Articles | Volume 16, issue 11
https://doi.org/10.5194/se-16-1453-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1453-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Petrophysics-guided velocity analysis and seismic data reprocessing to improve mineral exploration targeting in the Irish Zn-Pb Orefield
Victoria Susin
CORRESPONDING AUTHOR
School of Earth Sciences, University College Dublin, Belfield, Dublin, Ireland
Research Ireland Centre for Applied Geosciences (iCRAG), University College Dublin, Belfield, Dublin, Ireland
Aline Melo
School of Earth Sciences, University College Dublin, Belfield, Dublin, Ireland
Research Ireland Centre for Applied Geosciences (iCRAG), University College Dublin, Belfield, Dublin, Ireland
Koen Torremans
School of Earth Sciences, University College Dublin, Belfield, Dublin, Ireland
Research Ireland Centre for Applied Geosciences (iCRAG), University College Dublin, Belfield, Dublin, Ireland
Juan Alcalde
Geosciences Barcelona GEO3BCN, Barcelona, Spain
David Martí
Geosciences Barcelona GEO3BCN, Barcelona, Spain
Rafael Bartolome
Instituto de Ciencias del Mar (ICM) CSIC, Barcelona, Spain
Related authors
No articles found.
Vincent Monchal, Rémi Rateau, Kerstin Drost, Cyril Gagnaison, Bastien Mennecart, Renaud Toullec, Koen Torremans, and David Chew
Geochronology, 7, 139–156, https://doi.org/10.5194/gchron-7-139-2025, https://doi.org/10.5194/gchron-7-139-2025, 2025
Short summary
Short summary
Sedimentary rocks are typically dated indirectly, by comparing the fossil content of basins with the geological timescale. In this study, we employed an absolute dating approach to date 19\,Myr old sediments in the Paris Basin, using uranium–lead dating of calcite nodules associated with soil formation. The precision of our new ages enable more accurate comparisons (independent of their fossil contents) between the Paris Basin and other basins of similar age.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Jordi Díaz, Sergi Ventosa, Martin Schimmel, Mario Ruiz, Albert Macau, Anna Gabàs, David Martí, Özgenç Akin, and Jaume Vergés
Solid Earth, 14, 499–514, https://doi.org/10.5194/se-14-499-2023, https://doi.org/10.5194/se-14-499-2023, 2023
Short summary
Short summary
We assess the capability of multiple methods based on the interpretation of seismic noise to map the basement of the Cerdanya Basin, located in the eastern Pyrenees. Basement depth estimations retrieved from the different approaches are consistent, with maximum depths reaching 700 m close to the Têt fault bounding the basin to the east. Our results prove that seismic noise analysis using high-density networks is an excellent tool to improve the geological characterization of sedimentary basins.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Cited articles
Alcalde, J., Carbonell, R., Pospiech, S., Gil, A., Bullock, L. A., and Tornos, F.: Preface: State of the art in mineral exploration, Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, 2022.
Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., Durrheim, R., Enriquez, M. A., Kinnaird, J., Littleboy, A., Meinert, L. D., Oberhänsli, R., Salem, J., Schodde, R., Schneider, G., Vidal, O., and Yakovleva, N.: Mineral supply for sustainable development requires resource governance, Nature, 543, 367–372, https://doi.org/10.1038/nature21359, 2017.
Ashton, J. H., Beach, A., Blakeman, R. J., Coller, D., Henry, P., Lee, R., Hitzman, M., Hope, C., Huleatt-James, S., O'Donovan, B., and Philcox, M. E.: Discovery of the Tara Deep Zn-Pb Mineralization at the Boliden Tara Mine, Navan, Ireland: Success with Modern Seismic Surveys, in: Metals, Minerals, and Society, vol. 21, edited by: Arribas, A. and Mauk, J. L., Society of Economic Geologists, 0, https://doi.org/10.5382/SP.21.16, 2018.
Bell, T., Turner, G., Bhat, G., and Knell, B.: Multiscale insights into the Mount Weld REE deposit from 2D and 3D active seismic survey data, in: Third International Meeting for Applied Geoscience & Energy Expanded Abstracts, Society of Exploration Geophysicists and American Association of Petroleum Geologists, 1653–1657, https://doi.org/10.1190/image2023-3912490.1, 2023.
