Brisson, S., Wellmann, F., Chudalla, N., von Harten, J., and von Hagke, C.: Estimating uncertainties in 3-D models of complex fold-and-thrust belts: A case study of the Eastern Alps triangle zone, Applied Computing and Geosciences, 18, 100115, https://doi.org/10.1016/j.acags.2023.100115, 2023.
Buiter, S. J. H., Schreurs, G., Albertz, M., Gerya, T. V., Kaus, B., Landry, W., le Pourhiet, L., Mishin, Y., Egholm, D. L., Cooke, M., Maillot, B., Thieulot, C., Crook, T., May, D., Souloumiac, P., and Beaumont, C.: Benchmarking numerical models of brittle thrust wedges, J. Struct. Geol., 92, 140–177, https://doi.org/10.1016/j.jsg.2016.03.003, 2016.
Cotton, J. T. and Koyi, H. A.: Modeling of thrust fronts above ductile and frictional detachments: Application to structures in the Salt Range and Potwar Plateau, Pakistan, Geol. Soc. Am. Bull., 112, 351–363, https://doi.org/10.1130/0016-7606(2000)112<0351:Motfad>2.3.Co;2, 2000.
Couzens-Schultz, B. A., Vendeville, B. C., and Wiltschko, D. V.: Duplex style and triangle zone formation: insights from physical modeling, J. Struct. Geol., 25, 1623–1644, https://doi.org/10.1016/S0191-8141(03)00004-X, 2003.
Crook, A. J. L., Willson, S. M., Yu, J. G., and Owen, D. R. J.: Predictive modelling of structure evolution in sandbox experiments, J. Struct. Geol., 28, 729–744, https://doi.org/10.1016/j.jsg.2006.02.002, 2006.
Cruz, L., Malinski, J., Wilson, A., Take, W. A., and Hilley, G.: Erosional control of the kinematics and geometry of fold-and-thrust belts imaged in a physical and numerical sandbox, J. Geophys. Res.-Sol. Ea., 115, B09404, https://doi.org/10.1029/2010jb007472, 2010.
Cubas, N., Souloumiac, P., and Singh, S. C.: Relationship link between landward vergence in accretionary prisms and tsunami generation, Geology, 44, 787–790, https://doi.org/10.1130/G38019.1, 2016.
Dahlen, F. A.: Critical Taper Model of Fold-and-Thrust Belts and Accretionary Wedges, Annu. Rev. Earth Pl. Sc., 18, 55–99, https://doi.org/10.1146/annurev.ea.18.050190.000415, 1990.
Davis, D. M. and Engelder, T.: The Role of Salt in Fold-and-Thrust Belts, Tectonophysics, 119, 67–88, https://doi.org/10.1016/0040-1951(85)90033-2, 1985.
Del Castello, M. and Cooke, M. L.: Underthrusting-accretion cycle: Work budget as revealed by the boundary element method, J. Geophys. Res.-Sol. Ea., 112, B12404, https://doi.org/10.1029/2007jb004997, 2007.
Ellis, S., Schreurs, G., and Panien, M.: Comparisons between analogue and numerical models of thrust wedge development, J. Struct. Geol., 26, 1659–1675, https://doi.org/10.1016/j.jsg.2004.02.012, 2004.
Flemings, P. B. and Saffer, D. M.: Pressure and Stress Prediction in the Nankai Accretionary Prism: A Critical State Soil Mechanics Porosity-Based Approach, J. Geophys. Res.-Sol. Ea., 123, 1089–1115, https://doi.org/10.1002/2017jb015025, 2018.
Gao, B., Flemings, P. B., Nikolinakou, M. A., Saffer, D. M., and Heidari, M.: Mechanics of Fold-and-Thrust Belts Based on Geomechanical Modeling, J Geophys. Res.-Sol. Ea., 123, 4454–4474, https://doi.org/10.1029/2018jb015434, 2018.
Gutscher, M. A., Klaeschen, D., Flueh, E., and Malavieille, J.: Non-Coulomb wedges, wrong-way thrusting, and natural hazards in Cascadia, Geology, 29, 379–382, https://doi.org/10.1130/0091-7613(2001)029<0379:Ncwwwt>2.0.Co;2, 2001.
Heidari, M., Nikolinakou, M. A., and Flemings, P. B.: Modified Cam-Clay Model for Large Stress Ranges and Its Predictions for Geological and Drilling Processes, J. Geophys. Res.-Sol. Ea., 125, e2020JB019500, https://doi.org/10.1029/2020JB019500, 2020.
