciences, Environment and Society, Université
libre de Bruxelles, Brussels, Belgium
Jackie E. Kendrick
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
now at: Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany
Rebecca Coats
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
Anthony Lamur
Earth, Ocean and Ecological Sciences, University of Liverpool,
Liverpool, United Kingdom
now at: Earth and Environmental Sciences, Ludwig Maximilian University of Munich, Munich, Germany
Adrian Hornby
Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850, United States of
America
Kai-Uwe Hess
Earth and Environmental Sciences, Ludwig Maximilian University of
Munich, Munich, Germany
Takeshi Matsushima
Institute of Seismology and Volcanology, Faculty of Science, Kyushu
University, Shimabara, Nagasaki, Japan
Setsuya Nakada
National Research Institute for Earth Science and Disaster
Resilience, Tennodai, Tsukuba, 305-0006, Japan
Hiroshi Shimizu
Institute of Seismology and Volcanology, Faculty of Science, Kyushu
University, Shimabara, Nagasaki, Japan
Bernhard Ruthensteiner
Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB),
Zoologische Staatssammlung München, Munich, Germany
Hugh Tuffen
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
Related authors
Jackie E. Kendrick, Lauren N. Schaefer, Jenny Schauroth, Andrew F. Bell, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Rebecca Coats, Yan Lavallée, and Ben M. Kennedy
Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021, https://doi.org/10.5194/se-12-633-2021, 2021
Short summary
Short summary
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means much of the area remains an exclusion zone. The rocks in the lava dome impact its stability; heterogeneity (contrasting properties) and anisotropy (orientation-specific properties) can channel fluids and localise deformation, enhancing the risk of lava dome collapse. We recommend using measured material properties to interpret geophysical signals and to model volcanic systems.
Donald B. Dingwell, Yan Lavallée, Kai-Uwe Hess, Asher Flaws, Joan Marti, Alexander R. L. Nichols, H. Albert Gilg, and Burkhard Schillinger
Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, https://doi.org/10.5194/se-7-1383-2016, 2016
Short summary
Short summary
Here, we use tomography to reconstructed the pores of erupted pumice and understand the evolution of gas bubbles in magma. Analysis of the pore geometry is used to describe whether the pores where aligned by stretching as ascending magma is pulled apart (pure shear) or sheared like a deck of card (simple shear). We conclude that the latter, simple shear, dominates during magma ascent up to the points where magma fragments to cause an explosion.
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Short summary
In this paper we analyse the seismic record during the extrusion of a lava spine at Unzen volcano, Japan, in 1994. We find two strong groups of similar volcanic earthquakes which, combined with previously published field and experimental observations, we interpret as repetitive fracturing along the margin of the lava spine. This work demonstrates the potential of combining these different approaches for achieving a greater understanding of shallow volcanic processes.
S. Wiesmaier, D. Morgavi, C. J. Renggli, D. Perugini, C. P. De Campos, K.-U. Hess, W. Ertel-Ingrisch, Y. Lavallée, and D. B. Dingwell
Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, https://doi.org/10.5194/se-6-1007-2015, 2015
Short summary
Short summary
We reproduced in an experiment the mixing of two different magmas by bubbles. Bubbles form filaments when dragging portions of one magma into another and thus mingle both magmas. Bubble mixing must be an accelerating process in nature, because formed filaments are channels of low resistance for subsequently rising bubbles. In natural gas-rich magmas, this may be an important mechanism for magma mixing. Natural samples from Axial Seamount show evidence for bubble mixing.
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, https://doi.org/10.5194/se-5-199-2014, 2014
Jackie E. Kendrick, Anthony Lamur, Julien Mouli-Castillo, Andrew P. Fraser-Harris, Alexander Lightbody, Katriona Edlmann, Christopher McDermott, and Zoe Shipton
Adv. Geosci., 62, 11–19, https://doi.org/10.5194/adgeo-62-11-2023, https://doi.org/10.5194/adgeo-62-11-2023, 2023
Short summary
Short summary
By testing the strength of granite in compression and tension at a range of deformation rates, we found that the strength increases with faster deformation. This observation highlights that at these rates, relevant for example to geothermal exploration, we have to consider how the rate of deformation impacts the energy released when rocks crack. The results are promising for developing safe procedures for extracting resources from the subsurface.
Jackie E. Kendrick, Lauren N. Schaefer, Jenny Schauroth, Andrew F. Bell, Oliver D. Lamb, Anthony Lamur, Takahiro Miwa, Rebecca Coats, Yan Lavallée, and Ben M. Kennedy
Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021, https://doi.org/10.5194/se-12-633-2021, 2021
Short summary
Short summary
The last lava dome eruption of Mount Unzen (Japan) ended in 1995, but ongoing instability means much of the area remains an exclusion zone. The rocks in the lava dome impact its stability; heterogeneity (contrasting properties) and anisotropy (orientation-specific properties) can channel fluids and localise deformation, enhancing the risk of lava dome collapse. We recommend using measured material properties to interpret geophysical signals and to model volcanic systems.
Rebecca Coats, Jackie E. Kendrick, Paul A. Wallace, Takahiro Miwa, Adrian J. Hornby, James D. Ashworth, Takeshi Matsushima, and Yan Lavallée
Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, https://doi.org/10.5194/se-9-1299-2018, 2018
Short summary
Short summary
Lava domes are mounds of viscous lava and their collapse can cause deadly pyroclastic flows. This paper looks at the example of Mt. Unzen in Japan. Using novel experimental techniques, we discovered that crystals and bubbles in the lava make it behave differently to what was previously thought and that it becomes weaker and more susceptible to collapse as it cools. This calls for a review of current models, allowing for better failure prediction of lava domes in the future.
Donald B. Dingwell, Yan Lavallée, Kai-Uwe Hess, Asher Flaws, Joan Marti, Alexander R. L. Nichols, H. Albert Gilg, and Burkhard Schillinger
Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, https://doi.org/10.5194/se-7-1383-2016, 2016
Short summary
Short summary
Here, we use tomography to reconstructed the pores of erupted pumice and understand the evolution of gas bubbles in magma. Analysis of the pore geometry is used to describe whether the pores where aligned by stretching as ascending magma is pulled apart (pure shear) or sheared like a deck of card (simple shear). We conclude that the latter, simple shear, dominates during magma ascent up to the points where magma fragments to cause an explosion.
O. D. Lamb, S. De Angelis, K. Umakoshi, A. J. Hornby, J. E. Kendrick, and Y. Lavallée
Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, https://doi.org/10.5194/se-6-1277-2015, 2015
Short summary
Short summary
In this paper we analyse the seismic record during the extrusion of a lava spine at Unzen volcano, Japan, in 1994. We find two strong groups of similar volcanic earthquakes which, combined with previously published field and experimental observations, we interpret as repetitive fracturing along the margin of the lava spine. This work demonstrates the potential of combining these different approaches for achieving a greater understanding of shallow volcanic processes.
S. Wiesmaier, D. Morgavi, C. J. Renggli, D. Perugini, C. P. De Campos, K.-U. Hess, W. Ertel-Ingrisch, Y. Lavallée, and D. B. Dingwell
Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, https://doi.org/10.5194/se-6-1007-2015, 2015
Short summary
Short summary
We reproduced in an experiment the mixing of two different magmas by bubbles. Bubbles form filaments when dragging portions of one magma into another and thus mingle both magmas. Bubble mixing must be an accelerating process in nature, because formed filaments are channels of low resistance for subsequently rising bubbles. In natural gas-rich magmas, this may be an important mechanism for magma mixing. Natural samples from Axial Seamount show evidence for bubble mixing.