Benz, H. M., Chouet, B. A., Dawson, P. B., Lahr, J. C., Page, R. A., and Hole, J. A.: Three-dimensional P and S wave velocity structure of Redoubt Volcano, Alaska, Journal of Geophysical Research: Solid Earth, 101, 8111–8128, https://doi.org/10.1029/95JB03046, 1996.
Blaney, D. and Coffey, E.: The volcano-stratigraphic setting of the Pallas Green Zn-Pb deposit, County Limerick, in: Irish-type Deposits around the world, Irish Association for Economic Geology, Dublin, edited by: Andrew, C. J., Hitzman, M. W., and Stanley, G., 285–308 pp., https://doi.org/10.61153/QHKU2937, 2023.
Blaney, D. and Redmond, P. B.: Zinc-lead deposits of the Limerick Basin, Ireland, in: Current Perspectives on Zinc Deposits, edited by: Archibald, S. M. and Piercey, S. P., Irish Association for Economic Geology, Dublin, 73–84 pp., ISBN 9780950989457, 2015.
Bonini, M., Sani, F., and Antonielli, B.: Basin inversion and contractional reactivation of inherited normal faults: A review based on previous and new experimental models, Tectonophysics, 522–523, 55–88, https://doi.org/10.1016/j.tecto.2011.11.014, 2012.
Chakraborti, P., Susin, V., Cavalcanti, G., and Melo, A.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2531-001 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.16905925, 2025.
Cheraghi, S., Hloušek, F., Buske, S., Malehmir, A., Adetunji, A., Haugaard, R., Snyder, D., and Vayavur, R.: Reflection seismic imaging across a greenstone belt, Abitibi (Ontario), Canada, Geophysical Prospecting, 71, 1096–1115, https://doi.org/10.1111/1365-2478.13284, 2023.
Chew, D. M., Stillman, C. J., Holland, C. H., and Sanders, I. S.: Late Caledonian orogeny and magmatism, The geology of Ireland, 2, 143–173, 2009.
de Morton, S. N., Wallace, M. W., Reed, C. P., Hewson, C., Redmond, P., Cross, E., and Moynihan, C.: The significance of Tournaisian tectonism in the Dublin basin: Implications for basin evolution and zinc-lead mineralization in the Irish Midlands, Sedimentary Geology, 330, 32–46, https://doi.org/10.1016/j.sedgeo.2015.09.017, 2015.
Devuyst, F.-X. and Lees, A.: The initiation of Waulsortian buildups in Western Ireland, Sedimentology, 48, 1121–1148, https://doi.org/10.1046/j.1365-3091.2001.00411.x, 2001.
Eaton, D. W., Milkereit, B., and Salisbury, M.: Seismic methods for deep mineral exploration: Mature technologies adapted to new targets, The Leading Edge, 22, 580–585, https://doi.org/10.1190/1.1587683, 2003.
Eaton, D. W., Adam, E., Milkereit, B., Salisbury, M., Roberts, B., White, D., and Wright, J.: Enhancing base-metal exploration with seismic imagingThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe – parameters, processes, and the evolution of a continent, Canadian Journal of Earth Sciences, 47, 741–760, https://doi.org/10.1139/E09-047, 2010.
Eberli, G. P., Baechle, G. T., Anselmetti, F. S., and Incze, M. L.: Factors controlling elastic properties in carbonate sediments and rocks, The Leading Edge, 22, 654–660, https://doi.org/10.1190/1.1599691, 2003.
Elliott, H. A. L., Gernon, T. M., Roberts, S., and Hewson, C.: Basaltic maar-diatreme volcanism in the Lower Carboniferous of the Limerick Basin (SW Ireland), Bull Volcanol, 77, 37, https://doi.org/10.1007/s00445-015-0922-2, 2015.
Elliott, H. A. L., Gernon, T. M., Roberts, S., Boyce, A. J., and Hewson, C.: Diatremes Act as Fluid Conduits for Zn-Pb Mineralization in the SW Irish Ore Field, Economic Geology, 114, 117–125, https://doi.org/10.5382/econgeo.2019.4622, 2019.
Fusciardi, L. P., Guven, J. F., Stewart, D. R. A., Carboni, V., Walsh, J. J., Kelly, J. G., Andrew, C. J., Ashton, J. H., Boland, M. B., and Earls, G.: The geology and genesis of the Lisheen Zn-Pb deposit, Co. Tipperary, Ireland, Europe's major base metal deposits, 455–481, 2003.
