Articles | Volume 15, issue 1
https://doi.org/10.5194/se-15-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-15-91-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Fold localization at pre-existing normal faults: field observations and analogue modelling of the Achental structure, Northern Calcareous Alps, Austria
Willemijn Sarah Maria Theresia van Kooten
CORRESPONDING AUTHOR
Institut für Geologie, Universität Innsbruck, Innsbruck, 6020, Austria
Department of Digital Business & Software Engineering, MCI – The Entrepreneurial School, Innsbruck, 6020, Austria
Hugo Ortner
Institut für Geologie, Universität Innsbruck, Innsbruck, 6020, Austria
Ernst Willingshofer
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
Dimitrios Sokoutis
Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, the Netherlands
Department of Geosciences, University of Oslo, Oslo, 0371, Norway
Alfred Gruber
Geologische Bundesanstalt für Österreich (GBA), Vienna, 1030, Austria
Thomas Sausgruber
die.wildbach, Wilhelm-Greil-Straße 9, Innsbruck, 6020, Austria
Related authors
No articles found.
Roy Helge Gabrielsen, Panagiotis Athanasios Giannenas, Dimitrios Sokoutis, Ernst Willingshofer, Muhammad Hassaan, and Jan Inge Faleide
Solid Earth, 14, 961–983, https://doi.org/10.5194/se-14-961-2023, https://doi.org/10.5194/se-14-961-2023, 2023
Short summary
Short summary
The Barents Shear Margin defines the border between the relatively shallow Barents Sea that is situated on a continental plate and the deep ocean. This margin's evolution history was probably influenced by plate tectonic reorganizations. From scaled experiments, we deduced several types of structures (faults, folds, and sedimentary basins) that help us to improve the understanding of the history of the opening of the North Atlantic.
Anna-Katharina Sieberer, Ernst Willingshofer, Thomas Klotz, Hugo Ortner, and Hannah Pomella
Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, https://doi.org/10.5194/se-14-647-2023, 2023
Short summary
Short summary
Through analogue models and field observations, we investigate how inherited platform–basin geometries control strain localisation, style, and orientation of reactivated and new structures during inversion. Our study shows that the style of evolving thrusts and their changes along-strike are controlled by pre-existing rheological discontinuities. The results of this study are relevant for understanding inversion structures in general and for the European eastern Southern Alps in particular.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
High-resolution analysis of the physicochemical characteristics of sandstone media at the lithofacies scale
Fault-controlled dolomitization in the Montagna dei Fiori Anticline (Central Apennines, Italy): record of a dominantly pre-orogenic fluid migration
Adrian Linsel, Sebastian Wiesler, Jens Hornung, and Matthias Hinderer
Solid Earth, 11, 1511–1526, https://doi.org/10.5194/se-11-1511-2020, https://doi.org/10.5194/se-11-1511-2020, 2020
Short summary
Short summary
We present a high-resolution 3D analysis of the physicochemical characteristics of two sandstone cubes at the submeter scale. Our study provides insight into the spatial distribution and the controlling factors of small-scale heterogeneity in sandstone media. A comprehensive physicochemical data set is provided, which may help to evaluate the degree of uncertainty that should be considered in field-scale property models.
Mahtab Mozafari, Rudy Swennen, Fabrizio Balsamo, Hamdy El Desouky, Fabrizio Storti, and Conxita Taberner
Solid Earth, 10, 1355–1383, https://doi.org/10.5194/se-10-1355-2019, https://doi.org/10.5194/se-10-1355-2019, 2019
Short summary
Short summary
The dolomitized intervals of the Lower Jurassic deposits exposed in the Montagna dei Fiori Anticline (Central Apennines, Italy) have been investigated. Accordingly, two fault-related dolomitization events were recognised and interpreted as having occurred before and during the Apenninic orogeny. The analyses suggest significant involvement of evaporitic fluids in both events, most likely derived from the underlying Upper Triassic Burano Formation in the detachment level.
Cited articles
Allemand, P. and Brun, J.-P.: Width of continental rifts and rheological layering of the lithosphere, Tectonophysics, 188, 63–69, https://doi.org/10.1016/0040-1951(91)90314-I, 1991.
Allen, J. and Beaumont, C.: Continental margin syn-rift salt tectonics at intermediate width margins, Basin Res., 28, 598–633, https://doi.org/10.1111/bre.12123, 2016.
Amilibia, A., McClay, K. R., Sàbat, F., Muñoz, J. A., and Roca, E.: Analogue modelling of inverted oblique rift systems, Geol. Acta, 3, 251–271 https://doi.org/10.1344/105.000001395, 2005.
Ampferer, O.: Tektonische Nachbarschaft Karwendel-Sonnwendgebirge, Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, 150, 181–199, 1941.
Ampferer, O.: Über NW-Beanspruchungen in den Nordalpen, Jahrbuch der Geologischen Bundesanstalt, 71, 198–202, 1921.
Ampferer, O.: Über den geologischen Zusammenhang des Karwendel- und Sonnwendgebirges, Verhandlungen der Kaiserlich-Königlichen Geologischen Reichsanstalt, 104–113, 1902.
Ampferer, O. and Heissel, G.: Geologische Karte des östlichen Karwendel und des Achensee-Gebietes, Universitätsverlag Wagner, Innsbruck, 1950.
Auer, M.: Struktur und Kinematik der nördlichen Kalkalpen im TRANSALP-Profil (Südbayern, Nordtirol), Dissertation, Universität Karlsruhe, Karlsruhe, 132 pp., 2001.
Auer, M. and Eisbacher, G. H.: Deep structure and kinematics of the Northern Calcareous Alps (TRANSALP Profile), Geol. Rundsch., 92, 210–227, https://doi.org/10.1007/s00531-003-0316-0, 2003.
Bailey, C. M., Giorgis, S., and Coiner, L.: Tectonic inversion and basement buttressing: an example from the central Appalachian Blue Ridge province, J. Struct. Geol., 24, 925–936, https://doi.org/10.1016/S0191-8141(01)00102-X, 2002.
