Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-251-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-251-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The geological structures of the Pyrenees and their peripheral basins examined through EMAG2v2 magnetic data
Instituto Andaluz de Ciencias de la Tierra, IACT-CSIC, 18100 Armilla, Granada, Spain
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Ruth Soto
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Conxi Ayala
Geosciences Barcelona (GEO3BCN), CSIC, Lluís Solé i Sabarís s/n, 08028 Barcelona, Spain
Tania Mochales
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Félix M. Rubio
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Pilar Clariana
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Carmen Rey-Moral
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Juliana Martín-León
Instituto Geológico y Minero de España (IGME), CSIC, 28003 Madrid, Madrid, Spain; 28760 Tres Cantos, Madrid, Spain; 50059 Zaragoza, Aragón, Spain
Related authors
No articles found.
Montserrat Torne, Tiago M. Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa C. Ramalho, Angela María Gómez-García, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data, 17, 1275–1293, https://doi.org/10.5194/essd-17-1275-2025, https://doi.org/10.5194/essd-17-1275-2025, 2025
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying them, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and its surrounding seas, we present the SedDARE-IB sediment data repository. As an application in geothermal exploration, we investigate how sediment thickness affects the depth of the 150 °C isotherm.
Joaquín García-Sansegundo, Pilar Clariana, Álvaro Rubio-Ordóñez, and Ruth Soto
EGUsphere, https://doi.org/10.5194/egusphere-2024-3663, https://doi.org/10.5194/egusphere-2024-3663, 2025
Preprint retracted
Short summary
Short summary
In this work we have dated a laminar intrusion located in the Axial Zone of the Pyrenees, obtaining an age of 274±1.5 Ma. The Palaeozoic rocks outcropping in this area were deformed by the Variscan Orogeny (380–290 Ma) and later by the Alpine Orogeny (83–22 Ma). This intrusion is folded by gentle folds. The age obtained indicates that the deforming folds correspond to Alpine-age structures. This is key to understanding the geological evolution of the Pyrenees.
Juvenal Andrés, Juan Alcalde, Puy Ayarza, Eduard Saura, Ignacio Marzán, David Martí, José Ramón Martínez Catalán, Ramón Carbonell, Andrés Pérez-Estaún, José Luis García-Lobón, and Félix Manuel Rubio
Solid Earth, 7, 827–841, https://doi.org/10.5194/se-7-827-2016, https://doi.org/10.5194/se-7-827-2016, 2016
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodynamics
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling
Interpolation of magnetic anomalies over an oceanic ridge region using an equivalent source technique and crust age model constraint
Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography
The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models
Mapping undercover: integrated geoscientific interpretation and 3D modelling of a Proterozoic basin
Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation
3-D crustal density model of the Sea of Marmara
A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM, and ground magnetic field data
Density structure and isostasy of the lithosphere in Egypt and their relation to seismicity
Ananya Parthapradip Mukherjee and Animesh Mandal
Solid Earth, 15, 711–729, https://doi.org/10.5194/se-15-711-2024, https://doi.org/10.5194/se-15-711-2024, 2024
Short summary
Short summary
Global gravity data are used to develop 2D models and a Moho depth map from 3D inversion, depicting the crustal structure below the region covered by Proterozoic sedimentary basins, south of the Bundelkhand Craton in central India. The observed thick mafic underplated layer above the Moho indicates Proterozoic plume activity. Thus, the study offers insights into the crustal configuration of this region, illustrating the geodynamic processes that led to the formation of the basins.
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023, https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Short summary
The Wenchuan (Ms 8.0) and Lushan (Ms 7.0) earthquakes show different geodynamic features and form a 40–60 km area void of aftershocks for both earthquakes. The inverse models suggest that the downward-subducted basement of the Sichuan Basin is irregular in shape and heterogeneous in magnetism and density. The different focal mechanisms of the two earthquakes and the genesis of the seismic gap may be closely related to the differential thrusting mechanism caused by basement heterogeneity.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Duan Li, Jinsong Du, Chao Chen, Qing Liang, and Shida Sun
Solid Earth Discuss., https://doi.org/10.5194/se-2021-117, https://doi.org/10.5194/se-2021-117, 2021
Revised manuscript not accepted
Short summary
Short summary
Oceanic magnetic anomalies are generally carried out using only few survey lines and thus there are many areas with data gaps. Traditional interpolation methods based on the morphological characteristics of data are not suitable for data with large gaps. The use of dual-layer equivalent-source techniques may improve the interpolation of magnetic anomaly fields in areas with sparse data which gives a good consideration to the extension of the magnetic lineation feature.
