Articles | Volume 14, issue 3
https://doi.org/10.5194/se-14-293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-293-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transport mechanisms of hydrothermal convection in faulted tight sandstones
Guoqiang Yan
CORRESPONDING AUTHOR
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Benjamin Busch
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Robert Egert
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Morteza Esmaeilpour
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Kai Stricker
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Thomas Kohl
Institute of Applied Geosciences, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76131, Germany
Related authors
No articles found.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Ali Dashti, Jens C. Grimmer, Christophe Geuzaine, Florian Bauer, and Thomas Kohl
Geosci. Model Dev., 17, 3467–3485, https://doi.org/10.5194/gmd-17-3467-2024, https://doi.org/10.5194/gmd-17-3467-2024, 2024
Short summary
Short summary
This study developed new meshing workflows to enable the automatic generation of meshes that follow geological models. The workflow allows for importing several geological models as input for Gmsh and later exporting the same number of high-quality meshes. This way, geological uncertainty is directly included in the numerical simulations. This study evaluates the impact of the geological uncertainty on thermohydraulic performance of two reservoirs for high-temperature heat storage applications.
Thomas Kohl, Ingo Sass, Olaf Kolditz, Christoph Schüth, Wolfram Rühaak, Jürgen Schamp, Judith Bremer, Bastian Rudolph, Katharina Schätzler, and Eva Schill
Saf. Nucl. Waste Disposal, 2, 135–136, https://doi.org/10.5194/sand-2-135-2023, https://doi.org/10.5194/sand-2-135-2023, 2023
Short summary
Short summary
Crystalline rocks are being considered as potential host rocks in the ongoing search for a suitable site for a nuclear waste repository in Germany, where there is no existing experience in terms of excavating a repository in crystalline rocks. The planned underground laboratory GeoLaB addressing crystalline geothermal reservoirs offers unique opportunities for synergies with nuclear waste disposal research and development, especially in the exploration and building phases.
Related subject area
Subject area: Mantle and core structure and dynamics | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
On the global geodynamic consequences of different phase boundary morphologies
ECOMAN: an open-source package for geodynamic and seismological modelling of mechanical anisotropy
Quantifying mantle mixing through configurational entropy
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
On the choice of finite element for applications in geodynamics
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Comparing global seismic tomography models using varimax principal component analysis
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
Solid Earth, 16, 297–314, https://doi.org/10.5194/se-16-297-2025, https://doi.org/10.5194/se-16-297-2025, 2025
Short summary
Short summary
Phase transitions can influence mantle convection, inhibiting or promoting vertical flow. We are motivated by two examples: the post-spinel reaction proceeding via akimotoite at cool temperatures and a curving post-garnet boundary. Some have suggested these could change mantle dynamics. We find this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state and the second due to the low magnitude of the boundary’s slope in pressure–temperature space and density change.
Manuele Faccenda, Brandon P. VanderBeek, Albert de Montserrat, Jianfeng Yang, Francesco Rappisi, and Neil Ribe
Solid Earth, 15, 1241–1264, https://doi.org/10.5194/se-15-1241-2024, https://doi.org/10.5194/se-15-1241-2024, 2024
Short summary
Short summary
The Earth's internal dynamics and structure can be well understood by combining seismological and geodynamic modelling with mineral physics, an approach that has been poorly adopted in the past. To this end we have developed ECOMAN, an open-source software package that is intended to overcome the computationally intensive nature of this multidisciplinary methodology and the lack of a dedicated and comprehensive computational framework.
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024, https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024, https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Short summary
Fluids and melts in the mantle are key to the Earth’s evolution. The main driving force for their transport is the compaction of the porous mantle. Numerically, the compaction equations can yield unphysical negative liquid fractions (porosity), and it is necessary to enforce positive porosity. However, the effect of such a treatment on liquid flow and mass conservation has not been quantified. We found that although mass conservation is affected, the liquid pathways are well resolved.
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley
Solid Earth, 14, 119–135, https://doi.org/10.5194/se-14-119-2023, https://doi.org/10.5194/se-14-119-2023, 2023
Short summary
Short summary
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are often suppressed in numerical models. We examine the effect of these dependencies on the long-term evolution of lower-mantle thermochemical structure. We propose that depth-dependent conductivities derived from mantle minerals, along with moderate temperature and compositional correction, emulate the Earth's mean lowermost-mantle conductivity values and produce a stable two-pile configuration.
