Articles | Volume 15, issue 4
https://doi.org/10.5194/se-15-405-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-405-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lahar events in the last 2000 years from Vesuvius eruptions – Part 1: Distribution and impact on densely inhabited territory estimated from field data analysis
Mauro Antonio Di Vito
CORRESPONDING AUTHOR
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Napoli Osservatorio Vesuviano, Naples, Italy
Ilaria Rucco
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
Sandro de Vita
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Napoli Osservatorio Vesuviano, Naples, Italy
Domenico Maria Doronzo
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Napoli Osservatorio Vesuviano, Naples, Italy
Marina Bisson
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Pisa, Pisa, Italy
Mattia de' Michieli Vitturi
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Pisa, Pisa, Italy
Mauro Rosi
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Laura Sandri
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Bologna, Bologna, Italy
Giovanni Zanchetta
Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
Elena Zanella
Dipartimento di Scienze della Terra, Università di Torino, Turin, Italy
Antonio Costa
Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Bologna, Bologna, Italy
Related authors
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Lucia Nardone, Roberta Esposito, Danilo Galluzzo, Simona Petrosino, Paola Cusano, Mario La Rocca, Mauro Antonio Di Vito, and Francesca Bianco
Adv. Geosci., 52, 75–85, https://doi.org/10.5194/adgeo-52-75-2020, https://doi.org/10.5194/adgeo-52-75-2020, 2020
Short summary
Short summary
We studied the subsoil structure of the Campi Flegrei area using both spectral ratios and array techniques (f-k and MSPAC) applied to seismic noise recorded by three different array. By means of joint inversion of dispersion curve and spectral ratio we obtained a Vs model, that is in a good agreement with the stratigraphic information available in the area. In areas such as Campi Flegrei the definition of the velocity model is a crucial issue to characterize the physical parameters of the medium
Luigi Mereu, Manuel Stocchi, Alexander Garcia, Michele Prestifilippo, Laura Sandri, Costanza Bonadonna, and Simona Scollo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2028, https://doi.org/10.5194/egusphere-2024-2028, 2024
Short summary
Short summary
Considering the question about the quantification of tephra mass deposited on roads following an or a series of explosive volcanic eruptions, in this work we assessed the cumulated tephra mass on the road networks in three selected towns on Etna’s eastern flank during several paroxysms in 2021. This is a first attempt to estimate the amount of tephra that must be removed during a crisis and could be reused instead of disposed, converting in this way a potential problem into an opportunity.
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Fabio Dioguardi, Giovanni Chiodini, and Antonio Costa
EGUsphere, https://doi.org/10.5194/egusphere-2023-2867, https://doi.org/10.5194/egusphere-2023-2867, 2023
Short summary
Short summary
We present results of non-volcanic gas (CO2) hazard assessment at the Mefite d’Ansanto area (Italy) where a cold gas stream, which had already been lethal for humans and animals, forms in the valleys surrounding the emission zone. We took the uncertainty related to the gas emission and meteorological conditions into account. Results include maps of CO2 concentration at defined probability levels and of the probability to overcome specified CO2 concentrations over specified time intervals.
Laura Sandri, Alexander Garcia, Cristina Proietti, Stefano Branca, Gaetana Ganci, and Annalisa Cappello
EGUsphere, https://doi.org/10.5194/egusphere-2023-2624, https://doi.org/10.5194/egusphere-2023-2624, 2023
Short summary
Short summary
In this paper we propose a probability map that shows where most likely, in the future, flank eruptions will occur at Etna volcano (in Sicily, Italy). The map updates previous studies since it is based on a much longer record of the past flank eruptive fissures that opened in the last 4000 years on Etna. We also propose sensitivity tests to evaluate how much the assumptions made change the final probability evaluation.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Samantha Engwell
Geosci. Model Dev., 16, 6309–6336, https://doi.org/10.5194/gmd-16-6309-2023, https://doi.org/10.5194/gmd-16-6309-2023, 2023
Short summary
Short summary
We present version 2 of the numerical code IMEX-SfloW2D. With this version it is possible to simulate a wide range of volcanic mass flows (pyroclastic avalanches, lahars, pyroclastic surges), and here we present its application to transient dilute pyroclastic density currents (PDCs). A simulation of the 1883 Krakatau eruption demonstrates the capability of the numerical model to face a complex natural case involving the propagation of PDCs over the sea surface and across topographic obstacles.
Gro B. M. Pedersen, Melissa A. Pfeffer, Sara Barsotti, Simone Tarquini, Mattia de'Michieli Vitturi, Bergrún A. Óladóttir, and Ragnar Heiðar Þrastarson
Nat. Hazards Earth Syst. Sci., 23, 3147–3168, https://doi.org/10.5194/nhess-23-3147-2023, https://doi.org/10.5194/nhess-23-3147-2023, 2023
Short summary
Short summary
The lava eruption at Fagradalsfjall in 2021 was the most visited eruption in Iceland, with thousands of visitors per day for 6 months. To address the short- and long-term danger of lava inundating infrastructure and hiking paths, we used the lava flow model MrLavaLoba before and during the eruption. These simulations helped communicate lava hazards to stakeholders and can be used as a case study for lava hazard assessment for future eruptions in the area, which are likely to be more destructive.
Leonardo Mingari, Antonio Costa, Giovanni Macedonio, and Arnau Folch
Geosci. Model Dev., 16, 3459–3478, https://doi.org/10.5194/gmd-16-3459-2023, https://doi.org/10.5194/gmd-16-3459-2023, 2023
Short summary
Short summary
Two novel techniques for ensemble-based data assimilation, suitable for semi-positive-definite variables with highly skewed uncertainty distributions such as tephra deposit mass loading, are applied to reconstruct the tephra fallout deposit resulting from the 2015 Calbuco eruption in Chile. The deposit spatial distribution and the ashfall volume according to the analyses are in good agreement with estimations based on field measurements and isopach maps reported in previous studies.
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023, https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary
Short summary
A new methodology to calculate a probabilistic long-term tephra fallout hazard assessment in southern Italy from the Neapolitan volcanoes is provided. By means of thousands of numerical simulations we quantify the mean annual frequency with which the tephra load at the ground exceeds critical thresholds in 50 years. The output hazard maps account for changes in eruptive regimes of each volcano and are also comparable with those of other natural disasters in which more sources are integrated.
Andrea Bevilacqua, Alvaro Aravena, Willy Aspinall, Antonio Costa, Sue Mahony, Augusto Neri, Stephen Sparks, and Brittain Hill
Nat. Hazards Earth Syst. Sci., 22, 3329–3348, https://doi.org/10.5194/nhess-22-3329-2022, https://doi.org/10.5194/nhess-22-3329-2022, 2022
Short summary
Short summary
We evaluate through first-order kinetic energy models, the minimum volume and mass of a pyroclastic density current generated at the Aso caldera that might affect any of five distal infrastructure sites. These target sites are all located 115–145 km from the caldera, but in well-separated directions. Our constraints of volume and mass are then compared with the scale of Aso-4, the largest caldera-forming eruption of Aso.
Costanza Bonadonna, Ali Asgary, Franco Romerio, Tais Zulemyan, Corine Frischknecht, Chiara Cristiani, Mauro Rosi, Chris E. Gregg, Sebastien Biass, Marco Pistolesi, Scira Menoni, and Antonio Ricciardi
Nat. Hazards Earth Syst. Sci., 22, 1083–1108, https://doi.org/10.5194/nhess-22-1083-2022, https://doi.org/10.5194/nhess-22-1083-2022, 2022
Short summary
Short summary
Evacuation planning and management represent a key aspect of volcanic crises because they can increase people's protection as well as minimize the potential impacts on the economy, properties and infrastructure of the affected area. We present a simulation tool that assesses the effectiveness of different evacuation scenarios as well as a model to assess the economic impact of evacuation as a function of evacuation duration and starting period using the island of Vulcano (Italy) as a case study.
Leonardo Mingari, Arnau Folch, Andrew T. Prata, Federica Pardini, Giovanni Macedonio, and Antonio Costa
Atmos. Chem. Phys., 22, 1773–1792, https://doi.org/10.5194/acp-22-1773-2022, https://doi.org/10.5194/acp-22-1773-2022, 2022
Short summary
Short summary
We present a new implementation of an ensemble-based data assimilation method to improve forecasting of volcanic aerosols. This system can be efficiently integrated into operational workflows by exploiting high-performance computing resources. We found a dramatic improvement of forecast quality when satellite retrievals are continuously assimilated. Management of volcanic risk and reduction of aviation impacts can strongly benefit from this research.