Davide Tadiello and Carla Braitenberg
Solid Earth, 12, 539–561, https://doi.org/10.5194/se-12-539-2021, https://doi.org/10.5194/se-12-539-2021, 2021
Short summary
Short summary
We present an innovative approach to estimate a lithosphere density distribution model based on seismic tomography and gravity data. In the studied area, the model shows that magmatic events have increased density in the middle to lower crust, which explains the observed positive gravity anomaly. We interpret the densification through crustal intrusion and magmatic underplating. The proposed method has been tested in the Alps but can be applied to other geological contexts.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Mark D. Lindsay, Sandra Occhipinti, Crystal Laflamme, Alan Aitken, and Lara Ramos
Solid Earth, 11, 1053–1077, https://doi.org/10.5194/se-11-1053-2020, https://doi.org/10.5194/se-11-1053-2020, 2020
Short summary
Short summary
Integrated interpretation of multiple datasets is a key skill required for better understanding the composition and configuration of the Earth's crust. Geophysical and 3D geological modelling are used here to aid the interpretation process in investigating anomalous and cryptic geophysical signatures which suggest a more complex structure and history of a Palaeoproterozoic basin in Western Australia.
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019, https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Short summary
By utilising both the observed gravity field of the Alps and their forelands and indications from deep seismic surveys, we were able to produce a 3-D structural model of the region that indicates the distribution of densities within the lithosphere. We found that the present-day Adriatic crust is both thinner and denser than the European crust and that the properties of Alpine crust are strongly linked to their provenance.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Foteini Vervelidou, Erwan Thébault, and Monika Korte
Solid Earth, 9, 897–910, https://doi.org/10.5194/se-9-897-2018, https://doi.org/10.5194/se-9-897-2018, 2018
Mikhail K. Kaban, Sami El Khrepy, and Nassir Al-Arifi
Solid Earth, 9, 833–846, https://doi.org/10.5194/se-9-833-2018, https://doi.org/10.5194/se-9-833-2018, 2018
Short summary
Short summary
We present an integrative model of the crust and upper mantle of Egypt based on an analysis of gravity, seismic, and geological data. These results are essential for deciphering the link between the dynamic processes in the Earth system and near-surface processes (particularly earthquakes) that influence human habitat. We identified the distinct fragmentation of the lithosphere of Egypt in several blocks. This division is closely related to the seismicity patterns in this region.
Cited articles
Al-Bahadily, H. A., Fairhead, J. D., and Al-Rahim, A. M.: Structural Interpretation of the Basement beneath the Southern Desert of Iraq based on Aeromagnetic Data, Interpretation, 12, T209–T219, https://doi.org/10.1190/int-2023-0116.1, 2024.
Alibert, C.: A Sr-Nd isotope and REE study of Late Triassic dolerites from the Pyrenees (France) and the Messejana Dyke (Spain and Portugal), Earth Planet. Sc. Lett., 73, 81–90, https://doi.org/10.1016/0012-821X(85)90036-6, 1985.
Alonso-Zarza, A. M., Armenteros, I., Braga, J. C., Muñoz, A., Pujalte, V., Ramos, E., Aguirre, J., Alonso-Gavilán, G., Arenas, C., Baceta, J. I., and Carballeira, J.: Tertiary, The Geology of Spain, edited by: Gibbons, W. and Moreno, T., Geol. Soc., London, 293–334, https://doi.org/10.1144/GOSPP.13, 2002.
Angrand, P., Ford, M., and Watts, A. B.: Lateral variations in foreland flexure of a rifted continental margin: The Aquitaine Basin (SW France), Tectonics, 37, 430–449, https://doi.org/10.1002/2017TC004670, 2018.
Ansari, A. H. and Alamdar, K.: Reduction to the pole of magnetic anomalies using analytic signal, World Applied Sciences Journal, 7, 405–409, 2009.
Araña, V., Aparicio, A., Martín Escorza, C., Garcia Cacho, L., Ortiz, R., Vaquer Navarro, R., Barberi, F., Ferrara, G., Albert i Beltran, J. F., and Gassiot, X.: El volcanismo neógeno-cuaternario de Catalunya: caracteres estructurales, petrológicos y geodinámicos, Acta Geológica Hispánica, t., 18, 1–17, http://hdl.handle.net/10261/7023 (last access: 22 April 2025), 1983.