J. E. Kendrick, Y. Lavallée, K.-U. Hess, S. De Angelis, A. Ferk, H. E. Gaunt, P. G. Meredith, D. B. Dingwell, and R. Leonhardt
Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, https://doi.org/10.5194/se-5-199-2014, 2014
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Volcanology
Lahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach
Lahar events in the last 2000 years from Vesuvius eruptions – Part 3: Hazard assessment over the Campanian Plain
Lahar events in the last 2000 years from Vesuvius eruptions – Part 1: Distribution and impact on densely inhabited territory estimated from field data analysis
Reproducing pyroclastic density current deposits of the 79 CE eruption of the Somma–Vesuvius volcano using the box-model approach
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mauro Antonio Di Vito, Ilaria Rucco, Sandro de Vita, Domenico Maria Doronzo, Marina Bisson, Mattia de' Michieli Vitturi, Mauro Rosi, Laura Sandri, Giovanni Zanchetta, Elena Zanella, and Antonio Costa
Solid Earth, 15, 405–436, https://doi.org/10.5194/se-15-405-2024, https://doi.org/10.5194/se-15-405-2024, 2024
Short summary
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Cited articles
Acocella, V.: Hazard mitigation of unstable volcanic edifices, EOS, 91,
357–358,
https://doi.org/10.1029/2010EO400002,
2010.
Alidibirov, M. and Dingwell, D. B.: Magma fragmentation by rapid
decompression, Nature, 380, 146–148, 1996.
Ashwell, P. A., Kendrick, J. E., Lavallée, Y., Kennedy, B. M., Hess, K.
U., von Aulock, F. W., Wadsworth, F. B., Vasseur, J., and Dingwell, D. B.:
Permeability of compacting porous lavas, J. Geophys.
Res.-Sol. Ea., 120, 1605–1622, https://doi.org/10.1002/2014jb011519, 2015.
Baker, D. R., Brun, F., O'Shaughnessy, C., Mancini, L., Fife, J. L., and
Rivers, M.: A four-dimensional X-ray tomographic microscopy study of bubble
growth in basaltic foam, Nat. Commun., 3, 1135, https://doi.org/10.1038/ncomms2134, 2012.
Ball, J. L., Stauffer, P. H., Calder, E. S., and Valentine, G. A.: The
hydrothermal alteration of cooling lava domes, B. Volcanol., 77, 102,
https://doi.org/10.1007/s00445-015-0986-z, 2015.
Blower, J. D.: Factors controlling permeability-porosity relationships in
magma, B. Volcanol., 63, 497–504, 2001.
Blundy, J., Cashman, K., and Humphreys, M.: Magma heating by
decompression-driven crystallization beneath andesite volcanoes, Nature,
443, 76–80, https://doi.org/10.1038/nature05100, 2006.
Brace, W. F., Walsh, J. B., and Frangos, W. T.: Permeability of granite
under high pressure, J. Geophys. Res., 73, 2225–2236,
https://doi.org/10.1029/JB073i006p02225, 1968.
Browning, J., Tuffen, H., James, M. R., Owen, J., Castro, J. M., Halliwell,
S., and Wehbe, K.: Post-fragmentation vesiculation timescales in hydrous
rhyolitic bombs from Chaitén volcano, J. S. Am. Earth Sci., 104, 102807, https://doi.org/10.1016/j.jsames.2020.102807, 2020.
Burgisser, A., Chevalier, L., Gardner, J. E., and Castro, J. M.: The
percolation threshold and permeability evolution of ascending magmas, Earth
Planet. Sci. Lett., 470, 37–47, https://doi.org/10.1016/j.epsl.2017.04.023, 2017.
Burgisser, A., Bechon, T., Chevalier, L., Collombet, M., Arbaret, L., and
Forien, M.: Conduit processes during the February 11, 2010 Vulcanian
eruption of Soufriere Hills, Montserrat, J. Volcanol.
Geoth. Res., 373, 23–35, https://doi.org/10.1016/j.jvolgeores.2019.01.020, 2019.
Calder, E. S., Lavallée, Y., Kendrick, J. E., and Bernstein, M.: Chapter 18 – Lava Dome Eruptions. The Encyclopedia of Volcanoes, 2nd Edn., edited by: Sigurdsson, H., Amsterdam, Academic Press, 343–362, 2015.
Caricchi, L., Burlini, L., Ulmer, P., Gerya, T., Vassalli, M., and Papale,
P.: Non-Newtonian rheology of crystal-bearing magmas and implications for
magma ascent dynamics, Earth Planet. Sc. Lett., 264, 402–419,
2007.
Cashman, K. and Blundy, J.: Degassing and Crystallization of ascending andesite and dacite, Philos. T. R. Soc. Lond., 358, 1487–1513, 2000.
Castro, J. M. and Gardner, J. E.: Did magma ascent rate control the
explosive-effusive transition at the Inyo volcanic chain, California?,
Geology, 36, 279–282, https://doi.org/10.1130/g24453a.1, 2008.
Castro, J. M., Cordonnier, B., Tuffen, H., Tobin, M. J., Puskar, L., Martin,
M. C., and Bechtel, H. A.: The role of melt-fracture degassing in defusing
explosive rhyolite eruptions at volcan Chaiten, Earth Planet. Sc.
Lett., 333, 63–69, https://doi.org/10.1016/j.epsl.2012.04.024, 2012.
Célarié, F., Prades, S., Bonamy, D., Ferrero, L., Bouchaud, E.,
Guillot, C., and Marliere, C.: Glass breaks like metal, but at the nanometer
scale, Phys. Rev. Lett., 90, 075504, https://doi.org/10.1103/PhysRevLett.90.075504, 2003.
Chouet, B. A.: Long-period volcano seismicity: Its source and use in
eruption forecasting, Nature, 380, 309–316, 1996.
Coats, R., Kendrick, J. E., Wallace, P. A., Miwa, T., Hornby, A. J., Ashworth, J. D., Matsushima, T., and Lavallée, Y.: Failure criteria for porous dome rocks and lavas: a study of Mt. Unzen, Japan, Solid Earth, 9, 1299–1328, https://doi.org/10.5194/se-9-1299-2018, 2018.
Collinson, A. S. D. and Neuberg, J. W.: Gas storage, transport and pressure
changes in an evolving permeable volcanic edifice, J. Volcanol.
Geoth. Res., 243, 1–13, https://doi.org/10.1016/j.jvolgeores.2012.06.027, 2012.
Colombier, M., Wadsworth, F. B., Gurioli, L., Scheu, B., Kueppers, U., Di
Muro, A., and Dingwell, D. B.: The evolution of pore connectivity in
volcanic rocks, Earth Planet. Sc. Lett., 462, 99–109,
https://doi.org/10.1016/j.epsl.2017.01.011, 2017.
Cordonnier, B., Hess, K. U., Lavallée, Y., and Dingwell, D. B.:
Rheological properties of dome lavas: Case study of Unzen volcano, Earth
Planet. Sc. Lett., 279, 263–272, https://doi.org/10.1016/j.epsl.2009.01.014, 2009.