Manuel Titos, Beatriz Martínez Montesinos, Sara Barsotti, Laura Sandri, Arnau Folch, Leonardo Mingari, Giovanni Macedonio, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 22, 139–163, https://doi.org/10.5194/nhess-22-139-2022, https://doi.org/10.5194/nhess-22-139-2022, 2022
Short summary
Short summary
This work addresses a quantitative hazard assessment on the possible impact on air traffic of a future ash-forming eruption on the island of Jan Mayen. Through high-performance computing resources, we numerically simulate the transport of ash clouds and ash concentration at different flight levels over an area covering Iceland and the UK using the FALL3D model. This approach allows us to derive a set of probability maps explaining the extent and persisting concentration conditions of ash clouds.
Mattia de' Michieli Vitturi and Federica Pardini
Geosci. Model Dev., 14, 1345–1377, https://doi.org/10.5194/gmd-14-1345-2021, https://doi.org/10.5194/gmd-14-1345-2021, 2021
Short summary
Short summary
Here, we present PLUME-MoM-TSM, a volcanic plume model that allows us to quantify the formation of aggregates during the rise of the plume, model the phase change of water, and include the possibility to simulate the initial spreading of the tephra umbrella cloud intruding from the volcanic column into the atmosphere. The model is first applied to the 2015 Calbuco eruption (Chile) and provides an analytical relationship between the upwind spreading and some characteristic of the volcanic column.
Andrew T. Prata, Leonardo Mingari, Arnau Folch, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 14, 409–436, https://doi.org/10.5194/gmd-14-409-2021, https://doi.org/10.5194/gmd-14-409-2021, 2021
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details new model applications and validation of FALL3D-8.0 using satellite, ground-deposit load and radionuclide data.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Lucia Nardone, Roberta Esposito, Danilo Galluzzo, Simona Petrosino, Paola Cusano, Mario La Rocca, Mauro Antonio Di Vito, and Francesca Bianco
Adv. Geosci., 52, 75–85, https://doi.org/10.5194/adgeo-52-75-2020, https://doi.org/10.5194/adgeo-52-75-2020, 2020
Short summary
Short summary
We studied the subsoil structure of the Campi Flegrei area using both spectral ratios and array techniques (f-k and MSPAC) applied to seismic noise recorded by three different array. By means of joint inversion of dispersion curve and spectral ratio we obtained a Vs model, that is in a good agreement with the stratigraphic information available in the area. In areas such as Campi Flegrei the definition of the velocity model is a crucial issue to characterize the physical parameters of the medium
Sara Lenzi, Matteo Cerminara, Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, and Antonello Provenzale
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-28, https://doi.org/10.5194/gmd-2020-28, 2020
Revised manuscript not accepted
Arnau Folch, Leonardo Mingari, Natalia Gutierrez, Mauricio Hanzich, Giovanni Macedonio, and Antonio Costa
Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020, https://doi.org/10.5194/gmd-13-1431-2020, 2020
Short summary
Short summary
This paper presents FALL3D-8.0, the latest version release of an open-source code with a track record of 15+ years and a growing number of users in the volcanological and atmospheric communities. The code, originally conceived for atmospheric dispersal and deposition of tephra particles, has been extended to model other types of particles, aerosols and radionuclides. This paper details the FALL3D-8.0 model physics and the numerical implementation of the code.
Silvia Massaro, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra
Solid Earth, 10, 1429–1450, https://doi.org/10.5194/se-10-1429-2019, https://doi.org/10.5194/se-10-1429-2019, 2019
Short summary
Short summary
The Fuego de Colima volcano (Mexico) shows a complex eruptive history, with periods of rapid and slow lava dome growth punctuated by explosive activity. Here we reconstructed the 1998–2018 average discharge rate by means of satellite thermal data and the literature. Using spectral and wavelet analysis, we found a multi-term cyclic behavior that is in good agreement with numerical modeling, accounting for a variable magmatic feeding system composed of a single or double magma chamber system.
Monica Bini, Giovanni Zanchetta, Aurel Perşoiu, Rosine Cartier, Albert Català, Isabel Cacho, Jonathan R. Dean, Federico Di Rita, Russell N. Drysdale, Martin Finnè, Ilaria Isola, Bassem Jalali, Fabrizio Lirer, Donatella Magri, Alessia Masi, Leszek Marks, Anna Maria Mercuri, Odile Peyron, Laura Sadori, Marie-Alexandrine Sicre, Fabian Welc, Christoph Zielhofer, and Elodie Brisset
Clim. Past, 15, 555–577, https://doi.org/10.5194/cp-15-555-2019, https://doi.org/10.5194/cp-15-555-2019, 2019
Short summary
Short summary
The Mediterranean region has returned some of the clearest evidence of a climatically dry period occurring approximately 4200 years ago. We reviewed selected proxies to infer regional climate patterns between 4.3 and 3.8 ka. Temperature data suggest a cooling anomaly, even if this is not uniform, whereas winter was drier, along with dry summers. However, some exceptions to this prevail, where wetter condition seems to have persisted, suggesting regional heterogeneity.
Mattia de' Michieli Vitturi, Tomaso Esposti Ongaro, Giacomo Lari, and Alvaro Aravena
Geosci. Model Dev., 12, 581–595, https://doi.org/10.5194/gmd-12-581-2019, https://doi.org/10.5194/gmd-12-581-2019, 2019
Short summary
Short summary
Pyroclastic avalanches are a type of granular flow generated at active volcanoes by different mechanisms, including the collapse of steep pyroclastic deposits (e.g., scoria and ash cones) and fountaining during moderately explosive eruptions. We present IMEX_SfloW2D, a depth-averaged flow model describing the granular mixture as a single-phase granular fluid. Benchmark cases and preliminary application to the simulation of the 11 February pyroclastic avalanche at Mt. Etna (Italy) are shown.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Matthieu Poret, Stefano Corradini, Luca Merucci, Antonio Costa, Daniele Andronico, Mario Montopoli, Gianfranco Vulpiani, and Valentin Freret-Lorgeril
Atmos. Chem. Phys., 18, 4695–4714, https://doi.org/10.5194/acp-18-4695-2018, https://doi.org/10.5194/acp-18-4695-2018, 2018
Short summary
Short summary
This study aims at proposing a method to better assess the initial magma fragmentation produced during explosive volcanic eruptions. We worked on merging field, radar, and satellite data to estimate the total grain-size distribution, which is used within simulations to reconstruct the tephra loading and far-travelling airborne ash dispersal. This approach is applied to 23 November 2013, giving the very fine ash fraction related to volcanic hazards (e.g. air traffic safety).
Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 17, 861–879, https://doi.org/10.5194/nhess-17-861-2017, https://doi.org/10.5194/nhess-17-861-2017, 2017
Short summary
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Bernd Wagner, Thomas Wilke, Alexander Francke, Christian Albrecht, Henrike Baumgarten, Adele Bertini, Nathalie Combourieu-Nebout, Aleksandra Cvetkoska, Michele D'Addabbo, Timme H. Donders, Kirstin Föller, Biagio Giaccio, Andon Grazhdani, Torsten Hauffe, Jens Holtvoeth, Sebastien Joannin, Elena Jovanovska, Janna Just, Katerina Kouli, Andreas Koutsodendris, Sebastian Krastel, Jack H. Lacey, Niklas Leicher, Melanie J. Leng, Zlatko Levkov, Katja Lindhorst, Alessia Masi, Anna M. Mercuri, Sebastien Nomade, Norbert Nowaczyk, Konstantinos Panagiotopoulos, Odile Peyron, Jane M. Reed, Eleonora Regattieri, Laura Sadori, Leonardo Sagnotti, Björn Stelbrink, Roberto Sulpizio, Slavica Tofilovska, Paola Torri, Hendrik Vogel, Thomas Wagner, Friederike Wagner-Cremer, George A. Wolff, Thomas Wonik, Giovanni Zanchetta, and Xiaosen S. Zhang
Biogeosciences, 14, 2033–2054, https://doi.org/10.5194/bg-14-2033-2017, https://doi.org/10.5194/bg-14-2033-2017, 2017
Short summary
Short summary
Lake Ohrid is considered to be the oldest existing lake in Europe. Moreover, it has a very high degree of endemic biodiversity. During a drilling campaign at Lake Ohrid in 2013, a 569 m long sediment sequence was recovered from Lake Ohrid. The ongoing studies of this record provide first important information on the environmental and evolutionary history of the lake and the reasons for its high endimic biodiversity.