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Short summary
One of the main numerical methods to solve the mass, momentum, and energy conservation equations in geodynamics is the finite-element method. Four main types of elements have been used in the past decades in hundreds of publications. For the first time we compare results obtained with these four elements on a series of geodynamical benchmarks and applications and draw conclusions as to which are the best ones and which are to be preferably avoided.
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021, https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Short summary
The lower mantle extends from 660–2890 km depth, making up > 50 % of the Earth’s volume. Its composition and structure, however, remain poorly understood. In this study, we investigate several hypotheses with computer simulations of mantle convection that include different materials: recycled, dense rocks and ancient, strong rocks. We propose a new integrated style of mantle convection including
piles,
blobs, and
streaksthat agrees with various observations of the deep Earth.
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021, https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary
Short summary
As the travel time of seismic waves depends on the Earth's interior properties, seismic tomography uses it to infer the distribution of velocity anomalies, similarly to what is done in medical tomography. We propose analysing the outputs of those models using varimax principal component analysis, which results in a compressed objective representation of the model, helping analysis and comparison.
Cited articles
Achtziger-Zupanèiè, P., Loew, S., and Mariéthoz, G.: A new
global database to improve predictions of permeability distribution in
crystalline rocks at site scale, J. Geophys. Res.-Sol. Ea., 122,
3513–3539, https://doi.org/10.1002/2017JB014106, 2017a.
Achtziger-Zupanèiè, P., Loew, S., and Hiller, A.: Factors
controlling the permeability distribution in fault vein zones surrounding
granitic intrusions (Ore Mountains/Germany), J. Geophys. Res.-Sol. Ea.,
122, 1876–1899, https://doi.org/10.1002/2016JB013619, 2017b.
Andrews, J. R., Day, J., and Marshall, J. E. A: A thermal anomaly associated with the
Rusey Fault and its implications for fluid movements, Proceedings of the Ussher
Society, 9, 68–71, 1996.
Bächler, D., Kohl, T., and Rybach, L.: Impact of graben-parallel faults
on hydrothermal convection – Rhine Graben case study, Phys. Chem.
Earth Pt. A/B/C, 28, 431–441,
https://doi.org/10.1016/S1474-7065(03)00063-9, 2003.
Baillieux, P., Schill, E., Edel, J.-B., and Mauri, G.: Localization of
temperature anomalies in the Upper Rhine Graben: insights from geophysics
and neotectonic activity, Int. Geol. Rev., 55, 1744–1762,
https://doi.org/10.1080/00206814.2013.794914, 2013.
Baldschuhn R., Binot F., Fleig S., and Kockel F.: Geotektonischer Atlas von
Nordwest-Deutschland und dem deutschen Nordsee-Sektor, Geologisches Jahrbuch
Reihe A, 153, 3–95, 2001.
Beck, A. E., Garven, G., and Stegena, L. (Eds.): Hydrogeological Regimes and
Their Subsurface Thermal Effects, Geophysical Monograph Series, 47, American
Geophysical Union, Washington, D. C., America, 158 pp., ISBN 9780875904511, 1989.
Becker, I., Busch, B., Koehrer, B., Adelmann, D., and Hilgers, C.: Reservoir
quality evolution of Upper Carboniferous (Westphalian) tight gas sandstones,
Lower Saxony Basin, NW Germany, J. Petrol. Geol., 42, 371–392,
https://doi.org/10.1111/jpg.12742, 2019.
Blackwell, D. D., Negraru, P. T., and Richards, M. C.: Assessment of the Enhanced Geothermal System Resource Base of the United States, Nat. Resour. Res., 15, 283–308, https://doi.org/10.1007/s11053-007-9028-7, 2007.
Bruhn, R. L., Parry, W. T., Yonkee, W. A., and Thompson, T.: Fracturing and
hydrothermal alteration in normal fault zones, Pageoph, 142, 609–644,
https://doi.org/10.1007/BF00876057, 1994.
Bruns, B., Di Primio, R., Berner, U., and Littke, R.: Petroleum system
evolution in the inverted Lower Saxony Basin, northwest Germany: a 3D basin
modeling study, Geofluids, 13, 246–271, https://doi.org/10.1111/gfl.12016,
2013.
Busch, B., Becker, I., Koehrer, B., Adelmann, D., and Hilgers, C.: Porosity
evolution of two Upper Carboniferous tight-gas-fluvial sandstone reservoirs:
Impact of fractures and total cement volumes on reservoir quality, Mar.
