Articles | Volume 16, issue 7
https://doi.org/10.5194/se-16-663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-663-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
What do arc magmatism trace-element patterns and Sr–Nd–Pb isotopic data reflect? Insights from the Urumieh–Dokhtar magmatic arc of Iran
Mohammad Reza Ghorbani
CORRESPONDING AUTHOR
Department of Geology, Tarbiat Modares University (TMU), Tehran, 14115-175, Iran
Meysam Akbari
Department of Geology, Tarbiat Modares University (TMU), Tehran, 14115-175, Iran
Research Institute for Earth Sciences, Tehran, 13185-1494, Iran
Ian T. Graham
Earth and Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
Mathieu Benoit
Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OSU-OMP), Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, Toulouse, 31400, France
Fatemeh Sepidbar
Department of Geology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
Related authors
No articles found.
Ibrahima Labou, German Velásquez, Mathieu Benoit, Lenka Baratoux, Didier Béziat, Pierre Debat, and Papa Moussa Ndiaye
EGUsphere, https://doi.org/10.5194/egusphere-2025-814, https://doi.org/10.5194/egusphere-2025-814, 2025
Preprint archived
Short summary
Short summary
Geodynamic significance of the tholeiitic series of the Paleoproterozoic greenstone Mako belt (eastern Senegal, West African Craton) has been emigmatic for long time. Using geochemical and isotopic data on minerals and rocks obtained with electron microprobe and ICP-MS, laser ICP-MS and TIMS techniques, we provide evidence for the existence of two tholeiitic and one calc-alkaline series evolving from an oceanic plateau domain to an island arc domain.
Sophie Demouy, Mathieu Benoit, Michel de Saint-Blanquat, and Jérôme Ganne
Solid Earth Discuss., https://doi.org/10.5194/se-2019-43, https://doi.org/10.5194/se-2019-43, 2019
Preprint withdrawn
Short summary
Short summary
The genesis of the continental crust above subduction zones remains controversial and massive production of granite in short period of time, also named
flare-up eventsare more and more documented but poorly constrained. In the present manuscript we present a detailed geochemical study of samples collected in the Arequipa region (Peru), where a flare-up event is suspected. Using these data, we propose an elegant explanation for the converging geochemical signatures associated to this event.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Hydroxyl in eclogitic garnet, orthopyroxene, and oriented inclusion-bearing clinopyroxene, western Norway
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Dirk Spengler, Monika Koch-Müller, Adam Włodek, Simon J. Cuthbert, and Jarosław Majka
Solid Earth, 16, 233–250, https://doi.org/10.5194/se-16-233-2025, https://doi.org/10.5194/se-16-233-2025, 2025
Short summary
Short summary
Western Norwegian “diamond facies” eclogite contains tiny mineral inclusions of quartz and amphibole lamellae that are not stable in the diamond field. Low trace amounts of water in the lamellae-bearing host minerals suggest that the inclusion microstructure was not formed by fluid infiltration but by dehydration during early exhumation of these rocks. Some samples with higher water content argue that a late fluid overprint was spatially restricted and erased evidence of extreme metamorphism.
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, and Yasuhiro Kato
Solid Earth, 15, 167–196, https://doi.org/10.5194/se-15-167-2024, https://doi.org/10.5194/se-15-167-2024, 2024
Short summary
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Johannes Stefanski and Sandro Jahn
Solid Earth, 11, 767–789, https://doi.org/10.5194/se-11-767-2020, https://doi.org/10.5194/se-11-767-2020, 2020
Short summary
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Federico Lucci, Gerardo Carrasco-Núñez, Federico Rossetti, Thomas Theye, John Charles White, Stefano Urbani, Hossein Azizi, Yoshihiro Asahara, and Guido Giordano
Solid Earth, 11, 125–159, https://doi.org/10.5194/se-11-125-2020, https://doi.org/10.5194/se-11-125-2020, 2020
Short summary
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Cited articles
Agard, P., Omrani, J., Jolivet, L., and Mouthereau, F.: Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation, Int. J. Earth Sci., 94, 401–419, https://doi.org/10.1007/s00531-005-0481-4, 2005.