Ayala, C., Kimbell, G. S., Brown, D., Ayarza, P., and Menshikov, Y. P.: Magnetic evidence for the geometry and evolution of the eastern margin of the East European Craton in the Southern Urals, Tectonophysics, 320, 31–44, https://doi.org/10.1016/S0040-1951(00)00033-0, 2000.
Baranov, V.: A new method for interpretation of aeromagnetic maps: pseudo-gravimetric anomalies, Geophysics, 22, 359–382, https://doi.org/10.1190/1.1438369, 1957.
Baranov, V. and Naudy, H.: Numerical calculation of the formula of reduction to the magnetic pole, Geophysics, 29, 67–79, https://doi.org/10.1190/1.1439334, 1964.
Barnolas, A. and Pujalte, V.: La Cordillera Pirenaica: Definición, límites y división, Geología de España, SGE-IGME, Madrid, 233–241, ISBN 84-7840-546-1, 2004.
Barnolas, A., Chiron, J. C., and Guérangé, B.: Synthese géologique et géophysique des Pyrénées: introduction, Géophysique, Cycle hercynien, ref: dissem, Colonne stratigraphique, Coupe géologique, Esquisse géologique, Bureau de Recherches Géologiques et Minières, 729 pp., ISBN 2-7159-0797-4, 1996.
Beaumont, C., Muñoz, J. A., Hamilton, J., and Fullsack, P.: Factors controlling the Alpine evolution of the central Pyrenees inferred from a comparison of observations and geodynamical models, J. Geophys. Res.-Sol. Ea., 105, 8121–8145, https://doi.org/10.1029/1999JB900390, 2000.
Bertrand, L., Gavazzi, B., Mercier de Lépinay, J., Diraison, M., Géraud, Y., and Munschy, M.: On the Use of Aeromagnetism for Geological Interpretation: 2. A Case Study on Structural and Lithological Features in the Northern Vosges, J. Geophys. Res., 125, e2019JB017688, https://doi.org/10.1029/2019JB017688, 2020.
Beziat, D.: Etude pétrologique et géochimique des ophites des Pyrenees. Implications géodynamiques [These de 3 cycle], PhD thesis, Universite de Toulouse, 1983.
Biteau, J. J., Le Marrec, A., Le Vot, M., and Masset, J. M.: The aquitaine basin, Petrol. Geosci., 12, 247–273, https://doi.org/10.1144/1354-079305-674, 2006.
Blakely, R. J.: Potential theory in gravity and magnetic applications, Cambridge University Press, ISBN 0-521-57547-8, 1996.
Blakely, R. J., Connard, G. G., and Curto, J. B.: Tilt derivative made easy, Geosoft Technical Publications, 4, 1–4, https://files.seequent.com/MySeequent/tilt_derivative_made_easy_07-2016.pdf (last access: 3 May 2025), 2016.
Bond, R. M. G. and McClay, K. R.: Inversion of a Lower Cretaceous extensional basin, south central Pyrenees, Spain, Geological Society, London, Special Publications, 88.1, 415–431, https://doi.org/10.1144/GSL.SP.1995.088.01.22, 1995.
Cámara, P. and Klimowitz, J.: Interpretación geodinámica de la vertiente centro-occidental surpirenaica (Cuencas de Jaca-Tremp), Estudios Geológicos, 41, 391–404, https://doi.org/10.3989/egeol.85415-6720, 1985.
Campanyà, J., Ledo, J., Queralt, P., Marcuello, A., Liesa, M., and Muñoz, J. A.: Lithospheric characterization of the Central Pyrenees based on new magnetotelluric data, Terra Nova, 23, 213–219, https://doi.org/10.1111/j.1365-3121.2011.01001.x, 2011.
Canérot, J., Hudec, M. R., and Rockenbauch, K.: Mesozoic diapirism in the Pyrenean orogen: Salt tectonics on a transform plate boundary, AAPG Bull., 89, 211–229, https://doi.org/10.1306/09170404007, 2005.
Canva, A., Thinon, I., Peyrefitte, A., Couëffé, R., Maillard, A., Jolivet, L., and Guennoc, P.: The Catalan magnetic anomaly: Its significance for the crustal structure of the Gulf of Lion passive margin and relationship to the Catalan transfer zone, Mar. Petrol. Geol., 113, 104174, https://doi.org/10.1016/j.marpetgeo.2019.104174, 2020.
Carreras, J. and Druguet, E.: Framing the tectonic regime of the NE Iberian Variscan segment, Geological Society, London, Special Publications, 405, 249–264, https://doi.org/10.1144/SP405.7, 2014.