Petrol. Geol., 100, 376–390,
https://doi.org/10.1016/j.marpetgeo.2018.10.051, 2019.
Cherubini, Y., Cacace, M., Blöcher, G., and Scheck-Wenderoth, M.: Impact
of single inclined faults on the fluid flow and heat transport: results from
3-D finite element simulations, Environ. Earth Sci., 70, 3603–3618,
https://doi.org/10.1007/s12665-012-2212-z, 2013.
Clauser, C. and Villinger, H.: Analysis of conductive and convective heat
transfer in a sedimentary basin, demonstrated for the Rheingraben,
Geophys. J. Int., 100, 393–414,
https://doi.org/10.1111/j.1365-246X.1990.tb00693.x, 1990.
Cloetingh, S., van Wees, J. D., Ziegler, P. A., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., and Hardebol, N.: Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe, Earth-Sci. Rev., 102, 159–206, https://doi.org/10.1016/j.earscirev.2010.05.003, 2010.
David, F., Albertsen, M., and Blohm, M.: Sedimentologie und Beckenanalyse im
Westfal C und D des Nordwestdeutschen Oberkarbons, DGMK-Bericht 384-3, Sedimentologie des Oberkarbons, Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., Hamburg, Germany, 1990.
Egert, R., Korzani, M. G., Held, S., and Kohl, T.: Implications on
large-scale flow of the fractured EGS reservoir Soultz inferred from
hydraulic data and tracer experiments, Geothermics, 84, 101749,
https://doi.org/10.1016/j.geothermics.2019.101749, 2020.
Egert, R., Nitschke, F., Gholami Korzani, M., and Kohl, T.: Stochastic 3D
Navier-Stokes Flow in Self-Affine Fracture Geometries Controlled by
Anisotropy and Channeling, Geophys. Res. Lett., 48, e2020GL092138,
https://doi.org/10.1029/2020GL092138, 2021.
Elderfield, H., Wheat, C. G., Mottl, M. J., Monnin, C., and Spiro, B.: Fluid
and geochemical transport through oceanic crust: a transect across the
eastern flank of the Juan de Fuca Ridge, Earth Planet. Sc.
Lett., 172, 151–165, https://doi.org/10.1016/S0012-821X(99)00191-0, 1999.
Emry, E. L., Nyblade, A. A., Horton, A., Hansen, S. E., Julià, J.,
Aster, R. C., Huerta, A. D., Winberry, J. P., Wiens, D. A., and Wilson, T.
J.: Prominent thermal anomalies in the mantle transition zone beneath the
Transantarctic Mountains, Geology, 48, 748–752,
https://doi.org/10.1130/G47346.1, 2020.
Erkan, K.: Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes, Solid Earth, 6, 103–113, https://doi.org/10.5194/se-6-103-2015, 2015.
Fairley, J. P.: Modeling fluid flow in a heterogeneous, fault-controlled hydrothermal system, Geofluids, 9, 153–166, https://doi.org/10.1111/j.1468-8123.2008.00236.x, 2009.
Farrell, N., Healy, D., and Taylor, C. W.: Anisotropy of permeability in
faulted porous sandstones, J. Struct. Geol., 63, 50–67,
https://doi.org/10.1016/j.jsg.2014.02.008, 2014.
Gholami Korzani, M., Nitschke, F., Held, S., and Kohl, T.: The Development
of a Fully Coupled Wellbore-Reservoir Simulator for Geothermal Application,
Transactions, 43, 927–936, 2019.
Gholami Korzani, M., Held, S., and Kohl, T.: Numerical based filtering
concept for feasibility evaluation and reservoir performance enhancement of
hydrothermal doublet systems, J. Petrol. Sci. Eng.,
190, 106803, https://doi.org/10.1016/j.petrol.2019.106803, 2020.
Guillou-Frottier, L., Carrë, C., Bourgine, B., Bouchot, V., and Genter,
A.: Structure of hydrothermal convection in the Upper Rhine Graben as
inferred from corrected temperature data and basin-scale numerical models,
J. Volcanol. Geoth. Res., 256, 29–49,
https://doi.org/10.1016/j.jvolgeores.2013.02.008, 2013.
Guillou-Frottier, L., Duwiquet, H., Launay, G., Taillefer, A., Roche, V., and Link, G.: On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones, Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, 2020.