Ahmadian, J., Sarjoughian, F., Lentz, D., Esna-Ashari, A., Murata, M., and Ozawa, H.: Eocene K-rich adakitic rocks in the Central Iran: Implications for evaluating its Cu-Au-Mo metallogenic potential, Ore Geol. Rev., 72, 323–342, https://doi.org/10.1016/j.oregeorev.2015.07.017, 2016.
Ahmadvand, A., Ghorbani, M. R., Mokhtari, M. A. A., Chen, Y., Amidon, W., Santos, J. F., and Paydari, M.: Lithospheric mantle, asthenosphere, slab and crustal contribution to petrogenesis of Eocene to Miocene volcanic rocks from the west Alborz magmatic assemblage, SE Ahar, Iran, Geol. Mag., 158, 375–406, https://doi.org/10.1017/S0016756820000527, 2021.
Akbari, M., Ghorbani, M. R., Cousens, B. L., and Graham, I. T.: Quaternary post-collisional high Nb-like basalts from Bijar-Qorveh, NW Iran: a metasomatized lithospheric mantle source, Lithos, 426–427, 106781, https://doi.org/10.1016/j.lithos.2022.106781, 2022.
Akbari, M., Ghorbani, M. R., Cousens, B. L., and Graham, I. T.: A robust discrimination scheme for ocean island basalts based on , , and ratios, Chem. Geol., 628, 121486, https://doi.org/10.1016/j.chemgeo.2023.121486, 2023.
Alaie-Mahabadi, S. and Foudazi, M.: Geological map of the Nain quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 2004.
Alavi, M.: Tectonics of the Zagros orogenic belt of Iran: New data and interpretations, Tectonophysics, 229, 211–238, https://doi.org/10.1016/0040-1951(94)90030-2, 1994.
Amidi, S. M., Nabavi, M. H., and Molla Ali, A.: Geological map of the Sarve-Bala quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1989.
Amini, B. and Amini Chehragh, M. R.: Geological map of the Kajan quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 2003.
Atanasova, P., Marks, M. A. W., Frenzel, M., Gutzmer, J., Krause, J., and Markl, G.: Fractionation of geochemical twins ( , and ) and HREE-enrichment during magmatic and metamorphic processes in peralkaline nepheline syenites from Norra Kärr (Sweden), Lithos, 372–373, 105667, https://doi.org/10.1016/j.lithos.2020.105667, 2020.
Babazadeh, S., Ghorbani, M. R., Bröcker, M., D'Antonio, M., Cottle, J., Gebbing, T., Mazzeo, F. C., and Ahmadi, P.: Late Oligocene-Miocene mantle upwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh–Dokhtar arc, south Ardestan, Iran, Int. Geol. Rev., 59, 1590–1608, https://doi.org/10.1080/00206814.2017.1286613, 2017.
Bahroudi, A. and Fonoudi, M.: Geological map of the Shahrab quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1997.
Benoit, M., Aguillón-Robles, A., Calmus, T., Maury, R. C., Bellon, H., Cotton, J., Bourgois, J., and Michaud, F.: Geochemical diversity of Late Miocene volcanism in southern Baja California, Mexico: Implication of mantle and crustal sources during the opening of an asthenospheric window, J. Geol., 110, 627–648, https://doi.org/10.1086/342735, 2002.
Berberian, F. and Berberian, M.: Tectono-plutonic episodes in Iran, in: Zagros, Hindu Kush, Himalaya geodynamic evolution, edited by: Delany, F. M. and Gupta, H. K., Geodynamics Series, vol. 3, Am. Geophys. Union, 5–32, 1981.
Berberian, M. and King, G. C. P.: Towards a paleogeography and tectonic evolution of Iran, Can. J. Earth Sci., 18, 210–265, https://doi.org/10.1139/e81-019, 1981.