Cordonnier, B., Caricchi, L., Pistone, M., Castro, J., Hess, K. U.,
Gottschaller, S., Manga, M., Dingwell, D. B., and Burlini, L.: The
viscous-brittle transition of crystal-bearing silicic melt: Direct
observation of magma rupture and healing, Geology, 40, 611–614,
https://doi.org/10.1130/g3914.1, 2012.
Degruyter, W., Bachmann, O., Burgisser, A., and Manga, M.: The effects of
outgassing on the transition between effusive and explosive silicic
eruptions, Earth Planet. Sc. Lett., 349, 161–170,
https://doi.org/10.1016/j.epsl.2012.06.056, 2012.
Dingwell, D. B.: Volcanic dilemma: flow or blow?, Science, 273, 1054–1055,
1996.
Dingwell, D. B. and Webb, S. L.: Structural relaxation in silicate melts
and non-Newtonian melt rheology in geologic processes, Phys. Chem.
Miner., 16, 508–516, 1989.
Dingwell, D. B. and Webb, S. L.: Relaxation in silicate melts, Eur.
J. Mineral., 2, 427–449, 1990.
Dingwell, D. B., Lavallée, Y., Hess, K.-U., Flaws, A., Marti, J., Nichols, A. R. L., Gilg, H. A., and Schillinger, B.: Eruptive shearing of tube pumice: pure and simple, Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, 2016.
Edmonds, M. and Herd, R. A.: A volcanic degassing event at the
explosive-effusive transition, Geophys. Res. Lett., 34, L21310,
https://doi.org/10.1029/2007gl031379, 2007.
Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A., and Thompson, G.:
SO2 emissions from Soufriere Hills Volcano and their relationship to conduit
permeability, hydrothermal interaction and degassing regime, J.
Volcanol. Geoth. Res., 124, 23–43,
10.1016/s0377-0273(03)00041-6, 2003.
Eggertsson, G. H., Lavallée, Y., Kendrick, J. E., and Markússon, S. H.: Improving fluid flow in geothermal reservoirs by thermal and mechanical stimulation: The case of Krafla volcano, Iceland, J. Volcanol. Geoth. Res., 391, 106351, https://doi.org/10.1016/j.jvolgeores.2018.04.008, 2020.
Eichelberger, J. C., Carrigan, C. R., Westrich, H. R., and Price, R. H.:
Non-explosive silicic volcanism, Nature, 323, 598–602, https://doi.org/10.1038/323598a0,
1986.
Farquharson, J., Heap, M. J., Varley, N. R., Baud, P., and Reuschle, T.:
Permeability and porosity relationships of edifice-forming andesites: A
combined field and laboratory study, J. Volcanol. Geoth.
Res., 297, 52–68, https://doi.org/10.1016/j.jvolgeores.2015.03.016, 2015.
Farquharson, J., Heap, M. J., Baud, P., Reuschle, T., and Varley, N. R.:
Pore pressure embrittlement in a volcanic edifice, B. Volcanol.,
78, 6, https://doi.org/10.1007/s00445-015-0997-9, 2016a.
Farquharson, J. I., Heap, M. J., and Baud, P.: Strain-induced permeability
increase in volcanic rock, Geophys. Res. Lett., 43, 11603–11610,
https://doi.org/10.1002/2016gl071540, 2016b.
Farquharson, J. I., Heap, M. J., Lavallée, Y., Varley, N. R., and Baud,
P.: Evidence for the development of permeability anisotropy in lava domes
and volcanic conduits, J. Volcanol. Geoth. Res., 323,
163–185, https://doi.org/10.1016/j.jvolgeores.2016.05.007, 2016c.
Farquharson, J. I., Wadsworth, F. B., Heap, M. J., and Baud, P.:
Time-dependent permeability evolution in compacting volcanic fracture
systems and implications for gas overpressure, J. Volcanol.
Geoth. Res., 339, 81–97, https://doi.org/10.1016/j.jvolgeores.2017.04.025, 2017.
Finch, M. A., Bons, P. D., Steinbach, F., Griera, A., Llorens, M.-G.,
Gomez-Rivas, E., Ran, H., and de Riese, T.: The ephemeral development of C'
shear bands: A numerical modelling approach, J. Struct. Geol.,
139, 104091, https://doi.org/10.1016/j.jsg.2020.104091, 2020.
Fossen, H. and Cavalcante, G. C. G.: Shear zones – A review, Earth-Sci.
Rev., 171, 434–455, https://doi.org/10.1016/j.earscirev.2017.05.002, 2017.
Gaunt, H. E., Sammonds, P. R., Meredith, P. G., Smith, R., and Pallister, J.
S.: Pathways for degassing during the lava dome eruption of Mount St. Helens
2004–2008, Geology, 42, 947–950, https://doi.org/10.1130/g35940.1, 2014.
Gaunt, H. E., Sammonds, P. R., Meredith, P. G., and Chadderton, A.: Effect
of temperature on the permeability of lava dome rocks from the 2004–2008
eruption of Mount St. Helens, B. Volcanol., 78, 30,
https://doi.org/10.1007/s00445-016-1024-5, 2016.
Gonnermann, H. M. and Manga, M.: The fluid mechanics inside a volcano,
Annu. Rev. Fluid Mech., 39, 321–356, 2007.
Goto, A.: A new model for volcanic earthquake at Unzen Volcano: Melt rupture
model, Geophys. Res. Lett., 26, 2541–2544, 1999.
Goto, A., Fukui, K., Hiraga, T., Nishida, Y., Ishibashi, H., Matsushima, T.,
Miyamoto, T., and Sasaki, O.: Rigid migration of Unzen lava rather than
flow, J. Volcanol. Geoth. Res., 407, 107073,
https://doi.org/10.1016/j.jvolgeores.2020.107073, 2020.
Hale, A. J. and Wadge, G.: The transition from endogenous to exogenous
growth of lava domes with the development of shear bands, J.
Volcanol. Geoth. Res., 171, 237–257, 2008.
Harnett, C. E., Kendrick, J. E.,
Lamur, A., Thomas, M. E., Stinton, A.,
Wallace, P. A., Utley, J. E. P., Murphy, W.,
Neuberg, J., and Lavallée, Y.: Evolution of Mechanical Properties of Lava Dome Rocks Across the 1995–2010 Eruption of Soufrière Hills Volcano, Montserrat, Front. Earth Sci., 7, 7,
https://doi.org/10.3389/feart.2019.00007, 2019.
Heap, M. J. and Kennedy, B. M.: Exploring the scale-dependent permeability
of fractured andesite, Earth Planet. Sc. Lett., 447, 139–150,
https://doi.org/10.1016/j.epsl.2016.05.004, 2016.
Heap, M. J. and Violay, M. E. S.: The mechanical behaviour and failure
modes of volcanic rocks: a review, B. Volcanol., 83, 33,
https://doi.org/10.1007/s00445-021-01447-2, 2021.
Heap, M. J., Kolzenburg, S., Russell, J. K., Campbell, M. E., Welles, J., Farquharson, J. I., and Ryan, A.: Conditions and timescales for welding block-and-ash flow deposits, J. Volcanol. Geoth. Res., 289, 202–209, 2014.