Carreras, J. Losantos, M., and Palau, J.: Mapa geológico de España E. 1:50.000, Hoja no. 259 (Rosas), 2 a serie MAGNA, Instituto Geológico y Minero de España, https://info.igme.es/cartografiadigital/datos/magna50/memorias/MMagna0202.pdf (last access: 3 May 2025), 1988.
Casas, A., Kearey, P., Rivero, L., and Adam, C. R.: Gravity anomaly map of the Pyrenean region and a comparison of the deep geological structure of the western and eastern Pyrenees, Earth and Planet. Sc. Lett., 150, 65–78, https://doi.org/10.1016/S0012-821X(97)00087-3, 1997.
Casas, J. M., Álvaro, J. J., Clausen, S., Padel, M., Puddu, C., Sanz-López, J., Sánchez-García, T., Navidad, M., Castiñeiras, P., Liesa, M., and Casas, J.M.: Palaeozoic basement of the Pyrenees, The Geology of Iberia: A Geodynamic Approach, 2, 229–259, Springer International Publishing, https://doi.org/10.1007/978-3-030-10519-8_8, 2019.
Chevrot, S., Villaseñor, A., Sylvander, M., Benahmed, S., Beucler, E., Cougoulat, G., Delmas, P., De Saint Blanquat, M., Diaz, J., Gallart, J., and Grimaud, F.: High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments, J. Geophys. Res.-Sol. Ea., 119, 6399–6420, https://doi.org/10.1002/2014JB011529, 2014.
Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal, G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., and Ruiz, M.: The non-cylindrical crustal architecture of the Pyrenees, Scientific Reports, 8, 9591, https://doi.org/10.1038/s41598-018-27889-x, 2018.
Choukroune, P. and ECORS team: The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt, Tectonics, 8, 23–39, https://doi.org/10.1029/TC008i001p00023, 1989.
Clerc, C. and Lagabrielle, Y.: Thermal control on the modes of crustal thinning leading to mantle exhumation: Insights from the Cretaceous Pyrenean hot paleomargins, Tectonics, 33, 1340–1359, https://doi.org/10.1002/2013TC003471, 2014.
Clerc, C., Lagabrielle, Y., Neumaier, M., Reynaud, J. Y., and de Saint Blanquat, M. : Exhumation of subcontinental mantle rocks: evidence from ultramafic-bearing clastic deposits nearby the Lherz peridotite body, French Pyrenees, B. Soc. Geol. Fr., 183, 443–459, https://doi.org/10.2113/gssgfbull.183.5.443, 2012.
Cochelin, B., Chardon, D., Denèle, Y., Gumiaux, C., and Le Bayon, B.: Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax, Bull. Soc. Géol. Fr., 188, 39, https://doi.org/10.1051/bsgf/2017206, 2017.
Cooper, G. R. J.: Euler deconvolution with improved accuracy and multiple different structural indices, J. China Univ. Geosci., 19, 72–76, https://doi.org/10.1016/S1002-0705(08)60026-6, 2008.
Debon, F., Enrique, P., and Autran, A.: Magmatisme hercyniene, in: Synthèse géologique at géophysique des Pyrénées, edited by: Barnolas. A. and Chiron, J. C., vol. 1, BRGM, ITGE, Orléans, Madrid, 361–500, ISBN 2-7159-0797-4, 1996.
Déramond, J., Baby, P., Specht, M., and Crouzet, G.: Géometrie des chevauchements dans la Zone nord-pyrénéenne ariégeoise précisée par le profil ECORS, B. Soc. Geol. Fr., 6, 287–294, https://www.researchgate.net/profile/Patrice-Baby/publication/276885137 (last access: 5 May 2025), 1988.
Dèzes, P., Schmid, S. M., and Ziegler, P. A.: Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere, Tectonophysics, 389, 1–33, https://doi.org/10.1016/j.tecto.2004.06.011, 2004.
Enrique, P.: The Hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain), Acta Geologica Hispanica, 25, 39–64, https://hdl.handle.net/2445/32989 (last access: 5 May 2025), 1990.
Fanton, G., Martínez, P., and Giménez, M.: Procesamiento y análisis cualitativo de datos aeromagnéticos con vistas a la exploración de yacimientos hidrotermales tipo lode gold – provincia de La Rioja, Argentina, Geoacta, 39, 30–50, 2014.
FitzGerald, D., Milligan, P., and Reid, A.: Integrating Euler solutions into 3D geological models – automated mapping of depth to magnetic basement, In SEG Technical Program Expanded Abstracts 2004, Society of Exploration Geophysicists, 738–741, https://doi.org/10.1190/1.1851312, 2004.