Bouilhol, P., Jagoutz, O., Hanchar, J. M., and Dudas, F. O.: Dating the India-Eurasia collision through arc magmatic records, Earth Planet. Sc. Lett., 366, 163–175, https://doi.org/10.1016/j.epsl.2013.01.023, 2013.
Castillo, P. R., Rigby, S. J., and Solidum, R. U.: Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines, Lithos, 97, 271–288, https://doi.org/10.1016/j.lithos.2006.12.012, 2007.
Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T., and Marini, J. C.: Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array, Nat. Geosci., 1, 64–67, https://doi.org/10.1038/ngeo.2007.51, 2008.
Chiu, H. Y., Chung, S. L., Zarrinkoub, M. H., Mohammadi, S. S., Khatib, M. M., and Iizuka, Y.: Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny, Lithos, 162–163, 70–87, https://doi.org/10.1016/j.lithos.2013.01.006, 2013.
Cross, T. A. and Pilger, R. H.: Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions, Geol. Soc. Am. Bull., 93, 545–562, https://doi.org/10.1130/0016-7606(1982)93<545:COSGLO>2.0.CO;2, 1982.
Dargahi, S., Arvin, M., Pan, Y., and Babae, A.: Petrogenesis of post-collisional A-type granitoids from the Urumieh–Dokhtar magmatic assemblage, South western Kerman, Iran: Constraints on the Arabian–Eurasian continental collision, Lithos, 115, 190–204, https://doi.org/10.1016/j.lithos.2009.12.002, 2010.
Defant, M. J., Jackson, T. E., Drummond, M. S., De Boer, J. Z., Bellon, H., Feigenson, M. D., Maury, R. C., and Stewart, R. H.: The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview, J. Geol. Soc. London, 149, 569–579, https://doi.org/10.1144/gsjgs.149.4.0569, 1992.
Di Giuseppe, P., Agostini, S., Di Vincenzo, G., Manetti, P., Savaşçın, M. T., and Conticelli, S.: From subduction to strike sliprelated volcanism: insights from Sr, Nd, and Pb isotopes and geochronology of lavas from Sivas-Malatya region, Central Eastern Anatolia, Int. J. Earth Sci., 110, 849–874, https://doi.org/10.1007/s00531-021-01995-0, 2021.
Dong, K., Chen, S., Graham, I., Zhao, J., Fu, P., Xu, Y., Tian, G., Qin, W., and Chen, J.: Geochemical behavior during mineralization and alteration events in the Baiyinchang volcanic-hosted massive sulfide deposits, Gansu Province, China, Ore Geol. Rev., 91, 559–572, https://doi.org/10.1016/j.oregeorev.2017.09.002, 2017.
Duggen, S., Portnyagin, M., Baker, J., Ulfbeck, D., Hoernle, K., Garbe-Schönberg, D., and Grassineau, N.: Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: Evidence for the transition from slab surface dehydration to sediment melting, Geochim. Cosmochim. Ac., 71, 452–480, https://doi.org/10.1016/j.gca.2006.09.018, 2007.
Emami, M. H., Sadeghi, M. M. M., and Omrani, S. J.: Magmatic map of Iran, Geological Survey of Iran, Tehran, 1993.
Ewart, A., Collerson, K. D., Regelous, M., Wendt, J. I., and Niu, Y.: Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time, J. Petrol., 39, 331–368, https://doi.org/10.1093/petroj/39.3.331, 1998.
Farner, M. J. and Lee, C. A.: Effects of crustal thickness on magmatic differentiation in subduction zone volcanism: A global study, Earth Planet. Sc. Lett., 470, 96–107, https://doi.org/10.1016/j.epsl.2017.04.025, 2017.
Ghalamghash, J., Babakhani, A. R., Bahroudi, A., and Fonoudi, M.: Geological map of the Kahak quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1988.
Ghalamghash, J., Mohammadiha, K., and Ghahraie Pour, M.: Geological map of the Kafeh-Taghestan quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 2005.