Haarmann, E.: Die geologischen Verhältnisse des Piesbergs-Sattels bei
Osnabrück, Jahrbuch der Königl. Preuss. Geologischen Landesanstalt, 30, 1–58, 1909.
Harcouët-Menou, V., Guillou-Frottier, L., Bonneville, A., Adler, P.
M., and Mourzenko, V.: Hydrothermal convection in and around mineralized
fault zones: insights from two- and three-dimensional numerical modeling
applied to the Ashanti belt, Ghana, Geofluids, 9, 116–137,
https://doi.org/10.1111/j.1468-8123.2009.00247.x, 2009.
Hinze, C.: Erläuterungen zu Blatt Nr. 3614 Wallenhorst, Geologische
Karte von Niedersachsen , Niedersächsisches Landesamt Bodenforschung, Hannover, Federal Republic of Germany, 1, 154, 1979.
Huenges, E. and Ledru, P. (Eds.): Geothermal energy systems: Exploration, development
and utilization, Online-Ausg., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 463 pp., 2010.
Ingebritsen, S. E. and Manning, C. E.: Geological implications of a
permeability-depth curve for the continental crust, Geology, 27, 1107,
https://doi.org/10.1130/0091-7613(1999)027<1107:GIOAPD>2.3.CO;2, 1999.
Jobmann, M. and Clauser, C.: Heat advection versus conduction at the KTB:
possible reasons for vertical variations in heat-flow density, Geophys. J. Int., 119, 44–68,
https://doi.org/10.1111/j.1365-246X.1994.tb00912.x, 1994.
Kämmlein, M., Dietl, C., and Stollhofen, H.: The Franconian Basin
thermal anomaly: testing its origin by conceptual 2-D models of deep-seated
heat sources covered by low thermal conductivity sediments, Int. J. Energy
Environ. Eng., 10, 389–412, https://doi.org/10.1007/s40095-019-00315-2, 2019.
Kohl, T., Bächler, D., and Rybach, L. (Eds.): Steps towards a comprehensive
thermo-hydraulic analysis of the HDR test site Soultz-sous-Forêts, in:
Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000, 2671–2676, 2000.
Kuang, X. and Jiao, J. J.: An integrated permeability-depth model for
Earth's crust, Geophys. Res. Lett., 41, 7539–7545,
https://doi.org/10.1002/2014GL061999, 2014.
Kühn, M. and Gessner, K.: Testing Hypotheses for the Mount Isa Copper
Mineralisation with Numerical Simulations, Surv. Geophys., 30, 253–268,
https://doi.org/10.1007/s10712-009-9064-4, 2009.
Lampe, C. and Person, M.: Episodic hydrothermal fluid flow in the Upper
Rhinegraben (Germany), J. Geochem. Explor., 69-70, 37–40,
https://doi.org/10.1016/S0375-6742(00)00049-2, 2000.
Liewig, N. and Clauer, N.: K–Ar dating of varied microtextural illite in
Permian gas reservoirs, northern Germany, Clay Miner., 35, 271–281,
https://doi.org/10.1180/000985500546648, 2000.
Linstrom, P. J. and Mallard, W. G.: The NIST Chemistry WebBook: A Chemical
Data Resource on the Internet, J. Chem. Eng. Data, 46, 1059–1063,
https://doi.org/10.1021/je000236i, 2001.
López, D. L. and Smith, L.: Fluid flow in fault zones: analysis of the
interplay of convective circulation and topographically driven Groundwater
Flow, Water Resour. Res., 31, 1489–1503, https://doi.org/10.1029/95WR00422,
1995.
López, D. L. and Smith, L.: Fluid flow in fault zones: Influence of
hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer
regime, Water Resour. Res., 32, 3227–3235,
https://doi.org/10.1029/96WR02101, 1996.
Lucazeau, F.: Analysis and Mapping of an Updated Terrestrial Heat Flow Data
Set, Geochem. Geophys. Geosy., 20, 4001–4024,
https://doi.org/10.1029/2019GC008389, 2019.
Magri, F., Littke, R., Rodon, S., Bayer, U., and Urai, J. L.: Temperature
fields, petroleum maturation and fluid flow in the vicinity of salt domes, in:
Dynamics of Complex Intracontinental Basins: The Central European Basin
System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer, 323–344, https://gfzpublic.gfz-potsdam.de/pubman/item/item_237239 (last access: 10 October 2022), 2008.