Ford, M., Masini, E., Vergés, J., Pik, R., Ternois, S., Léger, J Dielforder, A., Frasca, G., Grool, A., Vinciguerra, C., and Bernard, T.: Evolution of a low convergence collisional orogen: a review of Pyrenean orogenesis, B. Soc. Geol. Fr., 193, https://doi.org/10.1051/bsgf/2022018, 2022.
Gailler, A., Klingelhoefer, F., Olivet, J. L., Aslanian, D., and Technical, O. B. S.: Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography, Earth Planet. Sc. Lett., 286, 333–345, https://doi.org/10.1016/j.epsl.2009.07.001, 2009.
García-Lobón, J. L. and Ayala, C.: Cartografía geofísica de la República Dominicana: Datos de densidad, susceptibilidad magnética y magnetización remanente, La Geología de la República Dominicana, Boletín Geológico y Minero, 118, 157–174, 2007.
García-Sansegundo, J.: Hercynian structure of the Axial Zone of the Pyrenees: the Aran Valley cross-section (Spain–France), J. Struct. Geol., 18, 1315–1325, https://doi.org/10.1016/S0191-8141(96)00050-8, 1996.
García-Sansegundo, J., Poblet, J., Alonso, J. L., and Clariana, P.: Hinterland-foreland zonation of the Variscan orogen in the Central Pyrenees: comparison with the northern part of the Iberian Variscan Massif, Geological Society, London, Special Publications, 349, 169–184, https://doi.org/10.1144/SP349.9, 2011.
Garrido-Megías, A.: Estudio geologico y relación entre tectónica y sedimentación del Secundario y Terciario de la vertiente meridional pirenaica de la zona central (Huesca y Lérida), Teisis doctoral, Universidad de Granada, 1973.
Gibson, R. I. and Millegan, P. S.: Geologic applications of gravity and magnetics: Case histories, SEG Geophysical Reference Series No. 8, AAPG Studies in Geology, No. 43, Society of Exploration Geophysicists and American Association of Petroleum Geologists, https://doi.org/10.1190/1.9781560801832.index, 1998.
Golynsky, A. V., Alyavdin, S. V., Masolov, V. N., Tscherinov, A. S., and Volnukhin, V. S.: The composite magnetic anomaly map of the East Antarctic, Tectonophysics, 347, 109–120, https://doi.org/10.1016/S0040-1951(01)00240-2, 2002.
Gorini, C., Mauffret, A., Guennoc, P., and Le Marrec, A.: Structure of the Gulf of Lions (northwestern Mediterranean Sea): A review, in: Hydrocarbon and petroleum geology of France, 223–243, https://doi.org/10.1007/978-3-642-78849-9_17, 1994.
Hayatudeen, M., Rasaq, B., Onaolapo, R. I., and Abe, A. O.: First horizontal and first vertical derivatives from high resolution aeromagnetic data over the Gongola basin upper Benue trough Northeastern Nigeria, Global Journal of Pure and Applied Sciences, 27, 181–192, https://doi.org/10.4314/gjpas.v27i2.10, 2021.
Hinze, W. J., Von Frese, R. R., Von Frese, R., and Saad, A. H.: Gravity and magnetic exploration: Principles, practices, and applications, Cambridge University Press, ISBN 978-0-521-87101-3, 2013.
IGME-BRGM: Mapa Geológico de los Pirineos a escala 1:400.000, Mapa Geológico del cuaternario de los Pirineos a escala 1:400.000, IGME-BRGM [data set], https://info.igme.es/cartografiadigital/geologica/mapa.aspx?parent='../geologica/geologiaregionalaspx'&Id=27&language=es#documentación (last access: 22 April 2025), 2009.
InfoIGME: SIGEOF – Sistema de Información Geofísica, InfoIGME [data set], https://info.igme.es/sigeof/, last acces: 22 April 2025.
Kimbell, G. S., Ayala, C., Gerdes, A., Kaban, M. K., Seva Shapiro, V. A., and Menshikov, Y. P.: Insights into the architecture and evolution of the southern and middle urals from gravity and magnetic data, Geoph. Monog. Series, 132, 49–65, https://doi.org/10.1029/132GM04, 2002.
Jammes, S., Manatschal, G., Lavier, L., and Masini, E.: Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees, Tectonics, 28, https://doi.org/10.1029/2008TC002406, 2009.