Bechstädt, T. and Mostler, H.: Mikrofazies und Mikrofauna mitteltriadischer Beckensedimente der Nördlichen Kalkalpen Tirols, Geologisch-Paläontologische Mitteilungen Universität Innsbruck, 4, 1–74, 1974.
Beer, E.: Vergleichende tektonische Untersuchungen an zwei längsalpinen Störungen: der Achentaler Schubmasse und der Salzachstörung, Doctoral thesis, Ludwig-Maximilians-Universität München, Munich, Germany, https://doi.org/10.5282/edoc.1174, 2003.
Bernoulli, D. and Jenkyns, H. C.: Alpine, Mediterranean, and Central Atlantic Mesozoic facies in relation to the early evolution of the Tethys, in: Modern and Ancient Geosynclinal Sedimentation, edited by: Dott, R. H. and Shaver, R. H., SEPM Special Publication, 19, 129–160, https://doi.org/10.2110/pec.74.19.0129, 1974.
Bonini, M.: Chronology of deformation and analogue modelling of the Plio-Pleistocene “Tiber Basin”: implications for the evolution of the Northern Apennines (Italy), Tectonophysics, 285, 147–165, https://doi.org/10.1016/S0040-1951(97)00189-3, 1998.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models, Tectonophysics, 522, 55–88, https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Bonini, M., Sokoutis, D., Mulugeta, G., and Katrivanos, E.: Modelling hanging wall accommodation above rigid thrust ramps, J. Struct. Geol., 22, 1165–1179, https://doi.org/10.1016/S0191-8141(00)00033-X, 2000.
Brandner, R. and Gruber, A.: Exkursion E2a - Rofangebirge, in: Arbeitstagung 2011 “Geologie des Achenseegebietes”, Geologisches Kartenblatt 88, edited by: Gruber, A., Geologische Bundesanstalt, Wien, 149–167, 2011.
Brandner, R. and Poleschinski, W.: Stratigraphie und Tektonik am Kalkalpensüdrand zwischen Zirl und Seefeld in Tirol (Exkursion D am 3. April 1986), Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 68, 67–92, https://doi.org/10.1127/jmogv/68/1986/67, 1986.
Brandner, R., Lotter, M., Gruber, A., and Ortner, H.: Exkursion E3 – Achental – Bächental. Donnerstag, 22.09.2011, in: Arbeitstagung 2011 “Geologie des Achenseegebietes”, Geologisches Kartenblatt 88, edited by: Gruber, A., Geologische Bundesanstalt, Wien, 199–224, 2011.
Broerse, T.: Strainmap, v1.0, Zenodo [code], https://doi.org/10.5281/zenodo.4529475, 2021.
Broerse, T., Krstekanić, N., Kasbergen, C., and Willingshofer, E.: Mapping and classifying large deformation from digital imagery: application to analogue models of lithosphere deformation, Geophys. J. Int., 226, 984–1017, https://doi.org/10.1093/gji/ggab120, 2021.
Brun, J.-P.: Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments, Philos. T. Roy. Soc. A, 357, 695–712, https://doi.org/10.1098/rsta.1999.0349, 1999.
Brun, J.-P. and Nalpas, T.: Graben inversion in nature and experiments, Tectonics, 15, 677–687, https://doi.org/10.1029/95TC03853, 1996.
Buchanan, P. G. and McClay, K. R.: Experiments on basin inversion above reactivated domino faults, Mar. Petrol. Geol., 9, 486–500, https://doi.org/10.1016/0264-8172(92)90061-I, 1992.
Buiter, S. J. H. and Pfiffner, A. O.: Numerical models of the inversion of half-graben basins, Tectonics, 22, 1057, https://doi.org/10.1029/2002TC001417, 2003.
Caër, T., Souloumiac, P., Maillot, B., Leturmy, P., and Nussbaum, C.: Propagation of a fold-and-thrust belt over a basement graben, J. Struct. Geol., 115, 121–131, https://doi.org/10.1016/j.jsg.2018.07.007, 2018.
Channell, J., Brandner, R., Spieler, A., and Stoner, J. S.: Paleomagnetism and paleogeography of the Northern Calcareous Alps (Austria), Tectonics, 11, 792–810, https://doi.org/10.1029/91TC03089, 1992.
Channell, J., Brandner, R., and Spieler, A.: Mesozoic paleogeography of the Northern Calcareous Alps – Evidence from paleomagnetism and facies analysis, Geology, 18, 828, https://doi.org/10.1130/0091-7613(1990)018<0828:MPOTNC>2.3.CO;2, 1990.
Cooper, M. and Warren, M. J.: Inverted fault systems and inversion tectonic settings, in: Regional Geology and Tectonics: Principles of Geologic Analysis, edited by: Scarselli, N., Adam, J., Chiarella, D., Roberts, D. G., and Bally, A. W., Elsevier, 169–204, https://doi.org/10.1016/B978-0-444-64134-2.00009-2, 2020.
Cotton, J. T. and Koyi, H. A.: Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan, Geol. Soc. Am. Bull., 112, 351–363, https://doi.org/10.1130/0016-7606(2000)112<351:MOTFAD>2.0.CO;2, 2000.
Davis, D. M. and Engelder, T.: The role of salt in fold-and-thrust belts, Tectonophysics, 119, 67–88, https://doi.org/10.1016/0040-1951(85)90033-2, 1985.
Davis, D. M., Suppe, J., and Dahlen, F. A.: Mechanics of fold-and-thrust belts and accretionary wedges, J. Geophys. Res., 88, 1153–1172, https://doi.org/10.1029/JB088iB02p01153, 1983.
Del Ventisette, C., Montanari, D., Sani, F., Bonini, M., and Corti, G.: Reply to comment by J. Wickham on “Basin inversion and fault reactivation in laboratory experiments”, J. Struct. Geol., 29, 1417–1418, https://doi.org/10.1016/j.jsg.2007.05.003, 2007.
Del Ventisette, C., Montanari, D., Sani, F., and Bonini, M.: Basin inversion and fault reactivation in laboratory experiments, J. Struct. Geol., 28, 2067–2083, https://doi.org/10.1016/J.JSG.2006.07.012, 2006.