Heap, M. J., Farquharson, J. I., Baud, P., Lavallée, Y., and Reuschle,
T.: Fracture and compaction of andesite in a volcanic edifice, B.
Volcanol., 77, 55, https://doi.org/10.1007/s00445-015-0938-7, 2015a.
Heap, M. J., Kennedy, B. M., Pernin, N., Jacquemard, L., Baud, P.,
Farquharson, J. I., Scheu, B., Lavallee, Y., Gilg, H. A., Letham-Brake, M.,
Mayer, K., Jolly, A. D., Reuschle, T., and Dingwell, D. B.: Mechanical
behaviour and failure modes in the Whakaari (White Island volcano)
hydrothermal system, New Zealand, J. Volcanol. Geoth.
Res., 295, 26–42, https://doi.org/10.1016/j.jvolgeores.2015.02.012, 2015b.
Heap, M. J., Kennedy, B. M., Farquharson, J. I., Ashworth, J., Mayer, K.,
LEtham-Brake, M., Reuschlé, T., Gilg, H. A., Scheu, B., Lavallée,
Y., Siratovich, P. A., Cole, J. W., Jolly, A. D., Baud, P., and Dingwell, D.
B.: A multidisciplinary approach to quantify the permeability of the
Whakaari/ White Island volcanic hydrothermal system (Taupo Volcanic Zone,
New Zealand), J. Volcanol. Geoth. Res., 332, 88–108,
https://doi.org/10.1016/j.jvolgeores.2016.12.004, 2017a.
Heap, M. J., Violay, M., Wadsworth, F. B., and Vasseur, J.: From rock to
magma and back again: The evolution of temperature and deformation mechanism
in conduit margin zones, Earth Planet. Sc. Lett., 463, 92–100,
https://doi.org/10.1016/j.epsl.2017.01.021, 2017b.
Heap, M. J., Troll, V. R., Kushnir, A. R. L., Gilg, H. A., Collinson, A. S.
D., Deegan, F. M., Darmawan, H., Seraphine, N., Neuberg, J., and Walter, T.
R.: Hydrothermal alteration of andesitic lava domes can lead to explosive
volcanic behaviour, Nat. Commun., 10, 5063,
https://doi.org/10.1038/s41467-019-13102-8, 2019.
Heiken, G., Wohletz, K., and Eichelberger, J.: Fracture fillings and
intrusive pyroclasts, Inyo domes, California, J. Geophys.
Res.-Solid, 93, 4335–4350, https://doi.org/10.1029/JB093iB05p04335,
1988.
Holland, A. S. P., Watson, I. M., Phillips, J. C., Caricchi, L., and Dalton,
M. P.: Degassing processes during lava dome growth: Insights from
Santiaguito lava dome, Guatemala, J. Volcanol. Geoth.
Res., 202, 153–166, https://doi.org/10.1016/j.jvolgeores.2011.02.004, 2011.
Holtz, F., Sato, H., Lewis, J., Behrens, H., and Nakada, S.: Experimental
petrology of the 1991–1995 Unzen dacite, Japan. Part I: Phase relations,
phase composition and pre-eruptive conditions, J. Petrol., 46,
319–337, https://doi.org/10.1093/petrology/egh077, 2005.
Hornby, A. J., Kendrick, J. E., Lamb, O. D., Hirose, T., De Angelis, S., von
Aulock, F. W., Umakoshi, K., Miwa, T., Henton De Angelis, S., Wadsworth, F.
B., Hess, K.-U., Dingwell, D. B., and Lavallée, Y.: Spine growth and
seismogenic faulting at Mt. Unzen, Japan, J. Geophys. Res.-Sol. Ea., 120, 2169–9356, https://doi.org/10.1002/2014JB011660, 2015.
Hornby, A. J., Lavallée, Y., Kendrick, J. E., De Angelis, S., Lamur, A.,
Rietbrock, A., and Chigna, G.: Brittle-ductile deformation and tensile
rupture of dome lava during inflation at Santiaguito, Guatemala, J.
Geophys. Res.-Sol. Ea., 124, 10107–10131, https://doi.org/10.1029/2018JB017253, 2019.
Jaupart, C. and Allègre, C. J.: Gas content, eruption rate and
instabilities or eruption regime in silicic volcanoes, Earth Planet.
Sc. Lett., 102, 413–429, https://doi.org/10.1016/0012-821x(91)90032-d, 1991.
Kendrick, J. E., Lavallée, Y., Ferk, A., Perugini, D., Leonhardt, R.,
and Dingwell, D. B.: Extreme frictional processes in the volcanic conduit of
Mount St. Helens (USA) during the 2004–2008 eruption, J. Struct. Geol., 38, 61–76, https://doi.org/10.1016/j.jsg.2011.10.003, 2012.
Kendrick, J. E., Lavallée, Y., Hess, K. U., Heap, M. J., Gaunt, H. E.,
Meredith, P. G., and Dingwell, D. B.: Tracking the permeable porous network
during strain-dependent magmatic flow, J. Volcanol. Geoth.
Res., 260, 117–126, https://doi.org/10.1016/j.jvolgeores.2013.05.012, 2013.
Kendrick, J. E., Lavallée, Y., Hess, K.-U., De Angelis, S., Ferk, A., Gaunt, H. E., Meredith, P. G., Dingwell, D. B., and Leonhardt, R.: Seismogenic frictional melting in the magmatic column, Solid Earth, 5, 199–208, https://doi.org/10.5194/se-5-199-2014, 2014a.
Kendrick, J. E., Lavallée, Y., Hirose, T., Di Toro, G., Hornby, A. J.,
De Angelis, S., and Dingwell, D. B.: Volcanic drumbeat seismicity caused by
stick-slip motion and magmatic frictional melting, Nat. Geosci., 7,
438–442, https://doi.org/10.1038/ngeo2146, 2014b.
Kendrick, J. E., Lavallée, Y., Varley, N. R., Wadsworth, F. B., Lamb, O.
D., and Vasseur, J.: Blowing off steam: Tuffisite formation as a regulator
for lava dome eruptions, Front. Earth Sci., 4, 41,
https://doi.org/10.3389/feart.2016.00041, 2016.
Kendrick, J. E., Schaefer, L. N., Schauroth, J., Bell, A. F., Lamb, O. D., Lamur, A., Miwa, T., Coats, R., Lavallée, Y., and Kennedy, B. M.: Physical and mechanical rock properties of a heterogeneous volcano: the case of Mount Unzen, Japan, Solid Earth, 12, 633–664, https://doi.org/10.5194/se-12-633-2021, 2021.
Kennedy, B. M., Wadsworth, F. B., Vasseur, J., Schipper, C. I., Jellinek, A.
M., von Aulock, F. W., Hess, K. U., Russell, J. K., Lavallee, Y., Nichols,
A. R. L., and Dingwell, D. B.: Surface tension driven processes densify and
retain permeability in magma and lava, Earth Planet. Sc. Lett.,
433, 116–124, https://doi.org/10.1016/j.epsl.2015.10.031, 2016.
Kennedy, L. A. and Russell, J. K.: Cataclastic production of volcanic ash
at Mount Saint Helens, Phys. Chem. Earth, 45–46, 40–49,
https://doi.org/10.1016/j.pce.2011.07.052, 2012.
Klug, C. and Cashman, K. V.: Permeability development in vesiculating
magmas: Implications for fragmentation, B. Volcanol., 58, 87–100,
https://doi.org/10.1007/s004450050128, 1996.