Jammes, S., Lavier, L., and Manatschal, G.: Extreme crustal thinning in the Bay of Biscay and the Western Pyrenees: From observations to modeling, Geochem. Geophy. Geosy., 11, Q10016, https://doi.org/10.1029/2010GC003218, 2010.
Lagabrielle, Y., Labaume, P., and de Saint Blanquat, M.: Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies, Tectonics, 29, TC4012, https://doi.org/10.1029/2009TC002588, 2010.
Lahti, I. and Karinen, T.: Tilt derivative multiscale edges of magnetic data, The Leading Edge, 29, 24–29, https://doi.org/10.1190/1.3284049, 2010.
Langel, R. A. and Hinze, W. J.: The magnetic field of the Earth's lithosphere: The satellite perspective, Cambridge University Press, ISBN 0-521-47333-0, 1998.
Ledo, J., Ayala, C., Pous, J., Queralt, P., Marcuello, A., and Muñoz, J. A.: New geophysical constraints on the deep structure of the Pyrenees, Geophys. Res. Lett., 27, 1037–1040, https://doi.org/10.1029/1999GL011005, 2000.
Le Maire, P., Thinon, I., Tugend, J., Issautier, B., Martelet, G., Paquet, F., Proust, J. N., Nalpas, T., Peyrefitte, A., and Canva, A.: New Magnetic compilation and interpretation of the Bay of Biscay and surrounding continental shelves, Bull. Soc. Géol. Fr., 192, 58, https://doi.org/10.1051/bsgf/2021048, 2021.
Ma, G. and Li, L.: Edge detection in potential fields with the normalized total horizontal derivative, Comput. Geosci., 41, 83–87, https://doi.org/10.1016/j.cageo.2011.08.016, 2012.
Mattauer, M.: Les traits structuraux essentiels de la chaîne Pyrénéenne, Rev. Geogr. Phys. Geol., 10, 3–11, 1968.
Mauffret, A., de Grossouvre, B. D., Dos Reis, A. T., Gorini, C., and Nercessian, A.: Structural geometry in the eastern Pyrenees and western Gulf of Lion (Western Mediterranean), J. Struct. Geol., 23, 1701–1726, https://doi.org/10.1016/S0191-8141(01)00025-6, 2001.
Maus, S. and Dimri, V.: Potential field power spectrum inversion for scaling geology, J. Geophys. Res.-Sol. Ea., 100, 12605–12616, https://doi.org/10.1029/95JB00758, 1995.
Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J. D., Finn, C., von Frese, R. R., and Gaina, C.: EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophy. Geosy., 10, Q08005, https://doi.org/10.1029/2009GC002471, 2009.
Meyer, B., Chulliat, A., and Saltus, R.: Derivation and error analysis of the earth magnetic anomaly grid at 2 arc min resolution version 3 (EMAG2v3), Geochem. Geophy. Geosy., 18, 4522–4537, https://doi.org/10.1002/2017GC007280, 2017a.
Meyer, B., Saltus, R., and Chulliat, A.: EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution), NCEI [data set], https://doi.org/10.7289/v5h70cvx, 2017b.
Maillard, A. and Mauffret, A.: Crustal structure and riftogenesis of the Valencia Trough (north-western Mediterranean Sea), Basin Res., 11, 357–379, https://doi.org/10.1046/j.1365-2117.1999.00105.x, 2001.
Miller, H. G. and Singh, V.: Potential field tilt – a new concept for location of potential field sources, J. Appl. Geophys., 32, 213–217, https://doi.org/10.1016/0926-9851(94)90022-1, 1994.
Moulin, M., Klingelhoefer, F., Afilhado, A., Aslanian, D., Schnurle, P., Nouze, H., Rabineau, M., Beslier, M. O., and Feld, A.: Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin, B. Soc. Geol. Fr., 186, 309–330, https://doi.org/10.2113/gssgfbull.186.4-5.309, 2015.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Muñoz, J. A.: Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section, Thrust Tectonics, 235–246, https://doi.org/10.1007/978-94-011-3066-0_21, 1992.
Muñoz, J. A.: Alpine orogeny: Deformation and structure in the northern Iberian margin (Pyrenees sl), The Geology of Iberia: A Geodynamic Approach: Volume 3: The Alpine Cycle, 433–451, https://doi.org/10.1007/978-3-030-11295-0_9, 2019.
Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E.: The historical development of the magnetic method in exploration, Geophysics, 70, 33ND–61ND, https://doi.org/10.1190/1.2133784, 2005.