Deng, H., Koyi, H. A., and Zhang, J.: Modelling oblique inversion of pre-existing grabens, Geol. Soc. Sp., 487, 263–290, https://doi.org/10.1144/SP487.5, 2020.
Dombrádi, E., Sokoutis, D., Bada, G., Cloetingh, S., and Horváth, F.: Modelling recent deformation of the Pannonian lithosphere: Lithospheric folding and tectonic topography, Tectonophysics, 484, 103–118, https://doi.org/10.1016/j.tecto.2009.09.014, 2010.
Donofrio, D. A., Brandner, R., and Poleschinski, W.: Conodonten der Seefeld-Formation: ein Beitrag zur Bio- und Lithostratigraphie der Hauptdolomit-Plattform (Obertrias, westliche Nördliche Kalkalpen, Tirol, Geologisch-Paläontologische Mitteilungen Universität Innsbruck, 26, 91–107, 2003.
Dubois, A., Odonne, F., Massonnat, G., Lebourg, T., and Fabre, R.: Analogue modelling of fault reactivation: tectonic inversion and oblique remobilisation of grabens, J. Struct. Geol., 24, 1741–1752, https://doi.org/10.1016/S0191-8141(01)00129-8, 2002.
Duffy, O. B., Dooley, T. P., Hudec, M. R., Jackson, M. P., Fernandez, N., Jackson, C. A.-L., and Soto, J. I.: Structural evolution of salt-influenced fold-and-thrust belts: A synthesis and new insights from basins containing isolated salt diapirs, J. Struct. Geol., 114, 206–221, https://doi.org/10.1016/j.jsg.2018.06.024, 2018.
Eberli, G. P.: Carbonate turbidite sequences deposited in rift-basins of the Jurassic Tethys Ocean (eastern Alps, Switzerland), Sedimentology, 34, 363–388, https://doi.org/10.1111/j.1365-3091.1987.tb00576.x, 1987.
Eberli, G. P.: Die jurassischen Sedimente in den ostalpinen Decken Graubündens: Relikte eines passiven Kontinentalrandes, Thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-00036341, 1985.
Eberli, G. P., Bernoulli, D., Sanders, D., and Vecsei, A.: From aggradation to progradation: The Maiella platform, Abruzzi, Italy, in: Cretaceous Carbonate Platforms, edited by: Simo, T. and Scott, R. W., Cretaceous Carbonate Platforms, AAPG Memoir, Volume 56, https://doi.org/10.1306/M56578, 1993.
Eisbacher, G. H. and Brandner, R.: Superposed fold-thrust structures and high-angle faults, Northwestern Calcareous Alps, Austria, Eclogae Geol. Helv., 89, 553–571, https://doi.org/10.5169/seals-167913, 1996.
Eisbacher, G. H. and Brandner, R.: Role of high-angle faults during heteroaxial contraction, Inntal thrust sheet, Northern Calcareous Alps, western Austria, Geologisch-Paläontologische Mitteilungen Universität Innsbruck, 20, 389–406, 1995.
Eisbacher, G. H., Linzer, H.-G., and Meier, L.: A depth extrapolated structural transect across the Northern Calcareous Alps of Western Tirol, Eclogae Geol. Helv., 83, 711–725, https://doi.org/10.5169/seals-166610, 1990.
Epard, J.-L. and Groshong, R. H.: Kinematic model of detachment folding including limb rotation, fixed hinges and layer-parallel strain, Tectonophysics, 247, 85–103, https://doi.org/10.1016/0040-1951(94)00266-C, 1995.
Etheridge, M. A.: On the reactivation of extensional fault systems, Philos. T. Roy. Soc. A, 317, 179–194, https://doi.org/10.1098/rsta.1986.0031, 1986.
Fan, X., Jia, D., Yin, H., Shen, L., Liu, J., Cui, J., Sun, C., and Yang, S.: Analogue modeling of the northern Longmen Shan thrust belt (eastern margin of the Tibetan plateau) and strain analysis based on Particle Image Velocimetry, J. Asian Earth Sci., 198, 104238, https://doi.org/10.1016/j.jseaes.2020.104238, 2020.
Faupl, P. and Wagreich, M.: Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps, Mitteilungen der Österreichischen Geologischen Gesellschaft, 92, 79–94, 1999.
Fernández, O., Grasemann, B., and Sanders, D.: Deformation of the Dachstein Limestone in the Dachstein thrust sheet (Eastern Alps, Austria), Austrian J. Earth Sc., 115, 167–190, https://doi.org/10.17738/ajes.2022.0008, 2022.
Fernández, O., Habermüller, M., and Grasemann, B.: Hooked on salt: Rethinking Alpine tectonics in Hallstatt (Eastern Alps, Austria), Geology, 49, 325–329, https://doi.org/10.1130/g47981.1, 2021.
Froitzheim, N. and Manatschal, G.: Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland), Geol. Soc. Am. Bull., 108, 1120–1133, https://doi.org/10.1130/0016-7606(1996)108<1120:KOJRME>2.3.CO;2, 1996.
Froitzheim, N., Schmid, S. M., and Conti, P.: Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden, Eclogae Geologicae Helvetiae, 87, 559–612, https://doi.org/10.5169/seals-167471, 1994.
Fruth, I. and Scherreiks, R.: Hauptdolomit (Norian) – stratigraphy, paleogeography and diagenesis, Sedimentary Geology, 32, 195–231, https://doi.org/10.1016/0037-0738(82)90050-1, 1982.
Fuchs, A.: Untersuchungen am tektonischen Gefüge der Tiroler Alpen. II. (Kalkalpen Achensee – Kaisergebirge), Neues Jb. Miner. Abh., 88, 337–373, 1944.
Gawlick, H.-J.: Definition of the Tauglboden Formation (Oxfordian to Tithonian) in the Tauglboden Basin (Northern Calcareous Alps), Berichte des Institutes für Erdwissenschaften der Karl-Franzens-Universität Graz, 9, 127–129, 2004.