Herbert, J. W., Cooke, M. L., Souloumiac, P., Madden, E. H., Mary, B. C. L., and Maillot, B.: The work of fault growth in laboratory sandbox experiments, Earth Planet Sc. Lett., 432, 95–102, https://doi.org/10.1016/j.epsl.2015.09.046, 2015.
Higgins, S., Clarke, B., Davies, R. J., and Cartwright, J.: Internal geometry and growth history of a thrust-related anticline in a deep water fold belt, J. Struct. Geol., 31, 1597–1611, https://doi.org/10.1016/j.jsg.2009.07.006, 2009.
Hubbert, M. K. and Rubey, W. W.: Role of Fluid Pressure in Mechanics of Overthrust Faulting .1. Mechanics of Fluid-Filled Porous Solids and Its Application to Overthrust Faulting, Geol. Soc. Am. Bull., 70, 115–166, 1959.
Koyi, H. A. and Vendeville, B. C.: The effect of decollement dip on geometry and kinematics of model accretionary wedges, J. Struct. Geol., 25, 1445–1450, https://doi.org/10.1016/S0191-8141(02)00202-X, 2003.
Lebinson, F., Turienzo, M., Sánchez, N., Cristallini, E., Araujo, V., and Dimieri, L.: Kinematics of a backthrust system in the Agrio fold and thrust belt, Argentina: Insights from structural analysis and analogue models, J. S. Am. Earth Sci., 100, 102594, https://doi.org/10.1016/j.jsames.2020.102594, 2020.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges, J. Struct. Geol., 25, 1691–1711, https://doi.org/10.1016/S0191-8141(03)00005-1, 2003.
MacKay, M. E.: Structural variation and landward vergence at the toe of the Oregon accretionary prism, Tectonics, 14, 1309–1320, https://doi.org/10.1029/95tc02320, 1995.
Maillot, B. and Leroy, Y. M.: Optimal dip based on dissipation of back thrusts and hinges in fold-and-thrust belts, J. Geophys. Res.-Sol. Ea., 108, 2320, https://doi.org/10.1029/2002jb002199, 2003.
Marques, F. O. and Cobbold, P. R.: Effects of topography on the curvature of fold-and-thrust belts during shortening of a 2-layer model of continental lithosphere, Tectonophysics, 415, 65–80, https://doi.org/10.1016/j.tecto.2005.12.001, 2006.
Mary, B. C. L., Maillot, B., and Leroy, Y. M.: Deterministic chaos in frictional wedges revealed by convergence analysis, Int. J. Numer. Anal. Met., 37, 3036–3051, https://doi.org/10.1002/nag.2177, 2013.
McBeck, J. A., Cooke, M. L., Herbert, J. W., Maillot, B., and Souloumiac, P.: Work Optimization Predicts Accretionary Faulting: An Integration of Physical and Numerical Experiments, J. Geophys. Res.-Sol. Ea., 122, 7485–7505, https://doi.org/10.1002/2017jb013931, 2017.
McClay, K.: Introduction to Thrust Fault-related Folding, in: Thrust Fault-Related Folding, edited by: McClay, K., Shaw, J., and Suppe, J., American Association of Petroleum Geologists, https://doi.org/10.1306/13251330M9450, 2011.
McMechan, M. E.: Structural geometry and kinematic evolution of the central Canadian Rocky Mountain Foothills fold-and-thrust belt: Complex kinematic relationships controlled by detachment utilization, Geosphere, 19, 1690–1708, https://doi.org/10.1130/Ges02623.1, 2023.
Mugnier, J. L., Huyghe, P., Large, E., Jouanne, F., Guillier, B., and Chakraborty, T.: An embryonic fold and thrust belt south of the Himalayan morphological front: Examples from the Central Nepal and Darjeeling piedmonts, Earth-Sci. Rev., 230, 104061, https://doi.org/10.1016/j.earscirev.2022.104061, 2022.
Nikolinakou, M. A., Flemings, P. B., Gao, B., and Saffer, D. M.: The Evolution of Pore Pressure, Stress, and Physical Properties During Sediment Accretion at Subduction Zones, J. Geophys. Res.-Sol. Ea., 128, e2022JB025504, https://doi.org/10.1029/2022JB025504, 2023.
Obradors-Prats, J., Rouainia, M., Aplin, A. C., and Crook, A. J. L.: Hydromechanical Modeling of Stress, Pore Pressure, and Porosity Evolution in Fold-and-Thrust Belt Systems, J. Geophys. Res.-Sol. Ea, 122, 9383–9403, https://doi.org/10.1002/2017jb014074, 2017.