Ghorbani, M. R.: Lead enrichment in Neotethyan volcanic rocks from Iran: The implications of a descending slab, Geochem. J., 40, 557–568, https://doi.org/10.2343/geochemj.40.557, 2006.
Ghorbani, M. R. and Bezenjani, R. N.: Slab partial melts from the metasomatizing agent to adakite, Tafresh Eocene volcanic rocks, Iran, Isl. Arc, 20, 188–202, https://doi.org/10.1111/j.1440-1738.2010.00757.x, 2011.
Ghorbani, M. R. and Middlemost, E. A. K.: Geochemistry of pyroxene inclusions from the Warrumbungle Volcano, New South Wales, Australia, Am. Mineral., 85, 1349–1367, https://doi.org/10.2138/am-2000-1003, 2000.
Ghorbani, M. R., Graham, I. T., and Ghaderi, M.: Oligocene-Miocene geodynamic evolution of the central part of Urumieh-Dokhtar arc of Iran, Int. Geol. Rev., 56, 1039–1050, https://doi.org/10.1080/00206814.2014.919615, 2014.
Ghorbani, M. R., Akbari, M., Graham, I. T., Benoit, M., Sepidbar, F., and Zwingmann, H.: Trace and major elements and Sr-Nd-Pb isotopic data from the Urumieh-Dokhtar magmatic arc of Iran, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.60520/IEDA/113464, 2025.
Gill, J. B.: Orogenic Andesites and Plate Tectonics, Springer-Verlag, New York, https://doi.org/10.1007/978-3-642-68012-0, 1981.
Hart, S. R.: A large-scale isotope anomaly in the Southern Hemisphere mantle, Nature, 309, 753–757, https://doi.org/10.1038/309753a0, 1984.
Hastie, A. R., Mitchell, S. F., Kerr, A. C., Minifie, M. J., and Millar, I. L.: Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts?, Geochim. Cosmochim. Ac., 75, 5049.72, https://doi.org/10.1016/j.gca.2011.06.018, 2011.
Hauff, F., Hoernle, K., and Schmidt, A.: Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu–Bonin–Mariana subduction system, Geochem. Geophy. Geosy., 4, 1–30, https://doi.org/10.1029/2002GC000421, 2003.
Hawkesworth, C., Turner, S., Peate, D., McDermott, F., and Calsteren, P. V.: Elemental U and Th variations in island arc rocks: implications for U-series isotopes, Chem. Geol., 139, 207–221, https://doi.org/10.1016/S0009-2541(97)00036-3, 1997.
Hermann, J. and Spandler, C. J.: Sediment Melts at Sub-arc Depths: an Experimental Study, J. Petrol., 49, 717–740, https://doi.org/10.1093/petrology/egm073, 2008.
Hildreth, W. and Moorbath, S.: Crustal contributions to arc magmatism in the Andes of central Chile, Contrib. Mineral. Petr., 98, 455–489, https://doi.org/10.1007/BF00372365, 1988.
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzade, S. M., and Grove, M.: Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics, Tectonophysics, 451, 97–122, https://doi.org/10.1016/j.tecto.2007.11.063, 2008.
Jicha, B. R. and Singer, B. S.: Volcanic history and magmatic evolution of Seguam Island, Aleutian Island arc, Alaska, Geol. Soc. Am. Bull., 118, 805–822, https://doi.org/10.1130/B25861.1, 2006.
Jolani Varzeghani, A.: Trace elements and isotope geochemistry of Nodoushan volcanic rocks, MSc Thesis, Tarbiat Modares University, Tehran, Iran, 2017.
Kelemen, P. B., Hanghøj, K., and Greene, A. R.: One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, in: Treatise Geochem., 3. The Crust, edited by: Rudnick, R. L., Elsevier, Amsterdam, 593–659, https://doi.org/10.1016/B0-08-043751-6/03035-8, 2005.