Kolzenburg, S., Heap, M. J., Lavallée, Y., Russell, J. K., Meredith, P. G., and Dingwell, D. B.: Strength and permeability recovery of tuffisite-bearing andesite, Solid Earth, 3, 191–198, https://doi.org/10.5194/se-3-191-2012, 2012.
Kueppers, U., Scheu, B., Spieler, O., and Dingwell, D. B.: Field-based
density measurements as tool to identify preeruption dome structure: set-up
and first results from Unzen volcano, Japan, J. Volcanol.
Geoth. Res., 141, 65–75, 2005.
Kusakabe, M., Sato, H., Nakada, S., and Kitamura, T.: Water contents and
hydrogen isotopic ratios of rocks and minerals from the 1991 eruption of
Unzen volcano, Japan, J. Volcanol. Geoth. Res., 89,
231–242, https://doi.org/10.1016/s0377-0273(98)00134-6, 1999.
Kushnir, A. R. L., Martel, C., Bourdier, J. L., Heap, M. J., Reuschle, T.,
Erdmann, S., Komorowski, J. C., and Cholik, N.: Probing permeability and
microstructure: Unravelling the role of a low-permeability dome on the
explosivity of Merapi (Indonesia), J. Volcanol. Geoth.
Res., 316, 56–71, https://doi.org/10.1016/j.jvolgeores.2016.02.012, 2016.
Kushnir, A. R. L., Martel, C., Champallier, R., and Arbaret, L.: In situ
confirmation of permeability development in shearing bubble-bearing melts
and implications for volcanic outgassing, Earth Planet. Sc.
Lett., 458, 315–326, https://doi.org/10.1016/j.epsl.2016.10.053, 2017a.
Kushnir, A. R. L., Martel, C., Champallier, R., and Wadsworth, F. B.:
Permeability Evolution in Variably Glassy Basaltic Andesites Measured Under
Magmatic Conditions, Geophys. Res. Lett., 44, 10262–10271,
https://doi.org/10.1002/2017gl074042, 2017b.
Lamb, O. D., De Angelis, S., Umakoshi, K., Hornby, A. J., Kendrick, J. E., and Lavallée, Y.: Repetitive fracturing during spine extrusion at Unzen volcano, Japan, Solid Earth, 6, 1277–1293, https://doi.org/10.5194/se-6-1277-2015, 2015.
Lamur, A., Kendrick, J. E., Eggertsson, G. H., Wall, R. J., Ashworth, J. D.,
and Lavallée, Y.: The permeability of fractured rocks in pressurised
volcanic and geothermal systems, Sci. Rep.-UK, 7, 6173, https://doi.org/10.1038/s41598-017-05460-4, 2017.
Lamur, A., Kendrick, J. E., Wadsworth, F. B., and Lavallée, Y.: Fracture
healing and strength recovery in magmatic liquids, Geology, 47, 195–198,
https://doi.org/10.1130/g45512.1, 2019.
Laumonier, M., Arbaret, L., Burgisser, A., and Champallier, R.: Porosity
redistribution enhanced by strain localization in crystal-rich magmas,
Geology, 39, 715–718, https://doi.org/10.1130/g31803.1, 2011.
Lavallée, Y. and Kendrick, J. E.: A review of the physical and
mechanical properties of volcanic rocks and magmas in the brittle and
ductile regimes, in: Forecasting and planning for volcanic hazards, risks,
and disasters, Vol. 2, 2nd Edn., edited by: Papale, P., Elsevier, https://doi.org/10.1016/B978-0-12-818082-2.00005-6,
2020.
Lavallée, Y. and Kendrick, J. E.: Strain localisation in magmas, in:
Magmas, Melts, Liquids and Glasses: Experimental Insights, edited by:
Neuville, D. R., Henderson, G. S., and Dingwell, D. B., Reviews in Minerlogy
and Geochemistry, Mineralogical Society of America, Vol. 87,
Geological Melts, ISBN 978-1-946850-08-9, 2021.
Lavallée, Y., Hess, K.-U., Cordonnier, B., and Dingwell, D. B.:
Non-Newtonian rheological law for highly crystalline dome lavas, Geology,
35, 843–846, https://doi.org/10.1130/g23594a.1, 2007.
Lavallée, Y., Meredith, P. G., Dingwell, D. B., Hess, K. U., Wassermann,
J., Cordonnier, B., Gerik, A., and Kruhl, J. H.: Seismogenic lavas and
explosive eruption forecasting, Nature, 453, 507–510, https://doi.org/10.1038/nature06980,
2008.
Lavallée, Y., Varley, N. R., Alatorre-Ibargueengoitia, M. A., Hess, K.
U., Kueppers, U., Mueller, S., Richard, D., Scheu, B., Spieler, O., and
Dingwell, D. B.: Magmatic architecture of dome-building eruptions at Volcan
de Colima, Mexico, B. Volcanol., 74, 249–260,
https://doi.org/10.1007/s00445-011-0518-4, 2012.
Lavallée, Y., Benson, P. M., Heap, M. J., Hess, K.-U., Flaws, A.,
Schillinger, B., Meredith, P. G., and Dingwell, D. B.: Reconstructing magma
failure and the degassing network of dome-building eruptions, Geology, 41,
515–518, https://doi.org/10.1130/g33948.1, 2013.
Lavallée, Y., Dingwell, D. B., Johnson, J. B., Cimarelli, C., Hornby, A.
J., Kendrick, J. E., von Aulock, F. W., Kennedy, B. M., Andrews, B. J.,
Wadsworth, F. B., Rhodes, E., and Chigna, G.: Thermal vesiculation during
volcanic eruptions, Nature, 528, 544–547, https://doi.org/10.1038/nature16153, 2015.
Lejeune, A. M. and Richet, P.: Rheology of Crystal-Bearing Silicate Melts –
an Experimental-Study at High Viscosities, J. Geophys.
Res.-Sol. Ea., 100, 4215–4229, 1995.
Lejeune, A. M., Bottinga, Y., Trull, T. W., and Richet, P.: Rheology of
bubble-bearing magmas, Earth Planet. Sc. Lett., 166, 71–84,
1999.
Liu, Y., Zhang, Y. X., and Behrens, H.: Solubility of H2O in rhyolitic melts
at low pressures and a new empirical model for mixed H2O-CO2 solubility in
rhyolitic melts, J. Volcanol. Geoth. Res., 143,
219–235, https://doi.org/10.1016/j.jvolgeores.2004.09.019, 2005.
Loaiza, S., Fortin, J., Schubnel, A., Gueguen, Y., Vinciguerra, S., and
Moreira, M.: Mechanical behavior and localized failure modes in a porous
basalt from the Azores, Geophys. Res. Lett., 39, L19304,
https://doi.org/10.1029/2012gl053218, 2012.
Mader, H. M., Llewellin, E. W., and Mueller, S. P.: The rheology of
two-phase magmas: A review and analysis, J. Volcanol.
Geoth. Res., 257, 135–158, https://doi.org/10.1016/j.jvolgeores.2013.02.014, 2013.
Matoza, R. S. and Chouet, B. A.: Subevents of long-period seismicity:
Implications for hydrothermal dynamics during the 2004–2008 eruption of
Mount St. Helens, J. Geophys. Res.-Sol. Ea., 115, B12206,
https://doi.org/10.1029/2010jb007839, 2010.