Giles, K. A. and Rowan, M. G.: Concepts in halokinetic-sequence deformation and stratigraphy, Geol. Soc. Sp., 363, 7–31, https://doi.org/10.1144/SP363.2, 2012.
Golebiowski, R.: Becken und Riffe der alpinen Obertrias, Lithostratigraphie und Biofazies der Kössener Formation, in: Exkursionen im Jungpaläozoikum und Mesozoikum Österreich, Österr. Paläont. Gesellschaft, 79–119, Wien 1991.
Gomes, C. J., Danderfer Filho, A., Posada, A. M. A., and Da Silva, A. C.: The role of backstop shape during inversion tectonics physical models, An. Acad. Bras. Ciênc., 82, 997–1012, https://doi.org/10.1590/S0001-37652010000400021, 2010.
Granado, P., Ruh, J. B., Santolaria, P., Strauss, P., and Muñoz, J. A.: Stretching and Contraction of Extensional Basins With Pre-Rift Salt: A Numerical Modeling Approach, Front. Earth Sci., 9, 648937, https://doi.org/10.3389/feart.2021.648937, 2021.
Granado, P., Roca, E., Strauss, P., Pelz, K., and Muñoz, J. A.: Structural styles in fold-and-thrust belts involving early salt structures: The Northern Calcareous Alps (Austria), Geology, 47, 51–54, https://doi.org/10.1130/G45281.1, 2019.
Graveleau, F., Malavieille, J., and Dominguez, S.: Experimental modelling of orogenic wedges: A review, Tectonophysics, 538, 1–66, https://doi.org/10.1016/j.tecto.2012.01.027, 2012.
Gruber, A.: Geological manuscript map ÖK 88 Achenkirch: Unveröff. Manuskriptkarte, Geologische Bundesanstalt, Wien, 2011.
Gruber, A., Lotter, M., and Brandner, R.: Erläuterungen zu Blatt 88 Achenkirch. Geologische Bundesanstalt, Wien, 2022. ISBN 978-3-903252-08-0, 2022.
Gümbel, C. W.: Geognostische Beschreibung des bayerischen Alpengebirges und seines Vorlandes, Perthes, Gotha, 950 pp., 1861.
Haas, J., Kovács, S., Krystyn, L., and Lein, R.: Significance of Late Permian-Triassic facies zones in terrane reconstructions in the Alpine-North Pannonian domain, Tectonophysics, 242, 19–40, https://doi.org/10.1016/0040-1951(94)00157-5, 1995.
Héja, G., Ortner, H., Fodor, L., Németh, A., and Kövér, S.: Modes of Oblique Inversion: A Case Study from the Cretaceous Fold and Thrust Belt of the Western Transdanubian Range (TR), West Hungary, Tectonics, 41, https://doi.org/10.1029/2021TC006728, 2022.
Homza, T. X. and Wallace, W. K.: Geometric and kinematic models for detachment folds with fixed and variable detachment depths, J. Struct. Geol., 17, 575–588, https://doi.org/10.1016/0191-8141(94)00077-D, 1995.
Hubbert, M. K.: Theory of scale models as applied to the study of geologic structures, Geol. Soc. Am. Bull., 48, 1459–1520, https://doi.org/10.1130/GSAB-48-1459, 1937.
Hudec, M. R. and Jackson, M. P.: Terra infirma: Understanding salt tectonics, Earth-Sci. Rev., 82, 1–28, https://doi.org/10.1016/j.earscirev.2007.01.001, 2007.
Jamison, W. R.: Geometric analysis of fold development in overthrust terranes, J. Struct. Geol., 9, 207–219, https://doi.org/10.1016/0191-8141(87)90026-5, 1987.
Jaumé, S. C. and Lillie, R. J.: Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites, Tectonics, 7, 57–71, https://doi.org/10.1029/TC007i001p00057, 1988.
Jerz, H.: Untersuchungen über Stoffbestand, Bildungsbedingungen und Paläogeographie der Raibler Schichten zwischen Lech und Inn (Nördl. Kalkalpen), Geologica Bavarica, 56, 3–100, 1966.
Josep Poblet, K. M.: Geometry and Kinematics of Single-Layer Detachment Folds, AAPG Bull., 80, 1085–1109, https://doi.org/10.1306/64ED8CA0-1724-11D7-8645000102C1865D, 1996.
Kilian, S.: Bericht 2012 über geologische und strukturgeologische Aufnahmen im Karwendelgebirge auf Blatt 2223 Innsbruck und auf Blatt 2217 Hinterriß, Jahrbuch der Geologischen Bundesanstalt, 153, 411–417, 2013.
Kilian, S. and Ortner, H.: Structural evidence of in-sequence and out-of-sequence thrusting in the Karwendel mountains and the tectonic subdivision of the western Northern Calcareous Alps, Austrian J. Earth Sc., 112, 62–83, https://doi.org/10.17738/ajes.2019.0005, 2019.
Kilian, S., Ortner, H., and Schneider-Muntau, B.: Buckle folding in the Northern Calcareous Alps – Field observations and numeric experiments, J. Struct. Geol., 150, 104416, https://doi.org/10.1016/j.jsg.2021.104416, 2021.
Kley, J., Rossello, E. A., Monaldi, C. R., and Habighorst, B.: Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina, Tectonophysics, 399, 155–172, https://doi.org/10.1016/J.TECTO.2004.12.020, 2005.
Konstantinovskaya, E. A., Harris, L. B., Poulin, J., and Ivanov, G. M.: Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling, Tectonophysics, 441, 1–26, https://doi.org/10.1016/j.tecto.2007.06.002, 2007.
Koopman, A., Speksnijder, A., and Horsfield, W. T.: Sandbox model studies of inversion tectonics, Tectonophysics, 137, 379–388, https://doi.org/10.1016/0040-1951(87)90329-5, 1987.
Krainer, K., Lucas, S. G., and Strasser, M.: Vertebrate Fossils from the Northalpine Raibl Beds, Western Northern Calcareous Alps, Tyrol (Austria), Austrian J. Earth Sc., 104, 97–106, 2011.