Giovanni Zanchetta, Eleonora Regattieri, Biagio Giaccio, Bernd Wagner, Roberto Sulpizio, Alex Francke, Hendrik Vogel, Laura Sadori, Alessia Masi, Gaia Sinopoli, Jack H. Lacey, Melanie J. Leng, and Niklas Leicher
Biogeosciences, 13, 2757–2768, https://doi.org/10.5194/bg-13-2757-2016, https://doi.org/10.5194/bg-13-2757-2016, 2016
Short summary
Short summary
Chronology is fundamental in paleoclimatology for understanding timing of events and their origin. In this paper we try to obtain a more detailed chronology for the interval comprised between ca. 140 and 70 ka for the DEEP core in Lake Ohrid using regional independently-dated archives (i.e. speleothems and/or lacustrine succession with well-dated volcanic layers). This allows to insert the DEEP chronology within a common chronological frame between different continental and marine proxy records.
Niklas Leicher, Giovanni Zanchetta, Roberto Sulpizio, Biagio Giaccio, Bernd Wagner, Sebastien Nomade, Alexander Francke, and Paola Del Carlo
Biogeosciences, 13, 2151–2178, https://doi.org/10.5194/bg-13-2151-2016, https://doi.org/10.5194/bg-13-2151-2016, 2016
Jack H. Lacey, Melanie J. Leng, Alexander Francke, Hilary J. Sloane, Antoni Milodowski, Hendrik Vogel, Henrike Baumgarten, Giovanni Zanchetta, and Bernd Wagner
Biogeosciences, 13, 1801–1820, https://doi.org/10.5194/bg-13-1801-2016, https://doi.org/10.5194/bg-13-1801-2016, 2016
Short summary
Short summary
We use stable isotope data from carbonates to provide a palaeoenvironmental reconstruction covering the last 637 kyr at Lake Ohrid (FYROM/Albania). Our results indicate a relatively stable climate until 450 ka, wetter climate conditions at 400–250 ka, and a transition to a drier climate after 250 ka. This work emphasises the importance of Lake Ohrid as a valuable archive of climate change in the northern Mediterranean region.
Laura Sadori, Andreas Koutsodendris, Konstantinos Panagiotopoulos, Alessia Masi, Adele Bertini, Nathalie Combourieu-Nebout, Alexander Francke, Katerina Kouli, Sébastien Joannin, Anna Maria Mercuri, Odile Peyron, Paola Torri, Bernd Wagner, Giovanni Zanchetta, Gaia Sinopoli, and Timme H. Donders
Biogeosciences, 13, 1423–1437, https://doi.org/10.5194/bg-13-1423-2016, https://doi.org/10.5194/bg-13-1423-2016, 2016
Short summary
Short summary
Lake Ohrid (FYROM/Albania) is the deepest, largest and oldest lake in Europe. To understand the climatic and environmental evolution of its area, a palynological study was undertaken for the last 500 ka. We found a correspondence between forested/non-forested periods and glacial-interglacial cycles of marine isotope stratigraphy. Our record shows a progressive change from cooler and wetter to warmer and dryer interglacial conditions. This shift is also visible in glacial vegetation.
Alexander Francke, Bernd Wagner, Janna Just, Niklas Leicher, Raphael Gromig, Henrike Baumgarten, Hendrik Vogel, Jack H. Lacey, Laura Sadori, Thomas Wonik, Melanie J. Leng, Giovanni Zanchetta, Roberto Sulpizio, and Biagio Giaccio
Biogeosciences, 13, 1179–1196, https://doi.org/10.5194/bg-13-1179-2016, https://doi.org/10.5194/bg-13-1179-2016, 2016
Short summary
Short summary
Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old. To recover a long paleoclimate record for the Mediterranean region, a deep drilling was carried out in 2013 within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site record.
A. Folch, A. Costa, and G. Macedonio
Geosci. Model Dev., 9, 431–450, https://doi.org/10.5194/gmd-9-431-2016, https://doi.org/10.5194/gmd-9-431-2016, 2016
Short summary
Short summary
We present FPLUME-1.0, a steady-state 1-D cross-section-averaged eruption column model based on the buoyant plume theory (BPT). The model accounts for plume bending by wind, entrainment of ambient moisture, effects of water phase changes, particle fallout and re-entrainment, a new parameterization for the air entrainment coefficients and a model for wet aggregation of ash particles in presence of liquid water or ice.
H. Baumgarten, T. Wonik, D. C. Tanner, A. Francke, B. Wagner, G. Zanchetta, R. Sulpizio, B. Giaccio, and S. Nomade
Biogeosciences, 12, 7453–7465, https://doi.org/10.5194/bg-12-7453-2015, https://doi.org/10.5194/bg-12-7453-2015, 2015
Short summary
Short summary
Gamma ray (GR) fluctuations and K values from downhole logging data obtained in the sediments of Lake Ohrid correlate with the global climate reference record (LR04 stack from δ18O) (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles and document warm, humid and cold, drier periods. A robust age model for the downhole logging data over the past 630kyr was established and will play a crucial role for other working groups.
B. Giaccio, E. Regattieri, G. Zanchetta, B. Wagner, P. Galli, G. Mannella, E. Niespolo, E. Peronace, P. R. Renne, S. Nomade, G. P. Cavinato, P. Messina, A. Sposato, C. Boschi, F. Florindo, F. Marra, and L. Sadori
Sci. Dril., 20, 13–19, https://doi.org/10.5194/sd-20-13-2015, https://doi.org/10.5194/sd-20-13-2015, 2015
Short summary
Short summary
As a pilot study for a possible depth-drilling project, an 82m long sedimentary succession was retrieved from the Fucino Basin, central Apennines, which hosts ca. 900m of lacustrine sediments. The acquired paleoclimatic record, from the retrieved core, spans the last 180ka and reveals noticeable variations related to the last two glacial-interglacial cycles. In light of these results, the Fucino sediments are likely to provide one of the longest continuous record for the last 2Ma.
M. D'Addabbo, R. Sulpizio, M. Guidi, G. Capitani, P. Mantecca, and G. Zanchetta
Biogeosciences, 12, 7087–7106, https://doi.org/10.5194/bg-12-7087-2015, https://doi.org/10.5194/bg-12-7087-2015, 2015
Short summary
Short summary
Leaching experiments were carried out on fresh ash samples from the 2012 Popocatépetl, and 2011/12 Etna eruptions, in order to investigate the release of compounds in water. Results were discussed in the light of changing pH and release of compounds for the different leachates. They were used for toxicity experiments on living biota (Xenopus laevis). They are mildly toxic, and no significant differences exist between the toxic profiles of the two leachates.
M. de' Michieli Vitturi, A. Neri, and S. Barsotti
Geosci. Model Dev., 8, 2447–2463, https://doi.org/10.5194/gmd-8-2447-2015, https://doi.org/10.5194/gmd-8-2447-2015, 2015
Short summary
Short summary
In this paper a new mathematical model of volcanic plume, named Plume-MoM, is presented. The model is based on the method of moments and it is able to describe the continuous variability in the grain size distribution (GSD) of the pyroclastic mixture ejected at the vent, crucial to characterize the source conditions of ash dispersal models. Results show that the GSD at the top of the plume is similar to that at the base and that plume height is weakly affected by the parameters of the GSD.