Magri, F., Möller, S., Inbar, N., Möller, P., Raggad, M.,
Rödiger, T., Rosenthal, E., and Siebert, C.: 2D and 3D coexisting modes
of thermal convection in fractured hydrothermal systems – Implications for
transboundary flow in the Lower Yarmouk Gorge, Mar. Petrol. Geol.,
78, 750–758, https://doi.org/10.1016/j.marpetgeo.2016.10.002, 2016.
Malkovsky, V. I. and Magri, F.: Thermal convection of temperature-dependent
viscous fluids within three-dimensional faulted geothermal systems:
Estimation from linear and numerical analyses, Water Resour. Res., 52,
2855–2867, https://doi.org/10.1002/2015WR018001, 2016.
Manning, C. E. and Ingebritsen, S. E.: Permeability of the continental
crust: Implications of geothermal data and metamorphic systems, Rev.
Geophys., 37, 127–150, https://doi.org/10.1029/1998RG900002, 1999.
McKenna, J. R. and Blackwell, D. D.: Numerical modeling of transient Basin
and Range extensional geothermal systems, Geothermics, 33, 457–476,
https://doi.org/10.1016/j.geothermics.2003.10.001, 2004.
Moeck, I. S.: Catalog of geothermal play types based on geologic controls,
Renew. Sust. Energ. Rev., 37, 867–882,
https://doi.org/10.1016/j.rser.2014.05.032, 2014.
Nield, D. A. and Bejan, A.: Convection in porous media, 5th edn., Springer, 988 pp., ISBN 978-3-319-49561-3, 2017.
O'Brien, J. J. and Lerche, I.: Impact of heat flux anomalies around salt
diapirs and salt sheets in the Gulf Coast on hydrocarbon maturity, Gulf
Coast Association of Geological Societies Transactions, 38, 231–243, 1988.
Panja, P., McLennan, J., and Green, S.: Influence of permeability anisotropy
and layering on geothermal battery energy storage, Geothermics, 90, 101998,
https://doi.org/10.1016/j.geothermics.2020.101998, 2021.
Parry, W.: Fault-fluid compositions from fluid-inclusion observations and
solubilities of fracture-sealing minerals, Tectonophysics, 290, 1–26,
https://doi.org/10.1016/S0040-1951(98)00013-4, 1998.
Permann, C. J., Gaston, D. R., Andrš, D., Carlsen, R. W., Kong, F.,
Lindsay, A. D., Miller, J. M., Peterson, J. W., Slaughter, A. E., Stogner,
R. H., and Martineau, R. C.: MOOSE: Enabling massively parallel multiphysics
simulation, SoftwareX, 11, 100430,
https://doi.org/10.1016/j.softx.2020.100430, 2020.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: The origin of
deep geothermal anomalies in the German Molasse Basin: results from 3D
numerical models of coupled fluid flow and heat transport, Geotherm. Energy,
5, 1, https://doi.org/10.1186/s40517-016-0059-3, 2017.
Saar, M. O. and Manga, M.: Depth dependence of permeability in the Oregon
Cascades inferred from hydrogeologic, thermal, seismic, and magmatic
modeling constraints, J. Geophys. Res., 109, B04204,
https://doi.org/10.1029/2003JB002855, 2004.
Schilling, O., Sheldon, H. A., Reid, L. B., and Corbel, S.: Hydrothermal
models of the Perth metropolitan area, Western Australia: implications for
geothermal energy, Hydrogeol. J., 21, 605–621,
https://doi.org/10.1007/s10040-012-0945-0, 2013.
Schultz, R. A., Okubo, C. H., and Wilkins, S. J.: Displacement-length scaling relations for faults on the terrestrial planets, J. Struct. Geol., 28, 2182–2193, https://doi.org/10.1016/j.jsg.2006.03.034, 2006.
Scibek, J.: Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites, Scientific Data, 7, 95, https://doi.org/10.1038/s41597-020-0435-5, 2020.
Senglaub, Y., Littke, R., and Brix, M. R.: Numerical modelling of burial and
temperature history as an approach for an alternative interpretation of the
Bramsche anomaly, Lower Saxony Basin, Int. J. Earth Sci., 95,
204–224, https://doi.org/10.1007/s00531-005-0033-y, 2006.