Krstekanić, N., Willingshofer, E., Matenco, L., Toljić, M., and Stojadinovic, U.: The influence of back-arc extension direction on the strain partitioning associated with continental indentation: Analogue modelling and implications for the Circum-Moesian Fault System of South-Eastern Europe, J. Struct. Geol., 159, 104599, https://doi.org/10.1016/j.jsg.2022.104599, 2022.
Krstekanić, N., Willingshofer, E., Broerse, T., Matenco, L., Toljić, M., and Stojadinovic, U.: Analogue modelling of strain partitioning along a curved strike-slip fault system during backarc-convex orocline formation: Implications for the Cerna-Timok fault system of the Carpatho-Balkanides, J. Struct. Geol., 149, 104386, https://doi.org/10.1016/j.jsg.2021.104386, 2021.
Lackschewitz, K. S., Grützmacher, U., and Henrich, R.: Paleoceanography and rotational block faulting in the Jurassic carbonate series of the Chiemgau Alps (Bavaria), Facies, 24, 1–23, https://doi.org/10.1007/BF02536838, 1991.
Lacombe, O., Mazzoli, S., Hagke, C. von, Rosenau, M., Fillon, C., and Granado, P.: Style of deformation and tectono-sedimentary evolution of fold-and-thrust belts and foreland basins: From nature to models, Tectonophysics, 767, 228163, https://doi.org/10.1016/j.tecto.2019.228163, 2019.
Laubscher, H. P.: The eastern Jura: Relations between thin-skinned and basement tectonics, local and regional, Geol. Rundsch., 75, 535–553, https://doi.org/10.1007/BF01820630, 1986.
Lee, A. R. and Warren, J. B.: A coni-cylindrical viscometer for measuring the visco-elastic characteristics of highly viscous liquids, J. Sci. Instrum., 17, 63–67, https://doi.org/10.1088/0950-7671/17/3/303, 1940.
Leever, K. A., Gabrielsen, R. H., Faleide, J. I., and Braathen, A.: A transpressional origin for the West Spitsbergen fold-and-thrust belt: Insight from analog modeling, Tectonics, 30, TC2014, https://doi.org/10.1029/2010TC002753, 2011.
Lein, R.: Evolution of the Northern Calcareous Alps during Triassic times, in: Geodynamics of the Eastern Alps, edited by: Flügel, H. W. and Faupl, P., Deuticke, Wien, 85–102, ISBN 3700545282, 1987.
Leitner, C. and Neubauer, F.: Tectonic significance of structures within the salt deposits Altaussee and Berchtesgaden–Bad Dürrnberg, Northern Calcareous Alps, Austrian J. Earth Sc., 104, 2–21, 2011.
Lemoine, M., Bas, T., Arnaud-Vanneau, A., Arnaud, H., Dumont, T., Gidon, M., Bourbon, M., Graciansky, P.-C. de, Rudkiewicz, J.-L., Megard-Galli, J., and Tricart, P.: The continental margin of the Mesozoic Tethys in the Western Alps, Mar. Petrol. Geol., 3, 179–199, https://doi.org/10.1016/0264-8172(86)90044-9, 1986.
Lipold, M. W.: Der Salzberg am Dürrnberg nächst Hallein, Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, 5, 590–610, 1854.
Manger, G. E.: Porosity and bulk density of sedimentary rocks, Geol. Surv. Bull., Single bulletin, no contribution in. United States Government Printing Office, Washington, 1144-E, 1963.
Martin, J. and Mercier, E.: Heritage distensif et structuration chevauchante dans une chaine de couverture; apport de l'equilibrage par modelisation geometrique dans le Jura nord-occidental, B. Soc. Geol. Fr., 167, 101–110, 1996.
Merle, O. and Abidi, N.: Approche experimentale du fonctionnement des rampes emergentes, B. Soc. Geol. Fr., 166, 439–450, https://doi.org/10.2113/gssgfbull.166.5.439, 1995.
Mitra, S.: Structural models of faulted detachment folds, AAPG Bull., 86, 1673–1694, https://doi.org/10.1306/61EEDD3C-173E-11D7-8645000102C1865D, 2002.
Mojsisovics, E. von: Beiträge zur topischen Geologie der Alpen, Jahrbuch der Geologischen Reichsanstalt, 21, 189–210, 1871.
Molnar, N. and Buiter, S.: Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts, Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023, 2023.
Mooney, M. and Ewart, R. H.: The Conicylindrical Viscometer, Physics, 5, 350–354, https://doi.org/10.1063/1.1745219, 1934.
Morley, C. K.: Fold-generated imbricates: examples from the Caledonides of Southern Norway, J. Struct. Geol., 16, 619–631, https://doi.org/10.1016/0191-8141(94)90114-7, 1994.
Müller-Jungbluth, W.-U.: Sedimentary Petrologic Investigation of the Upper Triassic “Hauptdolomit” of the Lechtaler Alps, Tyrol, Austria, in: Recent Developments in Carbonate Sedimentology in Central Europe, edited by: Müller, G. and Friedman, G. M., Springer Berlin Heidelberg, Berlin, Heidelberg, 228–239, 1968.
Mulugeta, G.: Modelling the geometry of Coulomb thrust wedges, J. Struct. Geol., 10, 847–859, https://doi.org/10.1016/0191-8141(88)90099-5, 1988.
Nagel, K.-H.: Der Bau der Thiersee- und Karwendelmulde (Tirol), Geotektonische Forschungen, Stuttgart, 48, 136 pp., ISBN 3510500148, 1975.
Nagel, K.-H., Schütz, K.-I., Schütz, S., Wilmers, W., and Zeil, W.: Die geodynamische Entwicklung der Thiersee- und der Karwendelmulde (Nördliche Kalkalpen), Geol. Rundsch., 65, 536–557, 1976.
Nielsen, S. B. and Hansen, D. L.: Physical explanation of the formation and evolution of inversion zones and marginal troughs, Geology, 28, 875–878, https://doi.org/10.1130/0091-7613(2000)28<875:PEOTFA>2.0.CO;2, 2000.