Melnik, O. and Sparks, R. S. J.: Nonlinear dynamics of lava dome extrusion,
Nature, 402, 37–41, 1999.
Michaut, C., Ricard, Y., Bercovici, D., and Sparks, R. S. J.: Eruption
cyclicity at silicic volcanoes potentially caused by magmatic gas waves,
Nat. Geosci., 6, 856–860, https://doi.org/10.1038/ngeo1928, 2013.
Mueller, S., Melnik, O., Spieler, O., Scheu, B., and Dingwell, D. B.:
Permeability and degassing of dome lavas undergoing rapid decompression: An
experimental determination, B. Volcanol., 67, 526–538, 2005.
Mueller, S., Scheu, B., Spieler, O., and Dingwell, D. B.: Permeability
control on magma fragmentation, Geology, 36, 399–402, https://doi.org/10.1130/g24605a.1,
2008.
Nakada, S. and Motomura, Y.: Petrology of the 1991–1995 eruption at Unzen:
effusion pulsation and groundmass crystallization, J. Volcanol.
Geoth. Res., 89, 173–196, https://doi.org/10.1016/s0377-0273(98)00131-0, 1999.
Nakada, S., Miyake, Y., Sato, H., Oshima, O., and Fujinawa, A.: Endogenous
growth of dacite dome at Unzen volcano (Japan), 1993–1994, Geology, 23,
157–160, https://doi.org/10.1130/0091-7613(1995)023<0157:egodda>2.3.co;2, 1995.
Nakada, S., Shimizu, H., and Ohta, K.: Overview of the 1990–1995 eruption at
Unzen Volcano, J. Volcanol. Geoth. Res., 89, 1–22,
https://doi.org/10.1016/s0377-0273(98)00118-8, 1999.
Navon, O., Chekhmir, A., and Lyakhovsky, V.: Bubble growth in highly viscous
melts: theory, experiments, and autoexplosivity of dome lavas, Earth
Planet. Sc. Lett., 160, 763–776, https://doi.org/10.1016/s0012-821x(98)00126-5,
1998.
Neuberg, J. W., Tuffen, H., Collier, L., Green, D., Powell, T., and
Dingwell, D.: The trigger mechanism of low-frequency earthquakes on
Montserrat, J. Volcanol. Geoth. Res., 153, 37–50,
2006.
Newhall, C. G. and Melson, W. G.: Explosive activity associated with the
growth of volcanic domes, J. Volcanol. Geoth. Res.,
17, 111–131, https://doi.org/10.1016/0377-0273(83)90064-1, 1983.
Ohba, T., Hirabayashi, J.-I., Nogami, K., Kusakabe, M., and Yoshida, M.:
Magma degassing process during the eruption of Mt. Unzen, Japan in 1991 to
1995: Modeling with the chemical composition of volcanic gas, J.
Volcanol. Geoth. Res., 175, 120–132,
https://doi.org/10.1016/j.jvolgeores.2008.03.040, 2008.
Okumura, S. and Sasaki, O.: Permeability reduction of fractured rhyolite in
volcanic conduits and its control on eruption cyclicity, Geology, 42,
843–846, https://doi.org/10.1130/g35855.1, 2014.
Okumura, S., Nakamura, M., and Tsuchiyama, A.: Shear-induced bubble
coalescence in rhyolitic melts with low vesicularity, Geophys. Res.
Lett., 33, L20316, https://doi.org/10.1029/2006gl027347, 2006.
Okumura, S., Nakamura, M., Tsuchiyama, A., Nakano, T., and Uesugi, K.:
Evolution of bubble microstructure in sheared rhyolite: Formation of a
channel-like bubble network, J. Geophys. Res.-Sol. Ea.,
113, B07208, https://doi.org/10.1029/2007jb005362, 2008.
Okumura, S., Nakamura, M., Takeuchi, S., Tsuchiyama, A., Nakano, T., and
Uesugi, K.: Magma deformation may induce non-explosive volcanism via
degassing through bubble networks, Earth Planet. Sc. Lett., 281,
267–274, https://doi.org/10.1016/j.epsl.2009.02.036, 2009.
Okumura, S., Nakamura, M., Nakano, T., Uesugi, K., and Tsuchiyama, A.: Shear
deformation experiments on vesicular rhyolite: Implications for brittle
fracturing, degassing, and compaction of magmas in volcanic conduits,
J. Geophysi. Res.-Sol. Ea., 115, B06201, https://doi.org/10.1029/2009jb006904,
2010.
Okumura, S., Nakamura, M., Nakano, T., Uesugi, K., and Tsuchiyama, A.:
Experimental constraints on permeable gas transport in crystalline silicic
magmas, Contrib. Mineral. Petr., 164, 493–504,
https://doi.org/10.1007/s00410-012-0750-8, 2012.
Okumura, S., Nakamura, M., Uesugi, K., Nakano, T., and Fujioka, T.: Coupled
effect of magma degassing and rheology on silicic volcanism, Earth
Planet. Sc. Lett., 362, 163–170, https://doi.org/10.1016/j.epsl.2012.11.056, 2013.
Pallister, J. S., Cashman, K. V., Hagstrum, J. T., Beeler, N. M., Moran, S.
C., and Denlinger, R. P.: Faulting within the Mount St. Helens conduit and
implications for volcanic earthquakes, Geol. Soc. Am.
Bull., 125, 359–376, https://doi.org/10.1130/b30716.1, 2013a.
Pallister, J. S., Diefenback, A. K., Burton, W. C., Muñoz, J., Griswold,
J. P., Lara, L. E., Lowernster, J. B., and Valenzuela, C. E.: The
Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid
effusion rates and source of the rhyolite magma, Andean Geol., 40,
277–294, 2013b.
Paterson, M. S. and Wong, T.-F.: Experimental Rock Deformation – The Brittle
Field, Science-Technology, 347 pp., https://doi.org/10.1007/3-540-26339-X_1, 2005.
Pistone, M., Caricchi, L., Ulmer, P., Burlini, L., Ardia, P., Reusser, E.,
Marone, F., and Arbaret, L.: Deformation experiments of bubble- and
crystal-bearing magmas: Rheological and microstructural analysis, J.
Geophys. Res.-Sol. Ea., 117, B05208, https://doi.org/10.1029/2011jb008986, 2012.
Platz, T., Cronin, S. J., Procter, J. N., Neal, V. E., and Foley, S. F.:
Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand,
Geomorphology, 136, 15–30, https://doi.org/10.1016/j.geomorph.2011.06.016, 2012.
Radon, J.: On the determination of functions from their integral values
along certain manifolds, IEEE T. Med. Imaging, 5, 170–176,
https://doi.org/10.1109/tmi.1986.4307775, 1986.
Ramsay, J. G.: Shear zone geometry: A review, J. Struct. Geol.,
2, 83–99, https://doi.org/10.1016/0191-8141(80)90038-3, 1980.
Rhodes, E., Kennedy, B. M., Lavallée, Y., Hornby, A., Edwards, M., and
Chigna, G.: Textural Insights Into the Evolving Lava Dome Cycles at
Santiaguito Lava Dome, Guatemala, Front. Earth Sci., 6, 30,
https://doi.org/10.3389/feart.2018.00030, 2018.