R. Tonini, L. Sandri, A. Costa, and J. Selva
Nat. Hazards Earth Syst. Sci., 15, 409–415, https://doi.org/10.5194/nhess-15-409-2015, https://doi.org/10.5194/nhess-15-409-2015, 2015
B. Wagner, T. Wilke, S. Krastel, G. Zanchetta, R. Sulpizio, K. Reicherter, M. J. Leng, A. Grazhdani, S. Trajanovski, A. Francke, K. Lindhorst, Z. Levkov, A. Cvetkoska, J. M. Reed, X. Zhang, J. H. Lacey, T. Wonik, H. Baumgarten, and H. Vogel
Sci. Dril., 17, 19–29, https://doi.org/10.5194/sd-17-19-2014, https://doi.org/10.5194/sd-17-19-2014, 2014
B. Wagner, M. J. Leng, T. Wilke, A. Böhm, K. Panagiotopoulos, H. Vogel, J. H. Lacey, G. Zanchetta, and R. Sulpizio
Clim. Past, 10, 261–267, https://doi.org/10.5194/cp-10-261-2014, https://doi.org/10.5194/cp-10-261-2014, 2014
M. Magny, N. Combourieu-Nebout, J. L. de Beaulieu, V. Bout-Roumazeilles, D. Colombaroli, S. Desprat, A. Francke, S. Joannin, E. Ortu, O. Peyron, M. Revel, L. Sadori, G. Siani, M. A. Sicre, S. Samartin, A. Simonneau, W. Tinner, B. Vannière, B. Wagner, G. Zanchetta, F. Anselmetti, E. Brugiapaglia, E. Chapron, M. Debret, M. Desmet, J. Didier, L. Essallami, D. Galop, A. Gilli, J. N. Haas, N. Kallel, L. Millet, A. Stock, J. L. Turon, and S. Wirth
Clim. Past, 9, 2043–2071, https://doi.org/10.5194/cp-9-2043-2013, https://doi.org/10.5194/cp-9-2043-2013, 2013
L. Sadori, E. Ortu, O. Peyron, G. Zanchetta, B. Vannière, M. Desmet, and M. Magny
Clim. Past, 9, 1969–1984, https://doi.org/10.5194/cp-9-1969-2013, https://doi.org/10.5194/cp-9-1969-2013, 2013
M. Damaschke, R. Sulpizio, G. Zanchetta, B. Wagner, A. Böhm, N. Nowaczyk, J. Rethemeyer, and A. Hilgers
Clim. Past, 9, 267–287, https://doi.org/10.5194/cp-9-267-2013, https://doi.org/10.5194/cp-9-267-2013, 2013
B. Wagner, A. Francke, R. Sulpizio, G. Zanchetta, K. Lindhorst, S. Krastel, H. Vogel, J. Rethemeyer, G. Daut, A. Grazhdani, B. Lushaj, and S. Trajanovski
Clim. Past, 8, 2069–2078, https://doi.org/10.5194/cp-8-2069-2012, https://doi.org/10.5194/cp-8-2069-2012, 2012
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Volcanology
Lahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach
Lahar events in the last 2000 years from Vesuvius eruptions – Part 3: Hazard assessment over the Campanian Plain
Transient conduit permeability controlled by a shift between compactant shear and dilatant rupture at Unzen volcano (Japan)
Reproducing pyroclastic density current deposits of the 79 CE eruption of the Somma–Vesuvius volcano using the box-model approach
Mattia de' Michieli Vitturi, Antonio Costa, Mauro A. Di Vito, Laura Sandri, and Domenico M. Doronzo
Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, https://doi.org/10.5194/se-15-437-2024, 2024
Short summary
Short summary
We present a numerical model for lahars generated by the mobilization of tephra deposits from a reference size eruption at Somma–Vesuvius. The paper presents the model (pyhsics and numerics) and a sensitivity analysis of the processes modelled, numerical schemes, and grid resolution. This work provides the basis for application to hazard quantification for lahars in the Vesuvius area. To this end, we rely on results of the two companion papers (Part 1 on field data, Part 3 on hazard maps).
Laura Sandri, Mattia de' Michieli Vitturi, Antonio Costa, Mauro Antonio Di Vito, Ilaria Rucco, Domenico Maria Doronzo, Marina Bisson, Roberto Gianardi, Sandro de Vita, and Roberto Sulpizio
Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, https://doi.org/10.5194/se-15-459-2024, 2024
Short summary
Short summary
We study the lahar hazard due to the remobilization of tephra deposits from reference eruptions at Somma–Vesuvius. To this end, we rely on the results of two companion papers dealing with field data and model calibration and run hundreds of simulations from the catchments around the target area to capture the uncertainty in the initial parameters. We process the simulations to draw maps of the probability of overcoming thresholds in lahar flow thickness and dynamic pressure relevant for risk.
Yan Lavallée, Takahiro Miwa, James D. Ashworth, Paul A. Wallace, Jackie E. Kendrick, Rebecca Coats, Anthony Lamur, Adrian Hornby, Kai-Uwe Hess, Takeshi Matsushima, Setsuya Nakada, Hiroshi Shimizu, Bernhard Ruthensteiner, and Hugh Tuffen
Solid Earth, 13, 875–900, https://doi.org/10.5194/se-13-875-2022, https://doi.org/10.5194/se-13-875-2022, 2022
Short summary
Short summary
Volcanic eruptions are controlled by the presence of gas bubbles in magma, which, in excess, can cause explosions. Eruption models lack an understanding of how gas percolates in magma flowing in a conduit. Here we study gas percolation in magma associated with the 1994–1995 eruption at Mt. Unzen, Japan. The results show that the pathways for gas escape depend on the depth and ascent rate of magma. Pathways closed at depth but opened along fractures when magma ascended rapidly near the surface.
Alessandro Tadini, Andrea Bevilacqua, Augusto Neri, Raffaello Cioni, Giovanni Biagioli, Mattia de'Michieli Vitturi, and Tomaso Esposti Ongaro
Solid Earth, 12, 119–139, https://doi.org/10.5194/se-12-119-2021, https://doi.org/10.5194/se-12-119-2021, 2021
Short summary
Short summary
In this paper we test a simplified numerical model for pyroclastic density currents or PDCs (mixtures of hot gas, lapilli and ash moving across the landscape under the effect of gravity). The aim is quantifying the differences between real and modelled deposits of some PDCs of the 79 CE eruption of Vesuvius, Italy. This step is important because in the paper it is demonstrated that this simplified model is useful for constraining input parameters for more computationally expensive models.
Cited articles
Acocella, V. and Funiciello, R.: Transverse systems along the extensional Tyrrhenian margin of Central Italy and their influence on volcanism, Tectonics, 25, 1–24, https://doi.org/10.1029/2005TC001845, 2006.
Arguden, A. T. and Rodolfo, K. S.: Sedimentologic and dynamic differences between hot and cold laharic debris flows of Mayon Volcano, Philippines, Geol. Soc. Am. Bull., 102, 865–876, 1990.
Bardot, L.: Emplacement temperature determinations of proximal pyroclastic deposits on Santorini, Greece, and their implications, B. Volcanol., 61, 450–467, https://doi.org/10.1007/PL00008911, 2000.
Bardot, L. and McClelland, E.: The reliability of emplacement temperature estimates using paleomagnetic methods: a case study from Santorini, Greece, Geophys. J. Int., 143, 39–51, https://doi.org/10.1046/j.1365-246x.2000.00186.x, 2000.
Bartole, R.: Tectonic Structure of the Latian-Campanian Shelf (Tyrrhenian Sea), Bollettino di Oceanologia Teorica Applicata, 2, 197–230, 1984.
Baumann, V., Bonadonna, C., Cuomo, S., and Moscariello, M.: Modelling of erosion processes associated with rainfall-triggered lahars following the 2011 Cordon Caulle eruption (Chile), J. Volcanol. Geoth. Res., 390, 106727, https://doi.org/10.1016/j.jvolgeores.2019.106727, 2020.
Bisson, M., Pareschi, M. T., Zanchetta, G., Sulpizio, R., and Santacroce, R.: Volcaniclastic debris-flow occurrences in the Campania region (Southern Italy) and their relation to Holocene–Late Pleistocene pyroclastic fall deposits: implications for large-scale hazard mapping, B. Volcanol., 70, 157–167, https://doi.org/10.1007/s00445-007-0127-4, 2007.
Bisson, M., Zanchetta, G., Sulpizio, R., and Demi, F.: A map for volcaniclastic debris flow hazards in Apennine areas surrounding the Vesuvius volcano (Italy), J. Maps, 9, 230–238, https://doi.org/10.1080/17445647.2013.768948, 2013.