Ortner, H.: Field trip 4 Deep water sedimentation on top of a growing orogenic wedge – interaction of thrusting, erosion and deposition in the Cretaceous Northern Calcareous Alps, Geo.Alp, 13, 141–182, 2016.
Ortner, H.: Local and far field stress-analysis of brittle deformation in the western part of the Northern Calcareous Alps, Austria, Geologisch-Paläontologische Mitteilungen Universität Innsbruck, 26, 109–136, 2003a.
Ortner, H.: Cretaceous thrusting in the western part of the Northern Calcareous Alps (Austria) – evidences from synorogenic sedimentation and structural data, Mitteilungen der Österreichischen Geologischen Gesellschaft, 94, 63–77, 2003b.
Ortner, H.: Growing folds and sedimentation of the Gosau Group, Muttekopf, Northern Calcareous Alps, Austria, Geol. Rundsch., 90, 727–739, https://doi.org/10.1007/s005310000182, 2001.
Ortner, H. and Sieberer, A.-K.: From foreland thrust belt to accretionary wedge: Synorogenic sediments monitor a changing geodynamic setting in the Northern Calcareous Alps of the European Eastern Alps, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11281, https://doi.org/10.5194/egusphere-egu22-11281, 2022.
Ortner, H. and Kilian, S.: Thrust tectonics in the Wetterstein and Mieming mountains, and a new tectonic subdivision of the Northern Calcareous Alps of Western Austria and Southern Germany, Geol. Rundsch., 111, 543–571, https://doi.org/10.1007/s00531-021-02128-3, 2022.
Ortner, H. and Kilian, S.: Sediment creep on slopes in pelagic limestones: Upper Jurassic of Northern Calcareous Alps, Austria, Sediment. Geol., 344, 350–363, https://doi.org/10.1016/J.SEDGEO.2016.03.013, 2016.
Ortner, H. and Gruber, A.: 3D-Geometrie der Strukturen zwischen Karwendel-Synklinale und Thiersee-Synklinale, in: Arbeitstagung 2011 “Geologie des Achenseegebietes”, Geologisches Kartenblatt 88, edited by: Gruber, A., Geologische Bundesanstalt, Wien, 51–67, 2011.
Ortner, H. and Gaupp, R.: Synorogenic sediments of the western Northern Calcareous Alps, Geo.Alp, 4, 133–148, 2007.
Ortner, H., Kositz, A., Willingshofer, E., and Sokoutis, D.: Geometry of growth strata in a transpressive fold belt in field and analogue model: Gosau Group at Muttekopf, Northern Calcareous Alps, Austria, Basin Res., 28, 731–751, https://doi.org/10.1111/bre.12129, 2016.
Ortner, H., Ustaszewski, M., and Rittner, M.: Late Jurassic tectonics and sedimentation: breccias in the Unken syncline, central Northern Calcareous Alps, Swiss J. Geosci., 101, 55–71, https://doi.org/10.1007/s00015-008-1282-0, 2008.
Persson, K. S. and Sokoutis, D.: Analogue models of orogenic wedges controlled by erosion, Tectonophysics, 356, 323–336, https://doi.org/10.1016/S0040-1951(02)00443-2, 2002.
Quenstedt, W.: Studien in der Überschiebungszone von Achenkirch, Zeitschrift der Deutschen Geologischen Gesellschaft, 85, 459–461, 1933.
Ramberg, H.: Gravity, deformation and the earth's crust: In theory, experiments and geological application, 2 Edn., Academic Press, London, ISBN 13 978-0125768603, ISBN 10 0125768605, 1981.
Riedel, P.: Facies and development of the “wilde kirche” reef complex (Rhaetian, Upper Triassic, Karwendelgebirge, Austria), Facies, 18, 205–217, https://doi.org/10.1007/BF02536800, 1988.
Rodgers, J.: Evolution of Thought on Structure of Middle and Southern Appalachians, AAPG Bull., 33, 1643–1654, https://doi.org/10.1306/3D933E00-16B1-11D7-8645000102C1865D, 1949.
Rowan, M. G. and Vendeville, B. C.: Foldbelts with early salt withdrawal and diapirism: Physical model and examples from the northern Gulf of Mexico and the Flinders Ranges, Australia, Mar. Petrol. Geol., 23, 871–891, https://doi.org/10.1016/j.marpetgeo.2006.08.003, 2006.
Rowan, M. G., Giles, K. A., Hearon IV, T. E., and Fiduk, J. C.: Megaflaps adjacent to salt diapirs, AAPG Bull., 100, 1723–1747, https://doi.org/10.1306/05241616009, 2016.
Rüffer, T. and Zühlke, R.: Sequence Stratigraphy and Sea-Level Changes in the Early to Middle Triassic of the Alps: A Global Comparison, in: Sequence Stratigraphy and Depositional Response to Eustatic, Tectonic and Climatic Forcing, edited by: Haq, B., Kluwer, Dordrecht, 161–207, ISBN 10 0792337808, ISBN 13 978-0792337805, 1995.
Santolaria, P., Granado, P., Wilson, E. P., Matteis, M. de, Ferrer, O., Strauss, P., Pelz, K., König, M., Oteleanu, A. E., Roca, E., and Muñoz, J. A.: From Salt-Bearing Rifted Margins to Fold-And-Thrust Belts, Insights from Analog Modeling and Northern Calcareous Alps Case Study, Tectonics, 41, e2022TC0075, https://doi.org/10.1029/2022TC007503, 2022.
Sassi, W., Colletta, B., Balé, P., and Paquereau, T.: Modelling of structural complexity in sedimentary basins: The role of pre-existing faults in thrust tectonics, Tectonophysics, 226, 97–112, https://doi.org/10.1016/0040-1951(93)90113-X, 1993.
Sausgruber, T.: Bericht 1993 über geologische Aufnahmen in den Nördlichen Kalkalpen auf Blatt 88 Achenkirch, Jahrbuch der Geologischen Bundesanstalt, 137, 469–474, 1994a.