Rohnacher, A., Rietbrock, A., Gottschämmer, E., Carter, W.,
Lavallée, Y., De Angelis, S., Kendrick, J. E., and Chigna, G.: Source
mechanism of seismic explosion signals at Santiaguito volcano, Guatemala:
New insights from seismic analysis and numerical modeling, Front.
Earth Sci., 8, 603441, https://doi.org/10.3389/feart.2020.603441, 2021.
Rust, A. C. and Cashman, K. V.: Permeability of vesicular silicic magma:
inertial and hysteresis effects, Earth Planet. Sc. Lett., 228,
93–107, 2004.
Rust, A. C. and Cashman, K. V.: Permeability controls on expansion and size
distributions of pyroclasts, J. Geophys. Res.-Sol. Ea.,
116, B11202, https://doi.org/10.1029/2011jb008494, 2011.
Rust, A. C. and Manga, M.: Bubble shapes and Orientations in low Re simple
shear flow, J. Colloid Interf. Sci., 249, 476–480,
https://doi.org/10.1006/jcis.2002.8292, 2002.
Rust, A. C., Manga, M., and Cashman, K. V.: Determining flow type, shear
rate and shear stress in magmas from bubble shapes and orientations, J.
Volcanol. Geoth. Res., 122, 111–132, 2003.
Rutter, E. H.: On the nomenclature of mode of failure transitions in rocks,
Tectonophysics, 122, 381–387, https://doi.org/10.1016/0040-1951(86)90153-8, 1986.
Ryan, A. G., Heap, M. J., Russell, J. K., Kennedy, L. A., and Clynne, M. A.:
Cyclic shear zone cataclasis and sintering during lava dome extrusion:
Insights from Chaos Crags, Lassen Volcanic Center (USA), J.
Volcanol. Geoth. Res., 401, 106935, https://doi.org/10.1016/j.jvolgeores.2020.106935,
2020.
Sahagian, D.: Volcanology – Magma fragmentation in eruptions, Nature, 402,
589–591, 1999.
Sahetapy-Engel, S. T. and Harris, A. J. L.: Thermal structure and heat loss
at the summit crater of an active lava dome, B. Volcanol., 71,
15–28, https://doi.org/10.1007/s00445-008-0204-3, 2009.
Sato, H., Suto, S., Ui, T., Fujii, T., Yamamoto, T., Takarada, S., and
Sakaguchi, K.: Flowage of the 1991 Unzen lava; discussions to Goto et al.,
2020 “Rigid migration of Unzen lava rather than flow” J. Volcanol. Geotherm.
Res., 110, 107073, J. Volcanol. Geoth. Res., 420, 107343,
https://doi.org/10.1016/j.jvolgeores.2021.107343, 2021.
Saubin, E., Kennedy, B., Tuffen, H., Villeneuve, M. C., Davidson, J., and
Burchardt, S.: Comparative field study of shallow rhyolite intrusions in
Iceland: Emplacement mechanisms and impact on country rocks, J.
Volcanol. Geoth. Res., 388, 106691, https://doi.org/10.1016/j.jvolgeores.2019.106691, 2019.
Schaefer, L. N., Kennedy, B. M., Kendrick, J. E., Lavallée, Y., and Miwa, T.: Laboratory Measurements of Damage Evolution in Dynamic Volcanic Environments: From Slow to Rapid Strain Events, 54th U.S. Rock Mechanics/Geomechanics Symposium, ARMA-2020-1876,
ISBN 978-0-9794975-5-1, 2020.
Scheu, B., Spieler, O., and Dingwell, D. B.: Dynamics of explosive volcanism
at Unzen volcano: an experimental contribution, B. Volcanol., 69,
175–187, 2006.
Scheu, B., Kueppers, U., Mueller, S., Spieler, O., and Dingwell, D. B.:
Experimental volcanology on eruptive products of Unzen, J.
Volcanol. Geoth. Res., 175, 110–119,
https://doi.org/10.1016/j.jvolgeores.2008.03.023, 2007.
Shields, J. K., Mader, H. M., Pistone, M., Caricchi, L., Floess, D., and
Putlitz, B.: Strain-induced outgassing of three-phase magmas during simple
shear, J. Geophys. Res.-Sol. Ea., 119, 6936–6957,
https://doi.org/10.1002/2014jb011111, 2014.
Smith, J. V.: Structural analysis of flow-related textures in lavas,
Earth-Sci. Rev., 57, 279–297, https://doi.org/10.1016/s0012-8252(01)00081-2, 2002.
Smith, J. V., Miyake, Y., and Oikawa, T.: Interpretation of porosity in
dacite lava domes as ductile-brittle failure textures, J.
Volcanol. Geoth. Res., 112, 25–35,
https://doi.org/10.1016/s0377-0273(01)00232-3, 2001.
Sparks, R. S. J.: Causes and consequences of pressurisation in lava dome
eruptions, Earth Planet. Sc. Lett., 150, 177–189, 1997.
Sparks, R. S. J.: Dynamics of magma degassing, Geol. Soc. Lond. Spec. Publ., 213, 5–22, https://doi.org/10.1144/GSL.SP.2003.213.01.02, 2003.
Sparks, R. S. J., Murphy, M. D., Lejeune, A. M., Watts, R. B., Barclay, J.,
and Young, S. R.: Control on the emplacement of the andesite lava dome of
the Soufriere Hills volcano, Montserrat by degassing-induced
crystallization, Terra Nova, 12, 14–20, 2000.
Stasiuk, M. V., Barclay, J., Carroll, M. R., Jaupart, C., Ratte, J. C.,
Sparks, R. S. J., and Tait, S. R.: Degassing during magma ascent in the Mule
Creek vent (USA), B. Volcanol., 58, 117–130, 1996.
Stix, J., Layne, G. D., and Williams, S. N.: Mechanisms of degassing at
Nevado del Ruiz volcano, Colombia, J. Geol. Soc., 160,
507–521, 2003.
Tait, S., Jaupart, C., and Vergniolle, S.: Pressure, gas content and
eruption periodicity of a shallow, crystallizing magma chamber, Earth
Planet. Sc. Lett., 92, 107–123, https://doi.org/10.1016/0012-821x(89)90025-3, 1989.
Thomas, M. E. and Neuberg, J.: What makes a volcano tick – A first
explanation of deep multiple seismic sources in ascending magma, Geology,
40, 351–354, https://doi.org/10.1130/G32868.1, 2012.
Tiab, D. and Donaldson, E. C.: Chapter 3 – Porosity and Permeability, in:
Petrophysics, 4th Edn., edited by: Tiab, D. and Donaldson, E. C.,
Gulf Professional Publishing, Boston, 67–186, 2016.
Tuffen, H. and Dingwell, D. B.: Fault textures in volcanic conduits:
evidence for seismic trigger mechanisms during silicic eruptions, B. Volcanol., 67, 370–387, 2005.
Tuffen, H., Dingwell, D. B., and Pinkerton, H.: Repeated fracture and
healing of silicic magma generate flow banding and earthquakes?, Geology,
31, 1089–1092, 2003.
Umakoshi, K., Takamura, N., Shinzato, N., Uchida, K., Matsuwo, N., and
Shimizu, H.: Seismicity associated with the 1991–1995 dome growth at Unzen
Volcano, Japan, J. Volcanol. Geoth. Res., 175, 91–99,
https://doi.org/10.1016/j.jvolgeores.2008.03.030, 2008.