Bisson, M., Spinetti, C., and Sulpizio, R.: Volcaniclastic flow hazard zonation in the Sub-Apennine Vesuvian area using GIS and remote sensing, Geosphere, 10, 1419–1431, https://doi.org/10.1130/GES01041.1, 2014.
Blott, S.J., and Pye, K.: Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments, Earth Surf. Proc. Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2001.
Braccini, G. C.: Dell'Incendio Fattosi nel Vesuvio a XVI di Dicembre MDCXXXI, Secondino Roncagliolo, 104 pp., https://play.google.com/store/books/details/Giulio_Cesare_Braccini_Dell_incendio_fattosi_nel_V?id=1aBxWGZR6TMC&gl=US (last access: 10 January 2024), 1632.
Brancaccio, L., Cinque, A., Romano, P., Rosskopf, C., Russo, F., Santangelo, N., and Santo, A.: Geomorphology and neotectonic evolution of a sector of the Tyrrhenian flank of the Southern Apennines (Region of Naples, Italy), Zeit. Geomorph. N. F. Suppl.-Bd., 82, 47–58, 1991.
Breard, E. C. P. and Lube, G.: Inside pyroclastic density currents – uncovering the enigmatic flow structure and transport behaviour in large-scale experiments, Earth Planet. Sc. Lett., 458, 22–36, https://doi.org/10.1016/j.epsl.2016.10.016, 2017.
Breard, E. C. P., Lube, G., Cronin, S. J., and Valentine, G. A.: Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro, B. Volcanol., 77, 100, https://doi.org/10.1007/s00445-015-0980-5, 2015.
Brocchini, D., Principe, C., Castradori, D., Laurenzi, M. A., and Gorla, L.: Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well, Miner. Petrol., 73, 67–91, https://doi.org/10.1007/s007100170011, 2001.
Capra, L., Sulpizio, R., Marquez-Ramirez, V. H., Coviello, V., Doronzo, D. M., Arambula-Mendoza, R., and Cruz, S.: The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcan de Colima (Mexico), B. Volcanol., 80, 34, https://doi.org/10.1007/s00445-018-1206-4, 2018.
Carling, P. A.: Freshwater megaflood sedimentation: What can we learn about generic processes?, Earth-Sci. Rev., 125, 87–113, https://doi.org/10.1016/j.earscirev.2013.06.002, 2013.
Carrara, E., Iacobucci, F., Pinna, E., and Rapolla, A.: Gravity and magnetic survey of the Campanian volcanic area, S. Italy, Boll. Geof. Teor. Appl., 15, 39–51, 1973.
Cas, R. A. F., Wright, H. M. N., Folkes, C. B., Lesti, C., Porreca, M., Giordano, G., and Viramonte, J. G.: The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types, B. Volcanol., 73, 1583–1609, https://doi.org/10.1007/s00445-011-0564-y, 2011.
Cinque, A. and Robustelli, G.: Alluvial and coastal hazards caused by long-range effects of Plinian eruptions: The case of the Lattari Mts. After the AD 79 eruption of Vesuvius, Geol. Soc. Lond. Spec. Publ., 322, 155–171, https://doi.org/10.1144/SP322.7, 2009.
Cioni, R., Santacroce, R., and Sbrana, A.: Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera, B. Volcanol., 60, 207–222, 1999.
Cioni, R., Gurioli, L., Lanza, R., and Zanella, E.: Temperatures of A.D. 79 pyroclastic density current deposits (Vesuvius, Italy), J. Geophys. Res., 109, B02207, https://doi.org/10.1029/2002JB002251, 2004.
Costa, J. E.: Hydraulic modeling for lahar hazards at Cascades volcanoes, Environmental Engineering Geoscience, 3, 21–30, https://doi.org/10.2113/gseegeosci.III.1.21, 1997.
D'Argenio, B., Pescatore, T. S., and Scandone, P.: Schema geologico dell'Appennino meridionale (Campania e Lucania), In: Moderne vedute sulla geologia dell'Appennino. Convegno (Roma, 16–18 Febbraio 1972), Accademia Nazionale dei Lincei, Problemi Attuali di Scienza e Cultura, Quaderni 183, 49–72, https://www.pconti.net/Scandone-Web/DArgenio1973.pdf (last access: 10 January 2024), 1973.
de' Michieli Vitturi, M., Costa, A., Di Vito, M. A., Sandri, L., and Doronzo, D. M.: Lahar events in the last 2000 years from Vesuvius eruptions – Part 2: Formulation and validation of a computational model based on a shallow layer approach, Solid Earth, 15, 437–458, https://doi.org/10.5194/se-15-437-2024, 2024.
De Simone, G. F., Perrotta, A., and Scarpati, C.: L'eruzione del 472 d.C. ed il suo impatto su alcuni siti alle falde del Vesuvio, Rivista Studi Pompeiani, 22, 61–71, http://www.jstor.org/stable/44291260 (last access: 10 January 2024), 2011.
De Vivo, B., Rolandi, G., Gans, P. B., Calvert, A., Bohrson, W. A., Spera, F. J., and Belkin, H. E.: New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy), Miner. Petrol., 73, 47–65, https://doi.org/10.1007/s007100170010, 2001.
Di Crescenzo, G. and Santo, A.: Nuovo contributo sul ruolo svolto dai livelli pomicei nelle aree di distacco delle frane di colata rapida dei massicci carbonatici campani, Convegno Nazionale La mitigazione del rischio da colate di fango a Sarno e negli altri Comuni colpiti dagli eventi del maggio 1998. Napoli, 2 e 3 maggio 2005–Sarno 4 e 5 maggio 2005, https://www.researchgate.net/publication/258515737_Nuovo_ contributo_sul_ruolo_svolto_dai_livelli_pomicei_nelle_aree_di_ distacco_delle_frane_di_colata_rapida_dei_massicci_ carbonatici_campani (last access: 10 January 2024), 2005.
Di Vito, M. A., Sulpizio, R., and Zanchetta, G.: I depositi ghiaiosi della valle dei torrenti Clanio e Acqualonga (Campania centro-orientale): significato stratigrafico e ricostruzione paleoambientale, Il Quaternario Italian Journal of Quaternary Sciences, 11, 273–286, 1998.
Di Vito, M. A., Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., Bishop, J., Tema, E., Boenzi, G., and Laforgia, E.: The Afragola settlement near Vesuvius, Italy: The destruction and abandonment of a Bronze Age village revealed by archeology, volcanology and rock-magnetism, Earth Planet. Sc. Lett., 277, 408–421, https://doi.org/10.1016/j.epsl.2008.11.006, 2009.
Di Vito, M. A., Castaldo, N., de Vita, S., Bishop, J., and Vecchio, G.: Human colonization and volcanic activity in the eastern Campania Plain (Italy) between the Eneolithic and Late Roman periods, Quatern. Int., 303, 132–141, https://doi.org/10.1016/j.quaint.2013.01.001, 2013.
Di Vito, M. A., Calcaterra, D., Petrosino, P., Zanchetta, G., de Vita, S., Marotta, E., Cesarano, M., De Simone, A., Sansivero, F., and Rucco, I.: Landslides, volcanism and volcano-tectonics: the fragility of the Neapolitan territory, Geological Field Trips and Maps, 11, 1–53, https://doi.org/10.3301/GFT.2019.01, 2019a.
Di Vito, M. A., Talamo, P., de Vita, S., Rucco, I., Zanchetta, G., and Cesarano, M.: Dynamics and effects of the Vesuvius Pomici di Avellino Plinian eruption and related phenomena on the Bronze Age landscape of Campania region (Southern Italy), Quatern. Int., 499, 231–244, https://doi.org/10.1016/j.quaint.2018.03.021, 2019b.
Di Vito, M. A., Rucco, I., de Vita, S., Doronzo, D. M., Bisson, M., and Zanella, E.: Field data collected from pyroclastic and lahar deposits of the 472 AD (Pollena) and 1631 Vesuvius eruptions, Zenodo [data set], https://doi.org/10.5281/zenodo.10814860, 2024.
Doronzo, D. M.: Two new end members of pyroclastic density currents: Forced-convection dominated and inertia-dominated, J. Volcanol. Geoth. Res., 219–220, 87–91, https://doi.org/10.1016/j.jvolgeores.2012.01.010, 2012.