Sausgruber, T.: Jurabeckenentwicklung nördlich vom Achensee und deren Folgen bei der alpidischen Kompressionstektonik, Diploma thesis, Leopold-Franzens Universität Innsbruck, Innsbruck, 133 pp., 1994b.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x, 2004.
Schmid, S. M., Pfiffner, A. O., Froitzheim, N., Schönborn, G., and Kissling, E.: Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps, Tectonics, 15, 1036–1064, https://doi.org/10.1029/96TC00433, 1996.
Schuster, R., Daurer, A., Krenmayr, H. G., Linner, M., Mandl, G. W., Pestal, G., and Reitner, J. M.: Rocky Austria: The Geology of Austria – brief and colourful, 3. Auflage, revidierte Ausgabe, GeoSphere Austria, Wien, 80 pp., 2019.
Schütz, K.-I.: Die Aptychenschichten der Thiersee- und der Karwendel-Mulde, Geotektonische Forschungen, 57, 1–84, 1979.
Sibson, R. H.: Selective fault reactivation during basin inversion: potential for fluid redistribution through fault-valve action, Geol. Soc. Sp., 88, 3–19, https://doi.org/10.1144/GSL.SP.1995.088.01.02, 1995.
Sieberer, A.-K., Willingshofer, E., Klotz, T., Ortner, H., and Pomella, H.: Inversion of extensional basins parallel and oblique to their boundaries: inferences from analogue models and field observations from the Dolomites Indenter, European eastern Southern Alps, Solid Earth, 14, 647–681, https://doi.org/10.5194/se-14-647-2023, 2023.
Smit, J. H. W.: Brittle-ductile coupling in thrust wedges and continental transforms, Doctoral thesis, VU Amsterdam & Université de Rennes, Amsterdam, Rennes, ISBN 90-901918-6-0, 2005.
Smit, J. H. W., Brun, J.-P., and Sokoutis, D.: Deformation of brittle-ductile thrust wedges in experiments and nature, J. Geophys. Res., 108, 2480, https://doi.org/10.1029/2002JB002190, 2003.
Snidero, M., Muñoz, J. A., Carrera, N., Butillé, M., Mencos, J., Motamedi, H., Piryaei, A., and Sàbat, F.: Temporal evolution of the Darmadan salt diapir, eastern Fars region, Iran, Tectonophysics, 766, 115–130, https://doi.org/10.1016/j.tecto.2019.06.006, 2019.
Sokoutis, D., Burg, J.-P., Bonini, M., Corti, G., and Cloetingh, S.: Lithospheric-scale structures from the perspective of analogue continental collision, Tectonophysics, 406, 1–15, https://doi.org/10.1016/J.TECTO.2005.05.025, 2005.
Sokoutis, D., Bonini, M., Medvedev, S., Boccaletti, M., Talbot, C. J., and Koyi, H. A.: Indentation of a continent with a built-in thickness change: experiment and nature, Tectonophysics, 320, 243–270, https://doi.org/10.1016/S0040-1951(00)00043-3, 2000.
Spengler, E.: Versuch einer Rekonstruktion des Ablagerungsraumes der nördlichen Kalkalpen (2. Teil, Mittelabschnitt), Jahrbuch der Geologischen Bundesanstalt, 99, 1–74, 1956.
Spengler, E.: Versuch einer Rekonstruktion des Ablagerungsraumes der nördlichen Kalkalpen (1. Teil, Westabschnitt), Jahrbuch der Geologischen Bundesanstalt, 96, 1–64, 1953.
Spieler, A.: Geological manuscript map, 1995.
Spieler, A.: Bericht 1993 über geologische Aufnahmen in den Nördlichen Kalkalpen auf Blatt 88 Achenkirch, Jahrbuch der Geologischen Bundesanstalt, 137, 474–475, 1994.
Spieler, A. and Brandner, R.: Vom Jurassischen Pull-apart Becken zur Westüberschiebung der Achentaler Schubmasse (Tirol, Österreich), Geologisch-Paläontologische Mitteilungen Universität Innsbruck, 16, 191–194, 1989.
Spötl, C.: The Alpine Haselgebirge Formation, Northern Calcareous Alps (Austria): Permo-Scythian evaporites in an alpine thrust system, Sediment. Geol., 65, 113–125, https://doi.org/10.1016/0037-0738(89)90009-2, 1989.
Stampfli, G., Mosar, J., Marquer, D., Marchant, R., Baudin, T., and Borel, G.: Subduction and obduction processes in the Swiss Alps, Tectonophysics, 296, 159–204, https://doi.org/10.1016/S0040-1951(98)00142-5, 1998.
Storti, F. and Salvini, F.: Progressive Rollover Fault-Propagation Folding: A Possible Kinematic Mechanism to Generate Regional-Scale Recumbent Folds in Shallow Foreland Belts, AAPG Bull., 80, 174–193, https://doi.org/10.1306/64ED8782-1724-11D7-8645000102C1865D, 1996.
Strauss, P., Granado, P., and Muñoz, J. A.: Subsidence analysis of salt tectonics-driven carbonate minibasins (Northern Calcareous Alps, Austria), Basin Res., 33, 968–990, https://doi.org/10.1111/bre.12500, 2021.
Stüwe, K. and Schuster, R.: Initiation of subduction in the Alps: Continent or ocean?, Geology, 38, 175–178, https://doi.org/10.1130/G30528.1, 2010.
Suppe, J.: Principles of structural geology, Prentice-Hall, Englewood Cliffs, New Jersey, ISBN 9780137105007, 0137105002, 1985.
Suppe, J. and Medwedeff, D. A.: Geometry and kinematics of fault-propagation folding, Eclogae Geol. Helv., 83, 409–454, 1990.
Tavarnelli, E.: The effects of pre-existing normal faults on thrust ramp development: An example from the northern Apennines, Italy, Geol. Rundsch., 85, 363–371, https://doi.org/10.1007/BF02422241, 1996.
Thielicke, W.: The Flapping Flight of Birds – Analysis and Application, PhD thesis, Rijksuniversiteit Groningen, Groningen, Netherlands, ISBN 978-90-367-7241-9, 2014.
