Beck, A. E., Garven, G., and Stegena, L. (Eds.): Hydrogeological Regimes and
Their Subsurface Thermal Effects, Geophysical Monograph Series, 47, American
Geophysical Union, Washington, D. C., America, 158 pp., ISBN 9780875904511, 1989.
Becker, I., Busch, B., Koehrer, B., Adelmann, D., and Hilgers, C.: Reservoir
quality evolution of Upper Carboniferous (Westphalian) tight gas sandstones,
Lower Saxony Basin, NW Germany, J. Petrol. Geol., 42, 371–392,
https://doi.org/10.1111/jpg.12742, 2019.
Blackwell, D. D., Negraru, P. T., and Richards, M. C.: Assessment of the Enhanced Geothermal System Resource Base of the United States, Nat. Resour. Res., 15, 283–308, https://doi.org/10.1007/s11053-007-9028-7, 2007.
Bruhn, R. L., Parry, W. T., Yonkee, W. A., and Thompson, T.: Fracturing and
hydrothermal alteration in normal fault zones, Pageoph, 142, 609–644,
https://doi.org/10.1007/BF00876057, 1994.
Bruns, B., Di Primio, R., Berner, U., and Littke, R.: Petroleum system
evolution in the inverted Lower Saxony Basin, northwest Germany: a 3D basin
modeling study, Geofluids, 13, 246–271, https://doi.org/10.1111/gfl.12016,
2013.
Busch, B., Becker, I., Koehrer, B., Adelmann, D., and Hilgers, C.: Porosity
evolution of two Upper Carboniferous tight-gas-fluvial sandstone reservoirs:
Impact of fractures and total cement volumes on reservoir quality, Mar.
Petrol. Geol., 100, 376–390,
https://doi.org/10.1016/j.marpetgeo.2018.10.051, 2019.
Cherubini, Y., Cacace, M., Blöcher, G., and Scheck-Wenderoth, M.: Impact
of single inclined faults on the fluid flow and heat transport: results from
3-D finite element simulations, Environ. Earth Sci., 70, 3603–3618,
https://doi.org/10.1007/s12665-012-2212-z, 2013.
Clauser, C. and Villinger, H.: Analysis of conductive and convective heat
transfer in a sedimentary basin, demonstrated for the Rheingraben,
Geophys. J. Int., 100, 393–414,
https://doi.org/10.1111/j.1365-246X.1990.tb00693.x, 1990.
Cloetingh, S., van Wees, J. D., Ziegler, P. A., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., and Hardebol, N.: Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe, Earth-Sci. Rev., 102, 159–206, https://doi.org/10.1016/j.earscirev.2010.05.003, 2010.
David, F., Albertsen, M., and Blohm, M.: Sedimentologie und Beckenanalyse im
Westfal C und D des Nordwestdeutschen Oberkarbons, DGMK-Bericht 384-3, Sedimentologie des Oberkarbons, Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., Hamburg, Germany, 1990.
Egert, R., Korzani, M. G., Held, S., and Kohl, T.: Implications on
large-scale flow of the fractured EGS reservoir Soultz inferred from
hydraulic data and tracer experiments, Geothermics, 84, 101749,
https://doi.org/10.1016/j.geothermics.2019.101749, 2020.
Egert, R., Nitschke, F., Gholami Korzani, M., and Kohl, T.: Stochastic 3D
Navier-Stokes Flow in Self-Affine Fracture Geometries Controlled by
Anisotropy and Channeling, Geophys. Res. Lett., 48, e2020GL092138,
https://doi.org/10.1029/2020GL092138, 2021.
Elderfield, H., Wheat, C. G., Mottl, M. J., Monnin, C., and Spiro, B.: Fluid
and geochemical transport through oceanic crust: a transect across the
eastern flank of the Juan de Fuca Ridge, Earth Planet. Sc.
Lett., 172, 151–165, https://doi.org/10.1016/S0012-821X(99)00191-0, 1999.
Emry, E. L., Nyblade, A. A., Horton, A., Hansen, S. E., Julià, J.,
Aster, R. C., Huerta, A. D., Winberry, J. P., Wiens, D. A., and Wilson, T.
J.: Prominent thermal anomalies in the mantle transition zone beneath the
Transantarctic Mountains, Geology, 48, 748–752,
https://doi.org/10.1130/G47346.1, 2020.
Erkan, K.: Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes, Solid Earth, 6, 103–113, https://doi.org/10.5194/se-6-103-2015, 2015.