Doronzo, D. M.: Aeromechanic analysis of pyroclastic density currents past a building, B. Volcanol., 75, 684, https://doi.org/10.1007/s00445-012-0684-z, 2013.
Doronzo, D. M. and Dellino, P.: Hydraulics of subaqueous ash flows as deduced from their deposits: 2. Water entrainment, sedimentation, and deposition, with implications on pyroclastic density current deposit emplacement, J. Volcanol. Geoth. Res., 258, 176–186, https://doi.org/10.1016/j.jvolgeores.2013.04.013, 2013.
Doronzo, D. M., Martí, J., Sulpizio, R., and Dellino, P.: Aerodynamics of stratovolcanoes during multiphase processes, J. Geophys. Res., 117, B01207, https://doi.org/10.1029/2011JB008769, 2012.
Duller, R. A., Mountney, N. P., Russell, A. J., and Cassidy, N. C.: Architectural analysis of a volcaniclastic jökulhlaup deposit, southern Iceland: sedimentary evidence for supercritical flow, Sedimentology, 55, 939–964, https://doi.org/10.1111/j.1365-3091.2007.00931.x, 2008.
Faccenna, C., Funiciello, R., Bruni, A., Mattei, M., and Sagnotti, L.: Evolution of a transfer related basin: the Ardea basin (Latium, Central Italy), Basin Res., 6, 35–46, https://doi.org/10.1111/j.1365-2117.1994.tb00073.x, 1994.
Fedi, M. and Rapolla, A.: The Campanian Volcanic Area: analysis of the magnetic and gravimetric anomalies, Boll. Soc. Geol. Ital., 106, 793–805, 1987.
Finetti, I. and Morelli, C.: Esplorazione di sismica a riflessione nei Golfi di Napoli e Pozzuoli, B. Geofis. Teor. Appl., 16, 175–222, 1974.
Fiorillo, F. and Wilson, R. C.: Rainfall induced debris flows in pyroclastic deposits, Campania (southern Italy), Eng. Geol., 75, 263–289, https://doi.org/10.1016/j.enggeo.2004.06.014, 2004.
Giordano, G., Zanella, E., Trolese, M., Baffioni, C., Vona, A., Caricchi, C., De Benedetti, A. A., Corrado, S., Romano, C., Sulpizio, R., and Geshi, N.: Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy), Earth Planet. Sc. Lett., 490, 180–192, https://doi.org/10.1016/j.epsl.2018.03.023, 2018.
Girolami, L., Roche, O., Druitt, T., and Corpetti, T.: Velocity fields and depositional processes in laboratory ash flows, with implications for the dynamics of dense pyroclastic flows, B. Volcanol., 72, 747–759, https://doi.org/10.1007/s00445-010-0356-9, 2010.
Gurioli, L., Pareschi, M. T., Zanella, E., Lanza, R., Deluca, E., and Bisson, M.: Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii, Geology, 33, 441–444, https://doi.org/10.1130/G21294.1, 2005.
Gurioli, L., Sulpizio, R., Cioni, R., Sbrana, A., Santacroce, R., Luperini, W., and Andronico, D.: Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record, B. Volcanol., 72, 1021–1038, https://doi.org/10.1007/s00445-010-0379-2, 2010.
Guzman, S., Doronzo, D. M., Martí, J., and Seggiaro, R.: Characteristics and emplacement mechanisms of the Coranzulí ignimbrites (Central Andes), Sediment. Geol., 405, 105699, https://doi.org/10.1016/j.sedgeo.2020.105699, 2020.
Ippolito, F., Ortolani, F., and Russo, M.: Struttura marginale tirrenica dell'Appennino campano: reinterpretazioni di dati di antiche ricerche di idrocarburi, Mem. Soc. Geol. Ital., 12, 227–250, 1973.
Iverson, R. M., Denlinger, R. P., LaHusen, R. G., and Logan, M.: Two-phase debris-flow across 3-D terrain: model predictions and experimental tests, in: Debris-Flow Hazard Mitigation, Mechanics, Prediction, and Assessment, edited by: Wieczorek, G. F. and Naeser, N. D., Taipei, Taiwan, 16–18 August 2000, Rotterdam, Balkema, 521–529, ISBN 978 90 5966 059 5, 2000.
Jenkins, S. F., Phillips, J. C., Price, R., Feloy, K., Baxter, P. J., Sri Hadmoko, D., and de Bélizal, E.: Developing building-damage scales for lahars: application to Merapi volcano Indonesia, B. Volcanol., 77, 1–17, https://doi.org/10.1007/s00445-015-0961-8, 2015.
Lesti, C., Porreca, M., Giordano, G., Mattei, M., Cas, R., Wright, H., and Viramonté, J. G.: High temperature emplacement of the Cerro Galán and Toconquis Group ignimbrites (Puna plateau, NW Argentina) determined by TRM analyses, B. Volcanol., 73, 1535–1565, https://doi.org/10.1007/s00445-011-0536-2, 2011.
Lowe, D. R.: Suspended-load fallout rate as an independent variable in the analysis of current structures, Sedimentology, 35, 765–776, https://doi.org/10.1111/j.1365-3091.1988.tb01250.x, 1988.
Lowe, D. R., Williams, S. N., Leigh, H., Connort, C. B., Gemmell, J. B., and Stoiber, R. E.: Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, Nature, 324, 51–53, https://doi.org/10.1038/324051a0, 1986.
Lube, G., Cronin, S., Manville, V., Procter, J., Cole, S., and Freundt, A.: Energy growth in laharic mass flows, Geology, 40, 475–478, https://doi.org/10.1130/G32818.1, 2012.
Macedonio, G. and Pareschi, M. T.: Numerical simulation of some lahars from Mount St. Helens, J, Volcanol. Geoth. Res., 54, 65–80, https://doi.org/10.1016/0377-0273(92)90115-T, 1992.
Mariani, M. and Prato, R.: I bacini neogenici costieri del margine tirrenico: approccio sismico-stratigrafico, Mem. Soc. Geol. Ital., 41, 519–531, 1988.
Marotta, E., Berrino, G., de Vita, S., Di Vito, M. A., and Camacho, A. G.: Structural setting of the Ischia resurgent caldera (Southern Tyrrhenian Sea, Italy) by integrated 3D gravity inversion and geological models, in: Volcanic Island: from Hazard Assessment to Risk Mitigation, edited by: Marotta, E., D'Auria, L., Zaniboni, F. and Nave, R., Geological Society, London, Special Publications, 519, 29–46, https://doi.org/10.1144/sp519-2022-129, 2022.
Martí, J., Doronzo, D. M., Pedrazzi, D., and Colombo, F.: Topographical controls on small-volume pyroclastic flows, Sedimentology, 66, 2297–2317, https://doi.org/10.1111/sed.12600, 2019.
McClelland, E.: Theory of CRM acquired by grain growth, and its implications for TRM discrimination and paleointensity determination in igneous rocks, Geophys. J. Int., 126, 271–280, https://doi.org/10.1111/j.1365-246X.1996.tb05285.x, 1996.
McClelland, E. and Druitt, T. H.: Paleomagnetic estimates of emplacement temperatures of pyroclastic deposits on Santorini, Greece, B. Volcanol., 51, 16–27, https://doi.org/10.1007/BF01086758, 1989.
Newhall, C. G. and Punongbayan, R. (Eds.): Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines, Quezon City: Philippine Institute of Volcanology and Seismology, 1126 pp., https://pubs.usgs.gov/pinatubo/ (last access: 10 January 2024), 1996.
Orsi, G., de Vita, S., and Di Vito, M.A.: The restless, resurgent Campi Flegrei Nested Caldera Italy.: constraints on its evolution and configuration, J. Volcanol. Geoth. Res., 74, 179–214, https://doi.org/10.1016/S0377-0273(96)00063-7, 1996.
Pareschi, M. T., Favalli, M., Giannini, F., Sulpizio, R., Zanchetta, G., and Santacroce, R.: May 5, 1998, Debris flows in circumvesuvian areas (Southern Italy), insights for hazard assessment, Geology, 28, 639–642, https://doi.org/10.1130/0091-7613(2000)28<639:MDFICA>2.0.CO;2, 2000.