Thielicke, W. and Sonntag, R.: Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab, J. Open Res. Softw., 12, 1–14, https://doi.org/10.5334/jors.334, 2021.
Thielicke, W. and Stamhuis, E. J.: PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB, J. Open Res. Softw., 2, e30, https://doi.org/10.5334/jors.bl, 2014.
Thorwart, M., Dannowski, A., Grevemeyer, I., Lange, D., Kopp, H., Petersen, F., Crawford, W. C., Paul, A., and the AlpArray Working Group: Basin inversion: reactivated rift structures in the central Ligurian Sea revealed using ocean bottom seismometers, Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, 2021.
Töchterle, A.: Tektonische Entwicklungsgeschichte des Südteiles der Nördlichen Kalkalpen entlang der TRANSALP-Tiefenseismik anhand bilanzierter Profile, Diploma thesis, Leopold-Franzens Universität Innsbruck, Innsbruck, 2005.
Tong, H. and Yin, A.: Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state, Tectonophysics, 503, 195–200, https://doi.org/10.1016/j.tecto.2011.02.012, 2011.
Tron, V. and Brun, J.-P.: Experiments on oblique rifting in brittle-ductile systems, Tectonophysics, 188, 71–84, https://doi.org/10.1016/0040-1951(91)90315-J, 1991.
Turner, J. P. and Williams, G. A.: Sedimentary basin inversion and intra-plate shortening, Earth-Sci. Rev., 65, 277–304, 2004.
Ulrich, R.: Die Entwicklung der ostalpinen Juraformation im Vorkarwendel zwischen Mittenwald und Achensee, Geologica Bavarica, 41, 99–151, https://doi.org/10.1016/j.earscirev.2003.10.002, 1960.
van Gelder, I. E., Willingshofer, E., Sokoutis, D., and Cloetingh, S.: The interplay between subduction and lateral extrusion: A case study for the European Eastern Alps based on analogue models, Earth Planet. Sc. Lett., 472, 82–94, https://doi.org/10.1016/j.epsl.2017.05.012, 2017.
Wallace, W. K. and Homza, T. X.: Detachment folds versus fault-propagation folds, and their truncation by thrust faults, in: Thrust tectonics and hydrocarbon systems, edited by: McClay, K. R., American Association of Petroleum Geologists, 324–355, https://doi.org/10.1306/M82813C18, 2004.
Weijermars, R.: Polydimethylsiloxane flow defined for experiments in fluid dynamics, Appl. Phys. Lett., 48, 109–111, https://doi.org/10.1063/1.97008, 1986a.
Weijermars, R.: Finite strain of laminar flows can be visualized in SGM36-polymer, Naturwissenschaften, 73, 33–34, https://doi.org/10.1007/BF01168803, 1986b.
Weijermars, R.: Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications, Tectonophysics, 124, 325–358, https://doi.org/10.1016/0040-1951(86)90208-8, 1986c.
Weijermars, R. and Schmeling, H.: Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. Int., 43, 316–330, https://doi.org/10.1016/0031-9201(86)90021-X, 1986.
Weijermars, R., Jackson, M. P., and Vendeville, B. C.: Rheological and tectonic modeling of salt provinces, Tectonophysics, 217, 143–174, https://doi.org/10.1016/0040-1951(93)90208-2, 1993.
Weissert, H. J. and Bernoulli, D.: A transform margin in the Mesozoic Tethys: evidence from the Swiss Alps, Geol. Rundsch., 74, 665–679, https://doi.org/10.1007/BF01821220, 1985.
Wickham, J.: Comment on “Basin inversion and fault reactivation in laboratory experiments”, J. Struct. Geol., 29, 1414–1416, https://doi.org/10.1016/j.jsg.2007.05.002, 2007.
Willingshofer, E., Sokoutis, D., Beekman, F., Schönebeck, J.-M., Warsitzka, M., and Rosenau, M.: Ring shear test data of feldspar sand and quartz sand used in the Tectonic Laboratory (TecLab) at Utrecht University for experimental Earth Science Applications, GFZ Data Services [data set] https://doi.org/10.5880/fidgeo.2018.072, 2018.
Willingshofer, E., Sokoutis, D., and Burg, J.-P.: Lithospheric-scale analogue modelling of Collision zones with a pre-existing weak zone, Geol. Soc. Sp., 243, 277–294, https://doi.org/10.1144/gsl.sp.2005.243.01.18, 2005.
Willingshofer, E., Neubauer, F., and Cloetingh, S.: The significance of Gosau-type basins for the late cretaceous tectonic history of the Alpine-Carpathian belt, Phys. Chem. Earth, 24, 687–695, https://doi.org/10.1016/S1464-1895(99)00100-3, 1999.
Yagupsky, D. L., Cristallini, E. O., Fantín, J., Valcarce, G. Z., Bottesi, G., and Varadé, R.: Oblique half-graben inversion of the Mesozoic Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza, Argentina: New insights from analogue models, J. Struct. Geol., 30, 839–853, https://doi.org/10.1016/j.jsg.2008.03.007, 2008.
Zorlu, J.: Sedimentpetrographische und geochemische Untersuchungen an unterschiedlich überprägten Triasdolomiten der Ost- und Südalpen, Doctoral thesis, Ruhr-Universität Bochum, Bochum, 2007.
Zwaan, F., Schreurs, G., Buiter, S. J. H., Ferrer, O., Reitano, R., Rudolf, M., and Willingshofer, E.: Analogue modelling of basin inversion: a review and future perspectives, Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, 2022.
Short summary
Extensional deformation creates structures that may be reactivated during subsequent shortening. The Achental structure within the Northern Calcareous Alps fold-and-thrust belt is a natural example of a basin margin that was inverted during Alpine orogeny. We have studied the influence of such inherited inhomogeneities in the field and as an analogue model. We find that oblique shortening can create structures outlining pre-existing faults within a single deformation event.
Extensional deformation creates structures that may be reactivated during subsequent shortening....
Special issue