Geological Survey Ireland: Bedrock geology of Ireland map 1:100,000: Limerick Basin, Geological Survey Ireland, 2022.
Gil, A., Malehmir, A., Buske, S., Alcalde, J., Ayarza, P., Martínez, Y., Lindskog, L., Spicer, B., Carbonell, R., Orlowsky, D., Carriedo, J., and Hagerud, A.: Reflection seismic imaging to unravel subsurface geological structures of the Zinkgruvan mining area, central Sweden, Ore Geology Reviews, 137, 104306, https://doi.org/10.1016/j.oregeorev.2021.104306, 2021.
Gordon, P., Kelly, J. G. and van Lente, B.: NI 43-101 Independent Report on the Zinc-Lead Exploration Project at Stonepark, County Limerick, Ireland, https://groupelevenresources.com/_resources/Stonepark-NI-43-101-Technical-Report.pdf (last access: 18 November 2025), 2018.
Guven, J., Torremans, K., Johnson, S., and Hitzman, M.: The Rathdowney Trend, Ireland: Geological evolution and controls on Zn-Pb mineralization, Irish-Type Deposits around the World, edited by: Andrew, C. J., Hitzman, M. W., and Stanley, G., 329–362 pp., Irish Association for Economic Geology, Dublin, Ireland, 2023.
Hitzman, M. W.: Extensional faults that localize Irish syndiagenetic Zn-Pb Deposits and their reactivation during Variscan compression, SP, 155, 233–245, https://doi.org/10.1144/GSL.SP.1999.155.01.17, 1999.
Hool, A., Helbig, C., and Wierink, G.: Challenges and opportunities of the European Critical Raw Materials Act, Mineral Economics, 37, 661–668, https://doi.org/10.1007/s13563-023-00394-y, 2023.
Johnston, J. D.: Regional fluid flow and the genesis of Irish Carboniferous base metal deposits, Mineral. Deposita, 34, 571–598, https://doi.org/10.1007/s001260050221, 1999.
Johnston, J. D., Coller, D., Millar, G., and Critchley, M. F.: Basement structural controls on Carboniferous-hosted base metal mineral deposits in Ireland, Geological Society, London, Special Publications, 107, 1–21, https://doi.org/10.1144/GSL.SP.1996.107.01.02, 1996.
Kyne, R., Torremans, K., Güven, J., Doyle, R., and Walsh, J.: 3-D Modeling of the Lisheen and Silvermines Deposits, County Tipperary, Ireland:Insights into Structural Controls on the Formation of Irish Zn-Pb Deposits, Economic Geology, 114, 93–116, https://doi.org/10.5382/econgeo.2019.4621, 2019.
Lees, A.: The structure and origin of the Waulsortian (Lower Carboniferous) “reefs” of west-central Eire, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 247, 483–531, https://doi.org/10.1098/rstb.1964.0004, 1964.
Liberty, L. M., Schmitt, D. R., and Shervais, J. W.: Seismic imaging through the volcanic rocks of the Snake River Plain: insights from Project Hotspot, Geophysical Prospecting, 63, 919–936, https://doi.org/10.1111/1365-2478.12277, 2015.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D. J., Milkereit, B., and Campbell, G.: Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future, GEOPHYSICS, 77, WC173–WC190, https://doi.org/10.1190/geo2012-0028.1, 2012.
Malehmir, A., Manzi, M., Draganov, D., Weckmann, U., and Auken, E. (Eds.): Special Issue: Cost-Effective and Innovative Mineral Exploration Solutions, Geophysical Prospecting, 68, 1–349, 2020.
Manzi, M., Malehmir, A., and Durrheim, R.: Giving the legacy seismic data the attention they deserve, First Break, 37, 89–96, https://doi.org/10.3997/1365-2397.n0050, 2019.
McBride, J., Nelson, S. T., Mwakanyamale, K. E., Wolfe, E. E., Tingey, D. G., and Rey, K. A.: Geophysical characterization of volcanic layering, Journal of Applied Geophysics, 195, 104494, https://doi.org/10.1016/j.jappgeo.2021.104494, 2021.
McCormack, T., O'Connell, Y., Daly, E., Gill, L. W., Henry, T., and Perriquet, M.: Characterisation of karst hydrogeology in Western Ireland using geophysical and hydraulic modelling techniques, Journal of Hydrology: Regional Studies, 10, 1–17, https://doi.org/10.1016/j.ejrh.2016.12.083, 2017.