Fairley, J. P.: Modeling fluid flow in a heterogeneous, fault-controlled hydrothermal system, Geofluids, 9, 153–166, https://doi.org/10.1111/j.1468-8123.2008.00236.x, 2009.
Farrell, N., Healy, D., and Taylor, C. W.: Anisotropy of permeability in
faulted porous sandstones, J. Struct. Geol., 63, 50–67,
https://doi.org/10.1016/j.jsg.2014.02.008, 2014.
Gholami Korzani, M., Nitschke, F., Held, S., and Kohl, T.: The Development
of a Fully Coupled Wellbore-Reservoir Simulator for Geothermal Application,
Transactions, 43, 927–936, 2019.
Gholami Korzani, M., Held, S., and Kohl, T.: Numerical based filtering
concept for feasibility evaluation and reservoir performance enhancement of
hydrothermal doublet systems, J. Petrol. Sci. Eng.,
190, 106803, https://doi.org/10.1016/j.petrol.2019.106803, 2020.
Guillou-Frottier, L., Carrë, C., Bourgine, B., Bouchot, V., and Genter,
A.: Structure of hydrothermal convection in the Upper Rhine Graben as
inferred from corrected temperature data and basin-scale numerical models,
J. Volcanol. Geoth. Res., 256, 29–49,
https://doi.org/10.1016/j.jvolgeores.2013.02.008, 2013.
Guillou-Frottier, L., Duwiquet, H., Launay, G., Taillefer, A., Roche, V., and Link, G.: On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones, Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, 2020.
Haarmann, E.: Die geologischen Verhältnisse des Piesbergs-Sattels bei
Osnabrück, Jahrbuch der Königl. Preuss. Geologischen Landesanstalt, 30, 1–58, 1909.
Harcouët-Menou, V., Guillou-Frottier, L., Bonneville, A., Adler, P.
M., and Mourzenko, V.: Hydrothermal convection in and around mineralized
fault zones: insights from two- and three-dimensional numerical modeling
applied to the Ashanti belt, Ghana, Geofluids, 9, 116–137,
https://doi.org/10.1111/j.1468-8123.2009.00247.x, 2009.
Hinze, C.: Erläuterungen zu Blatt Nr. 3614 Wallenhorst, Geologische
Karte von Niedersachsen
, Niedersächsisches Landesamt Bodenforschung, Hannover, Federal Republic of Germany, 1, 154, 1979.
Huenges, E. and Ledru, P. (Eds.): Geothermal energy systems: Exploration, development
and utilization, Online-Ausg., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 463 pp., 2010.
Ingebritsen, S. E. and Manning, C. E.: Geological implications of a
permeability-depth curve for the continental crust, Geology, 27, 1107,
https://doi.org/10.1130/0091-7613(1999)027<1107:GIOAPD>2.3.CO;2, 1999.
Jobmann, M. and Clauser, C.: Heat advection versus conduction at the KTB:
possible reasons for vertical variations in heat-flow density, Geophys. J. Int., 119, 44–68,
https://doi.org/10.1111/j.1365-246X.1994.tb00912.x, 1994.
Kämmlein, M., Dietl, C., and Stollhofen, H.: The Franconian Basin
thermal anomaly: testing its origin by conceptual 2-D models of deep-seated
heat sources covered by low thermal conductivity sediments, Int. J. Energy
Environ. Eng., 10, 389–412, https://doi.org/10.1007/s40095-019-00315-2, 2019.
Kohl, T., Bächler, D., and Rybach, L. (Eds.): Steps towards a comprehensive
thermo-hydraulic analysis of the HDR test site Soultz-sous-Forêts, in:
Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000, 2671–2676, 2000.
Kuang, X. and Jiao, J. J.: An integrated permeability-depth model for
Earth's crust, Geophys. Res. Lett., 41, 7539–7545,
https://doi.org/10.1002/2014GL061999, 2014.
Kühn, M. and Gessner, K.: Testing Hypotheses for the Mount Isa Copper
Mineralisation with Numerical Simulations, Surv. Geophys., 30, 253–268,
https://doi.org/10.1007/s10712-009-9064-4, 2009.
Lampe, C. and Person, M.: Episodic hydrothermal fluid flow in the Upper
Rhinegraben (Germany), J. Geochem. Explor., 69-70, 37–40,
https://doi.org/10.1016/S0375-6742(00)00049-2, 2000.
Liewig, N. and Clauer, N.: K–Ar dating of varied microtextural illite in
Permian gas reservoirs, northern Germany, Clay Miner., 35, 271–281,
https://doi.org/10.1180/000985500546648, 2000.