Padel, M., Álvaro, J. J., Casas, J. M., Clausen, S., Poujol, M., and Sánchez-García, T.: Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe, International Journal Earth Sciences, 107, 1579–1601, https://doi.org/10.1007/s00531-017-1559-5, 2018.
Pedrera, A., García-Senz, J., Ayala, C., Ruiz-Constán, A., Rodríguez-Fernández, L. R., Robador, A., and González Menéndez, L.: Reconstruction of the exhumed mantle across the North Iberian Margin by crustal-scale 3-D gravity inversion and geological cross section, Tectonics, 36, 3155–3177, https://doi.org/10.1002/2017TC004716, 2017.
Peredo, C. R., Yutsis, V., Martin, A. J., and Aranda-Gómez, J. J.: Crustal structure and Curie point depth in central Mexico inferred from the spectral analysis and forward modeling of potential field data, J. S. Am. Earth Sci., 112, 103565, https://doi.org/10.1016/j.jsames.2021.103565, 2021.
Poblet, J.: Estructura herciniana i alpina del vessant sud de la zona axial del Pirineu central, PhD Thesis, Departament of Geology, Barcelona University, 1991.
Porquet, M., Pueyo, E. L., Román-Berdiel, T., Olivier, P., Longares, L. A., Cuevas, J., Ramajo, J., and Geokin3DPyr working group: Anisotropy of magnetic susceptibility of the Pyrenean granites, J. Maps, 13, 438–448, https://doi.org/10.1080/17445647.2017.1302364, 2017.
Pueyo, E. L., Román-Berdiel, T., Calvín, P., Bouchez, J. L., Beamud, E., Ayala, C., Loi, F., Soto, R., Clariana, P., Margalef, A., and Bach, N.: Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships, Geosciences, 12, 240, https://doi.org/10.3390/geosciences12060240, 2022.
Purucker, M. and Whaler, K.: Crustal magnetism, Treatise on Geophysics, 5, 195–237, https://doi.org/10.1016/B978-0-444-53802-4.00111-1, 2007.
Reid, A. B., Allsop, J. M., Granser, H., Millett, A. T., and Somerton, I. W.: Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55, 80–91, https://doi.org/10.1190/1.1442774, 1990.
Roest, W. R. and Srivastava, S. P.: Kinematics of the plate boundaries between Eurasia, Iberia, and Africa in the North Atlantic from the Late Cretaceous to the present, Geology, 19, 613–616, https://doi.org/10.1130/0091-7613(1991)019<0613:KOTPBB>2.3.CO;2, 1991.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Relative motions of Africa, Iberia and Europe during Alpine orogeny, Tectonophysics, 359, 117–129, https://doi.org/10.1016/S0040-1951(02)00442-0, 2002.
Rougier, G., Ford, M., Christophoul, F., and Bader, A. G.: Stratigraphic and tectonic studies in the central Aquitaine Basin, northern Pyrenees: Constraints on the subsidence and deformation history of a retro-foreland basin, C. R. Geosci., 348, 224–235, https://doi.org/10.1016/j.crte.2015.10.007, 2016.
Santolaria, P., Ayala, C., Soto, R., Clariana, P., Rubio, F. M., Martín‐León, J., Pueyo, E. L., and Muñoz, J. A.: Salt distribution in the South Pyrenean Central Salient: Insights from gravity anomalies, Tectonics, 43, e2024TC008274, https://doi.org/10.1029/2024TC008274, 2024.
Séranne, M., Benedicto, A., Labaum, P., Truffert, C., and Pascal, G.: Structural style and evolution of the Gulf of Lion Oligo-Miocene rifting: Role of the Pyrenean orogeny, Mar. Petrol. Geol., 12, 809–820, https://doi.org/10.1016/0264-8172(95)00036-4, 1995.
Serrano, O., Delmas, J., Hanot, F., Vially, R., Herbin, J. P., Houel, P., and Tourlière, B.: Le bassin d'Aquitaine: Valorisation des données sismiques, cartographie structurale et potentiel pétrolier, Rapport Régional d'Evaluation Pétrolière, Bureau de la Recherche Géologique et Minière, Orléans, France, 245, 2006.
Séguret, M.: Étude tectonique des nappes et séries décollées de la partie centrale du versant sud des Pyrénées, Pub. Estela, Ser. Geol. Struct., 2, 1972.
Socías, I., Mezcua, J., Lynam, J., and Del Potro, R.: Interpretation of an aeromagnetic survey of the Spanish mainland, Earth and Planet. Sc. Lett., 105, 55–64, https://doi.org/10.1016/0012-821X(91)90120-7, 1991.