Meere, P. A.: The structural evolution of the western Irish Variscides: an example of obstacle tectonics?, Tectonophysics, 246, 97–112, https://doi.org/10.1016/0040-1951(94)00267-D, 1995.
Melo, A., Chakraborti, P., Susin, V., Farrell, C., and Byrne, E.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole G11-2531-01 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.16905640, 2025a.
Melo, A., Susin, V., Chakraborti, P., and Wei, N.: Methodology for measuring Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (XRF), and Shear Velocity (Vs) of drill core rock samples at the UCD Petrophysics Laboratory, Zenodo, https://doi.org/10.5281/zenodo.16903342, 2025b.
O'Connell, Y., Daly, E., Henry, T., and Brown, C.: Terrestrial and marine electrical resistivity to identify groundwater pathways in coastal karst aquifers, Near Surface Geophysics, 16, 164–175, https://doi.org/10.3997/1873-0604.2017062, 2018.
Paige, C. C. and Saunders, M. A.: LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, ACM Trans. Math. Softw., 8, 43–71, https://doi.org/10.1145/355984.355989, 1982.
Planke, S., Alvestad, E., and Eldholm, O.: Seismic characteristics of basaltic extrusive and intrusive rocks, The Leading Edge, 18, 342–348, https://doi.org/10.1190/1.1438289, 1999.
Pu, Y., Liu, G., Wang, D., Huang, H., and Wang, P.: Wave-equation traveltime and amplitude for Kirchhoff migration, in: First International Meeting for Applied Geoscience & Energy Expanded Abstracts, Society of Exploration Geophysicists, 2684–2688, https://doi.org/10.1190/segam2021-3583642.1, 2021.
Pujol, J., Fuller, B. N., and Smithson, S. B.: Interpretation of a vertical seismic profile conducted in the Columbia Plateau basalts, GEOPHYSICS, 54, 1258–1266, https://doi.org/10.1190/1.1442585, 1989.
Robertson Geo: Mining & Minerals, 002 RGO/18, https://www.robertson-geo.com (last access: 18 November 2025), 2019.
Salisbury, M. H., Bernd, M., Ascough, G., Adair, R., Matthews, L., Schmitt, D. R., Mwenifumbo, J., Eaton, D. W., and Wu, J.: Physical properties and seismic imaging of massive sulfides, Geophysics, 65, 1882–1889, https://doi.org/10.1190/1.1444872, 2000.
Sevastopulo, G. D. and Wyse Jackson, P. N.: Carboniferous: Mississippian (Tournaisian and Viséan), The geology of Ireland, 215–268 pp., 2009.
Singh, B. and Malinowski, M.: Seismic Imaging of Mineral Exploration Targets: Evaluation of Ray- vs. Wave-Equation-Based Pre-Stack Depth Migrations for Crooked 2D Profiles, Minerals, 13, 264, https://doi.org/10.3390/min13020264, 2023.
Slezak, P., Hitzman, M. W., van Acken, D., Dunlevy, E., Chew, D., Drakou, F., and Holdstock, M.: Petrogenesis of the Limerick Igneous Suite: insights into the causes of post-eruptive alteration and the magmatic sources underlying the Iapetus Suture in SW Ireland, Journal of the Geological Society, 180, jgs2022-039, https://doi.org/10.1144/jgs2022-039, 2023.
Somerville, I. D. and Jones, G. L. I.: The Courceyan stratigraphy of the Pallaskenry Borehole, County Limerick, Ireland, Geological Journal, 20, 377–400, https://doi.org/10.1002/gj.3350200406, 1985.
Somerville, I. D., Strogen, P., and Jones, G. Li.: Biostratigraphy of Dinantian limestones and associated volcanic rocks in the Limerick Syncline, Ireland, Geological Journal, 27, 201–220, https://doi.org/10.1002/gj.3350270302, 1992.
Somerville, I. D., Waters, C. N., and Collinson, J. D.: South Central Ireland, The Geological Society, 26, 144–152, https://doi.org/10.1144/SR26.22, 2011.
Strogen, P.: The carboniferous lithostratigraphy of Southeast County Limerick, Ireland, and the origin of the shannon trough, Geological Journal, 23, 121–137, https://doi.org/10.1002/gj.3350230202, 1988.
Sullivan, E. C., Hardage, B. A., McGrail, B. P., and Davis, K. N.: Breakthroughs in seismic and borehole characterization of Basalt sequestration targets, Energy Procedia, 4, 5615–5622, https://doi.org/10.1016/j.egypro.2011.02.551, 2011.