Linstrom, P. J. and Mallard, W. G.: The NIST Chemistry WebBook: A Chemical
Data Resource on the Internet, J. Chem. Eng. Data, 46, 1059–1063,
https://doi.org/10.1021/je000236i, 2001.
López, D. L. and Smith, L.: Fluid flow in fault zones: analysis of the
interplay of convective circulation and topographically driven Groundwater
Flow, Water Resour. Res., 31, 1489–1503, https://doi.org/10.1029/95WR00422,
1995.
López, D. L. and Smith, L.: Fluid flow in fault zones: Influence of
hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer
regime, Water Resour. Res., 32, 3227–3235,
https://doi.org/10.1029/96WR02101, 1996.
Lucazeau, F.: Analysis and Mapping of an Updated Terrestrial Heat Flow Data
Set, Geochem. Geophys. Geosy., 20, 4001–4024,
https://doi.org/10.1029/2019GC008389, 2019.
Magri, F., Littke, R., Rodon, S., Bayer, U., and Urai, J. L.: Temperature
fields, petroleum maturation and fluid flow in the vicinity of salt domes, in:
Dynamics of Complex Intracontinental Basins: The Central European Basin
System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, 323–344,
https://gfzpublic.gfz-potsdam.de/pubman/item/item_237239 (last access: 10 October 2022), 2008.
Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M.,
Rödiger, T., Rosenthal, E., and Siebert, C.: 2D and 3D coexisting modes
of thermal convection in fractured hydrothermal systems – Implications for
transboundary flow in the Lower Yarmouk Gorge, Mar. Petrol. Geol.,
78, 750–758, https://doi.org/10.1016/j.marpetgeo.2016.10.002, 2016.
Malkovsky, V. I. and Magri, F.: Thermal convection of temperature-dependent
viscous fluids within three-dimensional faulted geothermal systems:
Estimation from linear and numerical analyses, Water Resour. Res., 52,
2855–2867, https://doi.org/10.1002/2015WR018001, 2016.
Manning, C. E. and Ingebritsen, S. E.: Permeability of the continental
crust: Implications of geothermal data and metamorphic systems, Rev.
Geophys., 37, 127–150, https://doi.org/10.1029/1998RG900002, 1999.
McKenna, J. R. and Blackwell, D. D.: Numerical modeling of transient Basin
and Range extensional geothermal systems, Geothermics, 33, 457–476,
https://doi.org/10.1016/j.geothermics.2003.10.001, 2004.
Moeck, I. S.: Catalog of geothermal play types based on geologic controls,
Renew. Sust. Energ. Rev., 37, 867–882,
https://doi.org/10.1016/j.rser.2014.05.032, 2014.
O'Brien, J. J. and Lerche, I.: Impact of heat flux anomalies around salt
diapirs and salt sheets in the Gulf Coast on hydrocarbon maturity, Gulf
Coast Association of Geological Societies Transactions, 38, 231–243, 1988.
Panja, P., McLennan, J., and Green, S.: Influence of permeability anisotropy
and layering on geothermal battery energy storage, Geothermics, 90, 101998,
https://doi.org/10.1016/j.geothermics.2020.101998, 2021.
Parry, W.: Fault-fluid compositions from fluid-inclusion observations and
solubilities of fracture-sealing minerals, Tectonophysics, 290, 1–26,
https://doi.org/10.1016/S0040-1951(98)00013-4, 1998.
Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F.,
Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner,
R. H., and Martineau, R. C.: MOOSE: Enabling massively parallel multiphysics
simulation, SoftwareX, 11, 100430,
https://doi.org/10.1016/j.softx.2020.100430, 2020.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: The origin of
deep geothermal anomalies in the German Molasse Basin: results from 3D
numerical models of coupled fluid flow and heat transport, Geotherm. Energy,
5, 1, https://doi.org/10.1186/s40517-016-0059-3, 2017.
Saar, M. O. and Manga, M.: Depth dependence of permeability in the Oregon
Cascades inferred from hydrogeologic, thermal, seismic, and magmatic
modeling constraints, J. Geophys. Res., 109, B04204,
https://doi.org/10.1029/2003JB002855, 2004.
Schilling, O., Sheldon, H. A., Reid, L. B., and Corbel, S.: Hydrothermal
models of the Perth metropolitan area, Western Australia: implications for
geothermal energy, Hydrogeol. J., 21, 605–621,
https://doi.org/10.1007/s10040-012-0945-0, 2013.