Soto, R., Casas, A. M., Storti, F., and Faccenna, C.: Role of lateral thickness variations on the development of oblique structures at the Western end of the South Pyrenean Central Unit, Tectonophysics, 350, 215–235, https://doi.org/10.1016/S0040-1951(02)00116-6, 2002.
Soto, R., Storti, F., and Casas-Sainz, A. M.: Impact of backstop thickness lateral variations on the tectonic architecture of orogens: Insights from sandbox analogue modeling and application to the Pyrenees, Tectonics, 25, TC2004, https://doi.org/10.1029/2005TC001855, 2006.
Souquet, P., Peybernes, B., Bilotte, M., and Debroas, E. J.: La chaîne alpine des Pyrénées, Géologie Alpine, 53, 193–216, 1977.
Spector, A. and Grant, F. S.: Statistical models for interpreting aeromagnetic data, Geophysics, 35, 293–302, https://doi.org/10.1190/1.1440092, 1970.
Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M., and Lagabrielle, Y.: Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data, Tectonophysics, 724, 146–170, https://doi.org/10.1016/j.tecto.2018.01.009, 2018.
Thompson, D. T.: EULDPH – A new technique for making computer-assisted depth estimates from magnetic data, Geophysics, 47, 31–37, https://doi.org/10.1190/1.1441278, 1982.
Vauchez, A., Tommasi, A., and Mainprice, D.: Faults (shear zones) in the Earth's mantle, Tectonophysics, 558, 1–27, https://doi.org/10.1016/j.tecto.2012.06.006, 2012.
Verduzco, B., Fairhead, J. D., Green, C. M., and MacKenzie, C.: New insights into magnetic derivatives for structural mapping, The Leading Edge, 23, 116–119, https://doi.org/10.1190/1.1651454, 2004.
Vine, F. J.: Spreading of the Ocean Floor: New Evidence: Magnetic anomalies may record histories of the ocean basins and Earth's magnetic field for 2×108 years, Science, 154, 1405–1415, https://doi.org/10.1126/science.154.3755.1405, 1966.
Vine, F. J. and Matthews, D. H.: Magnetic anomalies over oceanic ridges, Nature, 199, 947–949, https://doi.org/10.1038/199947a0, 1963.
Wang, Y., Chevrot, S., Monteiller, V., Komatitsch, D., Mouthereau, F., Manatschal, G., Sylvander, M., Diaz, J., Ruiz, M., Grimaud, F., and Benahmed, S.: The deep roots of the western Pyrenees revealed by full waveform inversion of teleseismic P waves, Geology, 44, 475–478, https://doi.org/10.1130/G37812.1, 2016.
Wehr, H., Chevrot, S., Courrioux, G., and Guillen, A.: A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data, Tectonophysics, 734, 16–32, https://doi.org/10.1016/j.tecto.2018.04.008, 2018.
Zeyen, H. J. and Banda, E.: Cartografía geofísica en Cataluña. 1: El mapa aeromagnético, Revista de la Sociedad Geológica de España, 1, 73–79, 1988.
Zeyen, H. J. and Banda, E.: 2 and 3 dimensional interpretation of magnetic anomalies in the central-southern Pyrenees (Spain), Geodin. Acta, 3, 229–236, https://doi.org/10.1080/09853111.1989.11105193, 1989.
Zeyen, H. J., Banda, E., and Klingelé, E.: Interpretation of magnetic anomalies in the volcanic area of northeastern Spain, Tectonophysics, 192, 201–210, https://doi.org/10.1016/0040-1951(91)90257-S, 1991.
Ziegler, P. A.: Evolution of the Arctic-North Atlantic and the Western Tethys: A visual presentation of a series of Paleogeographic-Paleotectonic maps, AAPG Memoir 43 edition, Amer. Assn. of Petroleum Geologists, Tulsa, Okla, USA, 1988.
Zwart, H. J.: The Variscan geology of the Pyrenees, Tectonophysics, 129, 9–27, https://doi.org/10.1016/0040-1951(86)90243-X, 1986.
Short summary
In this work we compare magnetic maps obtained from the EMAG2v2 (Earth Magnetic Anomaly Grid 2 arcmin resolution) magnetic-intensity data with the main geological structures and units of the Pyrenees and adjacent areas. The magnetic-response arrangement for the different domains mimics the main structural lineaments and highlights the occurrence of major magnetic anomalies linked to specific geological bodies.
In this work we compare magnetic maps obtained from the EMAG2v2 (Earth Magnetic Anomaly Grid 2...