Susin, V., Melo, A., Chakraborti, P., Farrell, C., and Byrne, E.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole G11-2638-06 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.16905792, 2025a.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-004 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17098955, 2025b.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-008 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099141, 2025c.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-026 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099214, 2025d.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-036 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099312, 2025e.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-074 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099380, 2025f.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-088 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099469, 2025g.
Susin, V., Chakraborti, P., Melo, A., and Cavalcanti, G.: Chargeability, Compressional Velocity (Vp), Density, Galvanic Electric Resistivity, Gamma Ray Spectrometry (K, Th, U), Inductive Electric Conductivity, Magnetic Susceptibility, Portable X-Ray Fluorescence (pXRF), and Shear Velocity (Vs) of the Drillhole TC-2638-101 in Limerick Basin, Ireland, Zenodo, https://doi.org/10.5281/zenodo.17099518, 2025h.
Torremans, K., Kyne, R., Doyle, R., Güven, J. F., and Walsh, J. J.: Controls on Metal Distributions at the Lisheen and Silvermines Deposits: Insights into Fluid Flow Pathways in Irish-Type Zn-Pb Deposits, Economic Geology, 113, 1455–1477, https://doi.org/10.5382/econgeo.2018.4598, 2018.
Tryggvason, A. and Bergman, B.: A traveltime reciprocity discrepancy in the Podvin & Lecomte time3d finite difference algorithm, Geophys J Int, 165, 432–435, https://doi.org/10.1111/j.1365-246X.2006.02925.x, 2006.
Tryggvason, A., Rögnvaldsson, S. Th., and Flóvenz, Ó. G.: Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland, Geophys J Int, 151, 848–866, https://doi.org/10.1046/j.1365-246X.2002.01812.x, 2002.
Vidal, O., Goffé, B., and Arndt, N.: Metals for a low-carbon society, Nature Geosci, 6, 894–896, https://doi.org/10.1038/ngeo1993, 2013.
Walsh, J. J., Torremans, K., Güven, J., Kyne, R., Conneally, J., and Bonson, C.: Fault-Controlled Fluid Flow Within Extensional Basins and Its Implications for Sedimentary Rock-Hosted Mineral Deposits, in: Metals, Minerals, and Society, Vol. 21, edited by: Arribas R., A. M. and Mauk, J. L., Society of Economic Geologists, 0, https://doi.org/10.5382/SP.21.11, 2018.
Wilkinson, J. J.: Tracing metals from source to sink in Irish-type Zn–Pb (-Ba-Ag) deposits, Irish-type Zn–Pb deposits around the world, edited by: Andrew, C. J., Hitzman, M. W., and Stanley, G., 147–168, https://www.iaeg.ie/resources/Documents/Wilkinson 147 to 168.pdf (last access: 21 November 2025), 2023.
Wilkinson, J. J., Crowther, H. L., and Coles, B. J.: Chemical mass transfer during hydrothermal alteration of carbonates: Controls of seafloor subsidence, sedimentation and Zn–Pb mineralization in the Irish Carboniferous, Chemical Geology, 289, 55–75, https://doi.org/10.1016/j.chemgeo.2011.07.008, 2011.
Wilkinson, J. J., Hitzman, M. W., Archibald, S. M., and Piercey, S. J.: The Irish Zn-Pb orefield: the view from 2014, in: Current Perspectives on Zinc Deposits, edited by: Archibald, S. M. and Piercey, S. P., Irish Association for Economic Geology, Dublin, 59–72 pp., ISBN 9780950989457, 2015.
Ziolkowski, A., Hanssen, P., Gatliff, R., Jakubowicz, H., Dobson, A., Hampson, G., Li, X.-Y., and Liu, E.: Use of low frequencies for sub-basalt imaging, Geophysical Prospecting, 51, 169–182, https://doi.org/10.1046/j.1365-2478.2003.00363.x, 2003.
Short summary
We combined petrophysical data and travel-time tomography to inform the stacking velocity model for post-stack time migration of a seismic profile from the Limerick Syncline, a geologically complex area of the Irish Zn-Pb Orefield. The improved imaging enhanced subsurface characterisation, revealed previously unmapped structures, and provided new geological insights to support future mineral exploration.
We combined petrophysical data and travel-time tomography to inform the stacking velocity model...