Schultz, R. A., Okubo, C. H., and Wilkins, S. J.: Displacement-length scaling relations for faults on the terrestrial planets, J. Struct. Geol., 28, 2182–2193, https://doi.org/10.1016/j.jsg.2006.03.034, 2006.
Scibek, J.: Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites, Scientific Data, 7, 95, https://doi.org/10.1038/s41597-020-0435-5, 2020.
Senglaub, Y., Littke, R., and Brix, M. R.: Numerical modelling of burial and
temperature history as an approach for an alternative interpretation of the
Bramsche anomaly, Lower Saxony Basin, Int. J. Earth Sci., 95,
204–224, https://doi.org/10.1007/s00531-005-0033-y, 2006.
Sheldon, H. A., Florio, B., Trefry, M. G., Reid, L. B., Ricard, L. P., and
Ghori, K. A. R.: The potential for convection and implications for
geothermal energy in the Perth Basin, Western Australia, Hydrogeol. J., 20,
1251–1268, https://doi.org/10.1007/s10040-012-0886-7, 2012.
Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., and Lunn, R. J.: How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: Radiated Energy and the Physics of Faulting, edited by: Abercrombie, R., McGarr, A., Kanamori, H., and Di Toro, G., American Geophysical Union, Washington, D. C., 193–198, https://doi.org/10.1029/170GM19, 2006.
Smith, L. and Chapman, D. S.: On the thermal effects of groundwater flow: 1.
Regional scale systems, J. Geophys. Res., 88, 593–608,
https://doi.org/10.1029/JB088iB01p00593, 1983.
Torabi, A. and Berg, S. S.: Scaling of fault attributes: A review, Marine and Petroleum Geology, 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003, 2011.
Watanabe, N., Blöcher, G., Cacace, M., Held, S., and Kohl, T.: Geoenergy Modeling III: Enhanced Geothermal Systems, Springer Cham, 104 pp., ISBN 978-3-319-46579-1, 2017.
Will, P., Lüders, V., Wemmer, K., and Gilg, H. A.: Pyrophyllite
formation in the thermal aureole of a hydrothermal system in the Lower
Saxony Basin, Germany, Geofluids, 16, 349–363,
https://doi.org/10.1111/gfl.12154, 2016.
Wisian, K. W. and Blackwell, D. D.: Numerical modeling of Basin and Range
geothermal systems, Geothermics, 33, 713–741,
https://doi.org/10.1016/j.geothermics.2004.01.002, 2004a.
Wisian, K. W. and Blackwell, D. D.: Numerical modeling of Basin and Range
geothermal systems, Geothermics, 33, 713–741,
https://doi.org/10.1016/j.geothermics.2004.01.002, 2004b.
Wuestefeld, P., Hilgers, C., Koehrer, B., Hoehne, M., Steindorf, P., Schurk,
K., Becker, S., and Bertier, P.: Reservoir heterogeneity in Upper
Carboniferous tight gas sandstones: Lessons learned from an analog study,
in: SPE/EAGE European Unconventional Resources Conference and Exhibition,
Vienna, Austria, 25–27 February, 1–10, https://doi.org/10.2118/167793-MS, 2014.
Wüstefeld, P., Hilse, U., Koehrer, B., Adelmann, D., and Hilgers, C.:
Critical evaluation of an Upper Carboniferous tight gas sandstone reservoir
analog: Diagenesis and petrophysical aspects, Mar. Petrol. Geol.,
86, 689–710, https://doi.org/10.1016/j.marpetgeo.2017.05.034, 2017a.
Wüstefeld, P., Hilse, U., Lüders, V., Wemmer, K., Koehrer, B., and
Hilgers, C.: Kilometer-scale fault-related thermal anomalies in tight gas
sandstones, Mar. Petrol. Geol., 86, 288–303,
https://doi.org/10.1016/j.marpetgeo.2017.05.015, 2017b.
Zwingmann, H., Clauer, N., and Gaupp, R.: Timing of fluid flow in a
sandstone reservoir of the north German Rotliegend (Permian) by K–Ar dating
of related hydrothermal illite, Geological Society, London, Special
Publications, 144, 91–106, https://doi.org/10.1144/GSL.SP.1998.144.01.07,
1998.
Zwingmann, H., Clauer, N., and Gaupp, R.: Structure-related geochemical
(REE) and isotopic (K–Ar, Rb–Sr,
δ18O) characteristics of clay minerals
from Rotliegend sandstone reservoirs (Permian, northern Germany), Geochim. Cosmochim. Ac., 63, 2805–2823,
https://doi.org/10.1016/S0016-7037(99)00198-2, 1999.