Varley, N. R. and Taran, Y.: Degassing processes of popocatepetl and Volcan
de Colima, Mexico, in: Volcanic Degassing, edited by: Oppenheimer, C. P. D.
M. B. J., Geological Society Special Publication, 263–280, 2003.
Vasseur, J., Wadsworth, F. B., Lavallée, Y., Hess, K.-U., and Dingwell,
D. B.: Volcanic sintering: Timescales of viscous densification and strength
recovery, Geophys. Res. Lett., 40, 5658–5664, https://doi.org/10.1002/2013gl058105,
2013.
Venezky, D. Y. and Rutherford, M. J.: Petrology and Fe-Ti oxide
reequilibration of the 1991 Mount Unzen mixed magma, J. Volcanol.
Geoth. Res., 89, 213–230, https://doi.org/10.1016/s0377-0273(98)00133-4, 1999.
Wadsworth, F. B., Vasseur, J., von Aulock, F. W., Hess, K.-U., Scheu, B.,
Lavallée, Y., and Dingwell, D. B.: Nonisothermal viscous sintering of
volcanic ash, J. Geophys. Res.-Sol. Ea., 119, 8792–8804,
https://doi.org/10.1002/2014jb011453, 2014.
Wadsworth, F. B., Vasseur, J., Scheu, B., Kendrick, J. E., Lavallée, Y.,
and Dingwell, D. B.: Universal scaling of fluid permeability during volcanic
welding and sediment diagenesis, Geology, 44, 219–222, https://doi.org/10.1130/g37559.1,
2016.
Wadsworth, F. B., Vasseur, J., Llewellin, E. W., Dobson, K. J., Colombier,
M., von Aulock, F. W., Fife, J. L., Wiesmaier, S., Hess, K.-U., Scheu, B.,
Lavallée, Y., and Dingwell, D. B.: Topological inversions in coalescing
granular media control fluid-flow regimes, Phys. Rev. E, 96, 033113, https://doi.org/10.1103/PhysRevE.96.033113,
2017.
Wadsworth, F. B., Witcher, T., Vossen, C. E. J., Hess, K.-U., Unwin, H. E.,
Scheu, B., Castro, J. M., and Dingwell, D. B.: Combined effusive-explosive
silicic volcanism straddles the multiphase viscous-to-brittle transition,
Nat. Commun., 9, 4696, https://doi.org/10.1038/s41467-018-07187-w, 2018.
Wadsworth, F. B., Witcher, T., Vasseur, J., Dingwell, D. B., and Scheu, B.:
When Does Magma Break?, in: Volcanic Unrest: From Science to Society, edited
by: Gottsmann, J., Neuberg, J., and Scheu, B., Advances in Volcanology,
171–184, 2019.
Wadsworth, F. B., Vasseur, J., Llewellin, E. W., Brown, R. J., Tuffen, H.,
Gardner, J. E., Kendrick, J. E., Lavallée, Y., Dobson, K. J., Heap, M.
J., Dingwell, D. B., Hess, K.-U., Schauroth, J., von Aulock, F. W., Kushnir,
A. R. L., and Marone, F.: A model for permeability evolution during volcanic
welding, J. Volcanol. Geoth. Res., 409, 107118,
https://doi.org/10.1016/j.jvolgeores.2020.107118, 2021.
Wallace, P. A., Kendrick, J. E., Ashworth, J. D., Miwa, T., Coats, R., De
Angelis, S. H., Mariani, E., Utley, J. E. P., Biggin, A., Kendrick, R.,
Nakada, S., Matsushima, T., and Lavallée, Y.: Petrological architecture
of a magmatic shear zone: A multidisciplinary investigation of strain
localisation during magma ascent at Unzen Volcano, Japan, J.
Petrol., 60, 791–826, https://doi.org/10.1093/petrology/egz016, 2019.
Watanabe, T., Shimizu, Y., Noguchi, S., and Nakada, S.: Permeability
measurements on rock samples from Unzen scientific drilling project drill
hole 4 (USDP-4), J. Volcanol. Geoth. Res., 175, 82–90,
https://doi.org/10.1016/j.jvolgeores.2008.03.021, 2008.
Watts, R. B., Herd, R. A., Sparks, R. S. J., and Young, S. R.: Growth
patterns and emplacement of the andesitic lava dome at Soufriere Hills
Volcano, Montserrat, in: Eruption of Soufriere Hills Volcano, Montserrat,
from 1995 to 1999, edited by: Druitt, T. H. and Kokelaar, P., 21,
Geological Society of London Memoir, 115–152, 2002.
Westrich, H. R. and Eichelberger, J. C.: Gas transport and bubble collapse
in rhyolitic magma – an experimental approach, B. Volcanol., 56,
447–458, https://doi.org/10.1007/bf00302826, 1994.
Woods, A. W. and Koyaguchi, T.: Transitions between explosive and effusive
eruptions of silicic magmas, Nature, 370, 641–644, 1994.
Wright, H. M. N. and Weinberg, R. F.: Strain localization in vesicular
magma: Implications for rheology and fragmentation, Geology, 37, 1023–1026,
https://doi.org/10.1130/g30199a.1, 2009.
Wright, H. M. N., Roberts, J. J., and Cashman, K. V.: Permeability of
anisotropic tube pumice: Model calculations and measurements, Geophys.
Res. Lett., 33, L17316, https://doi.org/10.1029/2006gl027224, 2006.
Yamasato, H.: Nature of infrasonic pulse accompanying low frequency
earthquake at Unzen volcano, Japan, Bulletin of the volcanological society
of Japan, 43, 1–13, https://doi.org/10.18940/kazan.43.1_1, 1998.
Yamashina, K., Matsushima, T., and Ohmi, S.: Volcanic deformation at Unzen,
Japan, visualized by a time-differential stereoscopy, J. Volcanol.
Geoth. Res., 89, 73–80, https://doi.org/10.1016/s0377-0273(98)00124-3, 1999.
Yilmaz, T. I., Wadsworth, F. B., Gilg, H. A., Hess, K. U., Kendrick, J. E.,
Wallace, P. A., Lavallée, Y., Utley, J. E. P., Vasseur, J., Nakada, S.,
and Dingwell, D. B.: Rapid alteration of fractured volcanic conduits beneath
Mt Unzen, B. Volcanol., 83, 34, https://doi.org/10.1007/s00445-021-01450-7, 2021.
Yoshimura, S. and Nakamura, M.: Fracture healing in a magma: An
experimental approach and implications for volcanic seismicity and
degassing, J. Geophys. Res.-Sol. Ea., 115, B09209,
https://doi.org/10.1029/2009jb000834, 2010.
Zhang, Y. X.: H2O in rhyolitic glasses and melts: Measurement, speciation,
solubility, and diffusion, Rev. Geophys., 37, 493–516, 1999.
Short summary
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can cause explosions. Eruption models lack an understanding of how gas percolates in magma flowing in a conduit. Here we study gas percolation in magma associated with the 1994–1995 eruption at Mt. Unzen, Japan. The results show that the pathways for gas escape depend on the depth and ascent rate of magma. Pathways closed at depth but opened along fractures when magma ascended rapidly near the surface.
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can...