Pareschi, M. T., Santacroce, R., Sulpizio, R., and Zanchetta, G.: Volcaniclastic debris flows in the Clanio Valley (Campania, Italy): Insights for the assessment of hazard potential, Geomorphology, 43, 219–231, https://doi.org/10.1016/S0169-555X(01)00134-9, 2002.
Patacca, E. and Scandone, P.: Geology of the Southern Apennines, Bollettino della Società Geologica Italiana Special Issue 7, 75–119, https://www.researchgate.net/publication/267507693_Geology_of_the_Southern_Apennines (last access: 10 January 2024), 2007.
Paterson, G. A., Roberts, A. P., Mac Niocaill, C., Muxworthy, A. R., Gurioli, L., Viramonté, J. G., Navarro, C., and Weider, S.: Paleomagnetic determination of emplacement temperatures of pyroclastic deposits: un under-utilized tool, B. Volcanol., 72, 309–330, https://doi.org/10.1007/s00445-009-0324-4, 2010.
Peccerillo, A.: Plio-Quaternary magmatism in Italy, Episodes, 26, 222-226, https://doi.org/10.18814/epiiugs/2003/v26i3/012, 2003.
Perrotta, A., Scarpati, C., Luongo, G., and Aoyagi, M.: Burial of Emperor Augustus' villa at Somma Vesuviana (Italy) by post-79 AD Vesuvius eruptions and reworked (lahars and stream flow) deposits, J. Volcanol. Geoth. Res., 158, 445–466, https://doi.org/10.1016/j.jvolgeores.2006.08.006, 2006.
Pierson, T. C.: Initiation and flow behavior of the 1980 Pine Creek and Muddy River lahars, Mt. St. Helens, Washington, Geol. Soc. Am. Bull., 96, 1056-1069, https://doi.org/10.1130/0016-7606(1985)96<1056:IAFBOT>2.0.CO;2, 1985.
Piochi, M., Pappalardo, L., and De Astis, G.: Geo-chemical and isotopical variations within the Campanian Comagmatic Province: implications on magma source composition, Ann. Geophys.-Italy, 47, 1485–1499, https://doi.org/10.4401/ag-8757, 2004.
Pittari, A., Cas, R. A. F., Monaghan, J. J., and Martí, J.: Instantaneous dynamic pressure effects on the behaviour of lithic boulders in pyroclastic flows: the Abrigo Ignimbrite, Tenerife, Canary Island, B. Volcanol., 69, 265–279, https://doi.org/10.1007/s00445-006-0072-7, 2007.
Porreca, M., Mattei, M., Mac Niocaill, C., Giordano, G., McClelland, E., and Funiciello, R.: Paleomagnetic evidence for low-temperature emplacement of the phreatomagmatic Peperino Albano ignimbrite (Colli Albani volcano, Central Italy), B. Volcanol., 70, 877–893, https://doi.org/10.1007/s00445-007-0176-8, 2007.
Roche, O.: Depositional processes and gas pore pressure in pyroclastic flows: an experimental perspective, B. Volcanol., 74, 1807–1820, https://doi.org/10.1007/s00445-012-0639-4, 2012.
Roche, O.: Nature and velocity of pyroclastic density currents inferred from models of entrainment of substrate lithic clasts, Earth Planet. Sc. Lett., 418, 115–125, https://doi.org/10.1016/j.epsl.2015.03.001, 2015.
Roche, O., Niño, Y., Mangeney, A., Brand, B., Pollock, N., and Valentine, G. A.: Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows, Geology, 41, 1107–1110, https://doi.org/10.1130/G34668.1, 2013.
Rodolfo, K. S.: The hazard from lahars and jökulhlaups, in: Encyclopedia of Volcanoes, edited by: Sigurdssson, H., Houghton, B., McNutt, S., Rymer, H., and Stix, J., Academic Press, London, 973–995, ISBN 9780080547985, 2000.
Rodolfo, K. S. and Arguden, A. T.: Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines, in: Sedimentation in Volcanic Settings, SEPM Special Publication, 45, edited by: Fisher, R. V. and Smith, G. A., 71–88, https://doi.org/10.2110/pec.91.45.0071, 1991.
Rodríguez-Sedano, L. A., Sarocchi, D., Caballero, L., Borselli, L., Ortiz-Rodríguez, A. J., Cerca-Ruiz, M. F., Moreno-Chávez, G., and Franco Ramos, O.: Post-eruptive lahars related to the 1913 eruption in La Lumbre Ravine, Volcán de Colima, Mexico: The influence of ravine morphometry on flow dynamics, J. Volcanol. Geoth. Res., 421, 107423, https://doi.org/10.1016/j.jvolgeores.2021.107423, 2022.
Rolandi, G., Barrella, A. M., and Borrelli, A.: The 1631 eruption of Vesuvius, J. Volcanol. Geoth. Res., 58, 183–201, https://doi.org/10.1016/0377-0273(93)90107-3, 1993.
Rolandi, G., Munno, R., and Postiglione, I.: The A.D. 472 eruption of the Somma volcano, J. Volcanol. Geoth. Res., 129, 291–319, https://doi.org/10.1016/S0377-0273(03)00279-8, 2004.
Rosi, M. and Santacroce, R.: The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius, J. Volcanol. Geoth. Res., 17, 249–271, https://doi.org/10.1016/0377-0273(83)90071-9, 1983.
Rosi, M., Principe, C., and Vecci, R.: The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data, J. Volcanol. Geoth. Res., 58, 151–182, https://doi.org/10.1016/0377-0273(93)90106-2, 1993.
Russell, A. J. and Knudsen, O.: An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jökulhlaup), Skeidarárjökull, Iceland, Sediment. Geol., 127, 1–10, https://doi.org/10.1016/S0037-0738(99)00024-X, 1999.
Sandri, L., de' Michieli Vitturi, M., Costa, A., Di Vito, M. A., Rucco, I., Doronzo, D. M., Bisson, M., Gianardi, R., de Vita, S., and Sulpizio, R.: Lahar events in the last 2000 years from Vesuvius eruptions – Part 3: Hazard assessment over the Campanian Plain, Solid Earth, 15, 459–476, https://doi.org/10.5194/se-15-459-2024, 2024.
Santacroce, R., Sbrana, A., Andronico, D., Cioni, R., Di Vito, M., Marianelli, P., Sulpizio, R., Zanchetta, G., Arrighi, S., Benvenuti, E., Gurioli, L., Leoni, F. M., and Luperini, W.: Carta Geologica del Vesuvio in scala 1:15.000, in: Cartografia derivata dai rilievi geologici in scala 1:10.000 Regione Campania e dai rilievi in scala 1:25.000 del Progetto CARG, edited by: Santacroce, R. and Sbrana A., S.EL.C.A., Firenze, https://repositories.dst.unipi.it/index.php/carte/item/124-carta-geologica-del-vesuvio (last access: 10 January 2024), 2003.
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D.J., and Joron, J. L.: Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: A review as a tool for distal tephrostratigraphy, J. Volcanol. Geoth. Res., 177, 1–18, https://doi.org/10.1016/j.jvolgeores.2008.06.009, 2008.
Santangelo, N., Romano, P., Ascione, A., and Russo Ermolli, E.: Quaternary evolution of the Southern Apennines coastal plains: A review, Geol. Carpath., 68, 43–56, https://doi.org/10.1515/geoca-2017-0004, 2017.
Scott, K. M.: Magnitude and frequency of lahars and lahar-runout flows in the Toutle-Cowlitz River System, U. S. Geological Survey Professional Paper 1447-B, 1–33, https://pubs.usgs.gov/pp/1447b/report.pdf (last access: 10 January 2024), 1989.
Scott, K. M., Vallance, J. W., and Pringle, P. T.: Sedimentology, behavior, and hazard of debris flows at Mount Rainer, Washington, U. S. Geological Survey Professional Paper 1547, 1–56, https://doi.org/10.3133/pp1547, 1995.
Scott, K. M., Macìas, J. L., Naranjo, J. A., Rodriguez, S., and McGeehin, J. P.: Catastrophic debris flows transformed from landslide in volcanic terrains: mobility, hazard assessment and mitigation strategies, U. S. Geological Survey Professional Paper 1630, 1–59, https://doi.org/10.3133/pp1630, 2001.