Kepezhinskas, P. K., Defant, M. J., and Drummond, M. S.: Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc, J. Petrol., 36, 1505–1527, https://doi.org/10.1093/oxfordjournals.petrology.a037263, 1995.
Kepezhinskas, P., McDermott, F., Defant, M. J., Hochstaedter, A., Drummond, M. S., Hawkesworth, C. J., Kokoskov, A., Maury, R., and Bellon, H.: Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis, Geochim. Cosmochim. Ac., 61, 577–600, https://doi.org/10.1016/S0016-7037(96)00349-3, 1997.
Khalatbari Jafari, M. and Alaie-Mahabadi, S.: Geological map of the Natanz quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1995.
Khodami, M.: Pb isotope geochemistry of the late Miocene–Pliocene volcanic rocks from Todeshk, the central part of the Urumieh–Dokhtar magmatic arc, Iran: Evidence of an enriched mantle source, J. Earth Syst. Sci., 128, 167, https://doi.org/10.1007/s12040-019-1185-7, 2019.
Li, C. F., Li, X. H., Li, Q. L., Guo, J. H., and Li, X. H.: Directly determining isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm–Nd, J. Anal. Atom. Spectrom., 26, 2012–2022, https://doi.org/10.1039/C0JA00081G, 2011.
Li, C. F., Li, X. H., Li Q. L. Guo, J. H., Li, X. H., and Yang, Y. H.: Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme, Anal. Chim. Acta, 727, 54–60, https://doi.org/10.1016/j.aca.2012.03.040, 2012.
Linnen, R. L. and Keppler, H.: Melt composition control of fractionation in magmatic processes, Geochim. Cosmochim. Ac., 66, 3293–3301, https://doi.org/10.1016/S0016-7037(02)00924-9, 2002.
Manea, V. C., Leeman, W. P., Gerya, T., Manea, M., and Zhu, G.: Subduction of fracture zones controls mantle melting and geochemical signature above slabs, Nat. Commun., 5, 5095, https://doi.org/10.1038/ncomms6095, 2014.
Mayborn, K. R. and Lesher, C. E.: MagPath: An Excel-based Visual Basic program for forward modeling of mafic magma crystallization, Comput. Geosci., 3, 1900–1903, https://doi.org/10.1016/j.cageo.2011.02.017, 2011.
Mohajjel, M. and Fergusson, C. L.: Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran, J. Struct. Geol., 22, 1125–1139, https://doi.org/10.1016/S0191-8141(00)00023-7, 2000.
Moinevaziri, H.: Volcanisme Tertiaire et Quaternaire en Iran, Paris-Sud Orsay, Thèse d'État, 1985.
Moradi, S., Ghorbani, M. R., Jiang, S. Y., and Christiansen, E. H.: Mafic to intermediate composition intrusions from the Kahak area, central Urumieh-Dokhtar arc of Iran: transition from Eocene to Miocene intra-arc extensional magmatism, Miner. Petrol., 115, 445–466, https://doi.org/10.1007/s00710-021-00745-z, 2021.
Morishita, T., Arai, S., and Tamura, A.: Petrology of an apatite-rich layer in the Finero phlogopite–peridotite, Italian Western Alps; implications for evolution of a metasomatising agent, Lithos, 69, 37–49, https://doi.org/10.1016/S0024-4937(03)00046-X, 2003.
Norrish, K. and Hutton, J. T.: An accurate X-ray spectrographic method for the analysis of a wide range of geological samples, Geochim. Cosmochim. Ac., 33, 431–453, https://doi.org/10.1016/0016-7037(69)90126-4, 1969.
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., and Jolivet, L.: Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: A new report of adakites and geodynamic consequences, Lithos, 106, 380–398, https://doi.org/10.1016/j.lithos.2008.09.008, 2008.
O'Reilly, S. Y., Griffin, W. L., and Ryan, C. G.: Residence of trace elements in metasomatised spinel lherzolite xenoliths: A proton-microprobe study, Contrib. Mineral. Petr., 109, 98–113, https://doi.org/10.1007/BF00687203, 1991.