Sheldon, H. A., Florio, B., Trefry, M. G., Reid, L. B., Ricard, L. P., and
Ghori, K. A. R.: The potential for convection and implications for
geothermal energy in the Perth Basin, Western Australia, Hydrogeol. J., 20,
1251–1268, https://doi.org/10.1007/s10040-012-0886-7, 2012.
Shipton, Z. K., Soden, A. M., Kirkpatrick, J. D., Bright, A. M., and Lunn, R. J.: How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: Radiated Energy and the Physics of Faulting, edited by: Abercrombie, R., McGarr, A., Kanamori, H., and Di Toro, G., American Geophysical Union, Washington, D. C., 193–198, https://doi.org/10.1029/170GM19, 2006.
Smith, L. and Chapman, D. S.: On the thermal effects of groundwater flow: 1.
Regional scale systems, J. Geophys. Res., 88, 593–608,
https://doi.org/10.1029/JB088iB01p00593, 1983.
Torabi, A. and Berg, S. S.: Scaling of fault attributes: A review, Marine and Petroleum Geology, 28, 1444–1460, https://doi.org/10.1016/j.marpetgeo.2011.04.003, 2011.
Watanabe, N., Blöcher, G., Cacace, M., Held, S., and Kohl, T.: Geoenergy Modeling III: Enhanced Geothermal Systems, Springer Cham, 104 pp., ISBN 978-3-319-46579-1, 2017.
Will, P., Lüders, V., Wemmer, K., and Gilg, H. A.: Pyrophyllite
formation in the thermal aureole of a hydrothermal system in the Lower
Saxony Basin, Germany, Geofluids, 16, 349–363,
https://doi.org/10.1111/gfl.12154, 2016.
Wisian, K. W. and Blackwell, D. D.: Numerical modeling of Basin and Range
geothermal systems, Geothermics, 33, 713–741,
https://doi.org/10.1016/j.geothermics.2004.01.002, 2004a.
Wisian, K. W. and Blackwell, D. D.: Numerical modeling of Basin and Range
geothermal systems, Geothermics, 33, 713–741,
https://doi.org/10.1016/j.geothermics.2004.01.002, 2004b.
Wuestefeld, P., Hilgers, C., Koehrer, B., Hoehne, M., Steindorf, P., Schurk,
K., Becker, S., and Bertier, P.: Reservoir heterogeneity in Upper
Carboniferous tight gas sandstones: Lessons learned from an analog study,
in: SPE/EAGE European Unconventional Resources Conference and Exhibition,
Vienna, Austria, 25–27 February, 1–10, https://doi.org/10.2118/167793-MS, 2014.
Wüstefeld, P., Hilse, U., Koehrer, B., Adelmann, D., and Hilgers, C.:
Critical evaluation of an Upper Carboniferous tight gas sandstone reservoir
analog: Diagenesis and petrophysical aspects, Mar. Petrol. Geol.,
86, 689–710, https://doi.org/10.1016/j.marpetgeo.2017.05.034, 2017a.
Wüstefeld, P., Hilse, U., Lüders, V., Wemmer, K., Koehrer, B., and
Hilgers, C.: Kilometer-scale fault-related thermal anomalies in tight gas
sandstones, Mar. Petrol. Geol., 86, 288–303,
https://doi.org/10.1016/j.marpetgeo.2017.05.015, 2017b.
Zwingmann, H., Clauer, N., and Gaupp, R.: Timing of fluid flow in a
sandstone reservoir of the north German Rotliegend (Permian) by K–Ar dating
of related hydrothermal illite, Geological Society, London, Special
Publications, 144, 91–106, https://doi.org/10.1144/GSL.SP.1998.144.01.07,
1998.
Zwingmann, H., Clauer, N., and Gaupp, R.: Structure-related geochemical
(REE) and isotopic (K–Ar, Rb–Sr, δ18O) characteristics of clay minerals
from Rotliegend sandstone reservoirs (Permian, northern Germany), Geochim. Cosmochim. Ac., 63, 2805–2823,
https://doi.org/10.1016/S0016-7037(99)00198-2, 1999.
Short summary
The physical processes leading to the kilometre-scale thermal anomaly in faulted tight sandstones are numerically investigated. The fluid-flow pathways, heat-transfer types and interactions among different convective and advective flow modes are systematically identified. The methodologies and results can be applied to interpret hydrothermal convection-related geological phenomena and to draw implications for future petroleum and geothermal exploration and exploitation in analogous settings.
The physical processes leading to the kilometre-scale thermal anomaly in faulted tight...