Obradors-Prats, J., Medina, E. E. C., Jones, S. J., Rouainia, M., Aplin, A. C., and Crook, A. J. L.: Integrating petrophysical, geological and geomechanical modelling to assess stress states, overpressure development and compartmentalisation adjacent to a salt wall, gulf of Mexico, Mar. Petrol. Geol., 155, 106352, https://doi.org/10.1016/j.marpetgeo.2023.106352, 2023.
Ortner, H., von Hagke, C., Sommaruga, A., Mosar, J., Beidinger, A., and Hinsch, R.: The deformation front of the alps, in: Geodynamics of the Alps 3, edited by: Bellahsen, N. and Rosenberg, C., ISTE – Wiley, London, 2023.
Robert, R., Souloumiac, P., Robion, P., and David, C.: Numerical simulation of deformation band occurrence and the associated stress field during the growth of a fault-propagation fold, Geosciences, 9, https://doi.org/10.3390/geosciences9060257, 2019.
Rockfield: Elfen explicit manual (4.10), Rockfield [code], 2017.
Roscoe, K. H., Schofield, A. N., and Wroth, C. P.: On the Yielding of Soils, Geotechnique, 8, 32, https://doi.org/10.1680/geot.1958.8.1.22, 1958.
Ruh, J. B., Kaus, B. J. P., and Burg, J. P.: Numerical investigation of deformation mechanics in fold-and-thrust belts: Influence of rheology of single and multiple decollements, Tectonics, 31, Tc3005, https://doi.org/10.1029/2011tc003047, 2012.
Schreurs, G., Buiter, S. J. H., Boutelier, D., Corti, G., Costa, E., Cruden, A. R., Daniel, J. M., Hoth, S., Koyi, H. A., Kukowski, N., Lohrmann, J., Ravaglia, A., Schlische, R. W., Withjack, M. O., Yamada, Y., Cavozzi, C., Delventisette, C., Elder Brady, J. A., Hoffmann-Rothe, A., Mengus, J. M., Montanari, D., and Nilforoushan, F.: Analogue benchmarks of shortening and extension experiments, in: Analogue and Numerical Modelling of Crustalscale Processes, edited by: Buiter, S. J. H. and Schreurs, G., Geological Society of London, 440, https://doi.org/10.1144/GSL.SP.2006.253.01.01, 2006.
Seely, D. R.: The significance of landward vergence and oblique structural trends on trench inner slopes, in: Island arcs, deep sea trenches and back-arc basins, edited by: Talwani, M. and Pitman III, W. C., American Geophysical Union, 470, https://doi.org/10.1029/ME001, 1977.
Smit, J., Burg, J. P., Dolati, A., and Sokoutis, D.: Effects of mass waste events on thrust wedges: Analogue experiments and application to the Makran accretionary wedge, Tectonics, 29, Tc3003, https://doi.org/10.1029/2009tc002526, 2010.
Smit, J. H. W., Brun, J. P., and Sokoutis, D.: Deformation of brittle-ductile thrust wedges in experiments and nature, J. Geophys. Res.-Sol. Ea., 108, 2480, https://doi.org/10.1029/2002jb002190, 2003.
Song, I., Saffer, D. M., and Flemings, P. B.: Mechanical characterization of slope sediments: Constraints on in situ stress and pore pressure near the tip of the megasplay fault in the Nankai accretionary complex, Geochem. Geophy. Geosy., 12, 20, https://doi.org/10.1029/2011GC003556, 2011.
Teixell, A. and Koyi, H. A.: Experimental and field study of the effects of lithological contrasts on thrust-related deformation, Tectonics, 22, 1054, https://doi.org/10.1029/2002tc001407, 2003.
von Hagke, C., Bauville, A., and Chudalla, N.: Control of décollement strength and dip on fault vergence in fold-thrust belts and accretionary prisms, Tectonophysics, 870, 230172, https://doi.org/10.1016/j.tecto.2023.230172, 2024.
Willett, S. D. and Schlunegger, F.: The last phase of deposition in the Swiss Molasse Basin: from foredeep to negative-alpha basin, Basin Res., 22, 623–639, https://doi.org/10.1111/j.1365-2117.2009.00435.x, 2010.
Wood, D. M.: Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, 462 pp., https://doi.org/10.1017/CBO9781139878272, 1991.
Zhou, J., Zhang, B., and Xu, Q.: Effects of lateral friction on the structural evolution of fold-and-thrust belts: Insights from sandbox experiments with implications for the origin of landward-vergent thrust wedges in Cascadia, GSA Bulletin, 128, 15, https://doi.org/10.1130/B31320.1, 2016.