Sheridan, M. F., Bonnard, C., Carrero, C., Siebe, C., Strauch, W., Navarro, M., Calero, J. C., and Trujillo, N. B.: Report of the 30 October 1998 rock fall/avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by Hurracane Mitch, Landslide News, 12, 2–4, 1999.
Siebe, C., Schaaf, P., and Urrutia-Fucugauchi, J.: Mammoth bones embedded in a late Pleistocene lahar from Popocatépetl volcano, near Tocuila, central Mexico, Geol. Soc. Am. Bull., 111, 1550–1567, https://doi.org/10.1130/0016-7606(1999)111<1550:MBEIAL>2.3.CO;2, 1999.
Smith, G., Williams, R., Rowley, P. J., and Parsons, D. R.: Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents, B. Volcanol., 80, 67, https://doi.org/10.1007/s00445-018-1241-1, 2018.
Spence, R. J. S., Zuccaro, G., Petrazzuoli, S., and Baxter, P. J.: Resistance of buildings to pyroclastic flows: analytical and experimental studies and their application to Vesuvius, Nat. Hazards Rev., 5, 48–59, https://doi.org/10.1061/(ASCE)1527-6988(2004)5:1(48), 2004.
Stanzione, M., Di Vito, M. A., Aurino, P., and Lumaga, M. R. B.: Sacred plant impressions from Somma-Vesuvius volcanic ash deposits: A medicinal garden in Late Antique Acerra (Naples, Campania, Italy)?, J. Archaeol. Sci., 47, 103802, https://doi.org/10.1016/j.jasrep.2022.103802, 2023.
Sulpizio, R., Mele, D., Dellino, P., and La Volpe, L.: A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, B. Volcanol., 67, 743–767, https://doi.org/10.1007/s00445-005-0414-x, 2005.
Sulpizio, R., Zanchetta, G., Demi, F., Di Vito, M. A., Pareschi, M. T., and Santacroce, R.: The Holocene syneruptive volcaniclastic debris flows in the Vesuvian area: Geological data as a guide for hazard assessment, Geol. S. Am. S., 402, 203–221, https://doi.org/10.1130/2006.2402(10), 2006.
Sulpizio, R., Dellino, P., Doronzo, D. M., and Sarocchi, D.: Pyroclastic density currents: state of the art and perspectives, J. Volcanol. Geoth. Res., 283, 36–65, https://doi.org/10.1016/j.jvolgeores.2014.06.014, 2014.
Stanzione, M., Di Vito, M. A., Aurino, P., and Barone Lumaga, M. R.: Sacred plant impressions from Somma-Vesuvius volcanic ash deposits: A medicinal garden in Late Antique Acerra (Naples, Campania, Italy)?, J. Archaeol. Sci., 47, 103802, https://doi.org/10.1016/j.jasrep.2022.103802, 2023.
Tema, E., Zanella, E., Pavón-Carrasco, F. J., Kondopoulou, D., and Pavlides, S.: Palaeomagnetic analysis on pottery as indicator for the pyroclastic flows deposit temperature: New data and statistical interpretation from the Minoan eruption of Santorini, Greece, Geophys. J. Int., 203, 33–47, https://doi.org/10.1093/gji/ggv267, 2015.
Thouret, J. C., Arapa, E., Charbonnier, S., Guerrero, A., Kelfoun, K., Cordoba, G., Rodriguez, D., and Santoni, O.: Modeling tephra fall and sediment-water flows to assess their impact on a vulnerable building stock in the City of Arequipa, Peru, Front. Earth Sci., 10, 865989, https://doi.org/10.3389/feart.2022.865989, 2022.
Toyos, G., Gunasekera, R., Zanchetta, G., Oppenheimer, C., Sulpizio, R., Favalli, M., and Pareschi, M. T.: GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure, Earth Surf. Proc. Land., 33, 1693–1708, https://doi.org/10.1002/esp.1472, 2008.
Vallance, J. W. and Iverson, R.: Lahars and their deposits, in: Encyclopedia of Volcanoes, edited by: Sigurdsson, H., Houghton, B. F., McNutt, S. R., Rymer, H., and Stix, J., Academic Press, London, 649–664, https://doi.org/10.1016/B978-0-12-385938-9.00037-7, 2015.
Vallance, J. W. and Scott, K. M.: The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow, Geol. Soc. Am. Bull., 109, 143–163, 1997.
Vitale, S. and Ciarcia, S.: Tectono-stratigraphic setting of the Campania region (southern Italy), J. Maps, 14, 9–21, https://doi.org/10.1080/17445647.2018.1424655, 2018.
Voight, B.: The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection, J. Volcanol. Geoth. Res., 42, 151–188, 1990.
Waitt Jr., R. B., Pierson, T. C., MacLeod, N. S., Janda, R. J., Voight, B., and Holcomb, R. T.: Eruption-triggered avalanche, flood, and lahar at Mount St. Helens – Effects of winter snowpack, Science, 221, 1394–1397, https://doi.org/10.1126/science.221.4618.1394, 1983.
Walsh, B., Coviello, V., Capra, L., Procter, J., and Marquez-Ramirez, V.: Insights into the internal dynamics of natural lahars from analysis of 3-component broadband seismic signals at Volcan de Colima, Mexico, Front. Earth Sci., 8, 542116, https://doi.org/10.3389/feart.2020.542116, 2020.
Whipple, K. X., Hancock, G. S., and Anderson, R. S.: River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation, Geol. Soc. Am. Bull., 112, 490–503, https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2, 2000.
White, S., García-Ruiz, J. M., Martí-Bono, C., Valero, B., Errea, M. P., and Gómez-Villar, A.: The 1996 Biescas campsite disaster in the Central Spanish Pyrenees and its spatial and temporal context, Hydrol. Process., 11, 1797–1812, https://doi.org/10.1002/(SICI)1099-1085(199711)11:14<1797::AID-HYP605>3.0.CO;2-7, 1997.
Zanchetta, G., Sulpizio, R., and Di Vito, M. A.: The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from southern Campania (Italy), Sediment. Geol., 168, 249–280, https://doi.org/10.1016/j.sedgeo.2004.04.001, 2004a.
Zanchetta, G., Sulpizio, R., Pareschi, M. T., Leoni, F. M., and Santacroce, R.: Characteristics of May 5–6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation, J. Volcanol. Geoth. Res., 133, 377–393, https://doi.org/10.1016/S0377-0273(03)00409-8, 2004b.
Zanella, E., Gurioli, L., Pareschi, M. T., and Lanza, R.: Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications, J. Geophys. Res., 112, B05214, https://doi.org/10.1029/2006JB004775, 2007.
Zanella, E., Gurioli, L., Lanza, R., Sulpizio, R., and Bontempi, M.: Deposition temperature of the AD 472 Pollena pyroclastic density current deposits, Somma-Vesuvius, Italy, B. Volcanol., 70, 1237–1248, https://doi.org/10.1007/s00445-008-0199-9, 2008.
Zanella, E., Sulpizio, R., Gurioli, L., and Lanza, R.: Temperatures of the pyroclastic density currents deposits emplaced in the last 22 kyr at Somma-Vesuvius (Italy), Geological Society, London, Special Publication, 396, 13–33, https://doi.org/10.1144/SP396.4, 2015.
Zaragoza, G., Caballero-Garcia, L., Capra, L., and Nieto-Torres, A.: Lahares secundarios en el volcan Popocatepetl: El lahar Nexpayantla del 4 de febrero, 2010, Rev. Mex. Cienc. Geol., 37, 121–134, https://doi.org/10.22201/cgeo.20072902e.2020.2.1565, 2020.
Zuccaro, G. and De Gregorio, D.: Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount Vesuvius, Nat. Hazards, 68, 1399–1423, https://doi.org/10.1007/s11069-013-0571-8, 2013.
Short summary
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the sub-Plinian Vesuvius eruptions of 472 CE Pollena and 1631. The motivation comes directly from the widely distributed impact that both the eruptions and lahar phenomena had on the Campanian territory, not only around the volcano but also down the nearby Apennine valleys. Data on about 500 stratigraphic sections and modeling allowed us to evaluate the physical and dynamical impact of these phenomena.
We study the distribution of two historical pyroclastic fall–flow and lahar deposits from the...