Pearce, J. A.: Trace element characteristics of lavas from destructive plate boundaries, in: Orogenic andesites and related rocks, edited by: Thorpe, R. S., John Wiley and Sons, Chichester, England, 528–548, ISBN 9780471280347, 1982.
Pearce, J. A., Bender, J. F., Delong, S. E., Kidd, W. S. F., Low, P. J., Guner, Y., Sargolu, F., Yilmaz, Y., Moorbath, S., and Mitchell, J. G.: Genesis of collision volcanism in eastern Anatolia, Turkey, J. Volcanol. Geoth. Res., 44, 189–229, https://doi.org/10.1016/0377-0273(90)90018-B, 1990.
Pickering-Witter, J. M. and Johnston, A. D.: The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages, Contrib. Mineral. Petr., 140, 190–211, https://doi.org/10.1007/s004100000183, 2000.
Pin, C. and Gannoun, A.: Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb–Sr, U–Th–Pb, Sm–Nd, La–Ce, and Lu–Hf) Useful in Geochemical and Environmental Sciences, Anal. Chem., 89, 2411–2417, https://doi.org/10.1021/acs.analchem.6b04289, 2017.
Plank, T. and Langmuir, C. H.: An evaluation of the global variations in the major element chemistry of arc basalts, Earth Planet. Sc. Lett., 90, 349–370, https://doi.org/10.1016/0012-821X(88)90135-5, 1988.
Powell, R.: Inversion of the assimilation and fractional crystallization (AFC) equations; characterization of contaminants from isotope and trace element relationships in volcanic suites, J. Geol. Soc., 141, 447–452, https://doi.org/10.1144/gsjgs.141.3.0447, 1984.
Prelević, D., Foley, S. F., Romer, R., and Sonticelli, S.: Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics, Geochim. Cosmochim. Ac., 72, 2125–2156, https://doi.org/10.1016/j.gca.2008.01.029, 2008.
Rabiee, A., Rossetti, F., Asahara, Y., Azizi, H., Lucci, F., Lustrino, M., and Nozaem, R.: Long-lived, Eocene-Miocene stationary magmatism in NW Iran along a transform plate boundary, Gondwana Res., 85, 237–262, https://doi.org/10.1016/j.gr.2020.03.014, 2020.
Radfar, J. and Alaie-Mahabadi, S.: Geological map of the Kashan quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1993.
Radfar, J. and Amini Chehragh, M. R.: Geological map of the Ardestan quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 1999.
Radfar, J., Kohansal, R., and Zolfaghari, S.: Geological map of the Kuhpayeh quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 2002.
Reagan, M. K. and Gill, J. B.: Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: implications for residual titanites in arc magma sources, J. Geophys. Res., 94, 4619–4633, https://doi.org/10.1029/JB094iB04p04619, 1989.
Schiano, P., Clocchiatti, R., Shimizu, N., Maury, R. C., Jochum, K. P., and Hofmann, A. W.: Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas, Nature, 377, 595–600, https://doi.org/10.1038/377595a0, 1995.
Sepidbar, F., Shafaii Moghadam, H., Zhang, L., Li, J. W., Ma, J., Stern, R. J., and Lin, C.: Across–arc geochemical variations in the Paleogene magmatic belt of Iran, Lithos, 344–345, 280–396, https://doi.org/10.1016/j.lithos.2019.06.022, 2019.
Sepidbar, F., Karsli, O., Palin, R. M., and Casetta, F.: Cenozoic temporal variation of crustal thickness in the Urumieh-Dokhtar and Alborz magmatic belts, Iran, Lithos, 400–401, 106401, https://doi.org/10.1016/j.lithos.2021.106401, 2021.
Shafaii Moghadam, H., Ghorbani, G., Zaki Khedr, M., Fazlnia, N., Chiaradia, M., Eyuboglu, Y., Santosh, M., Francisco, C. G., Martinez, M, L., Gourgaud, A., and Arai, S.: Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: Implications for geodynamic evolution of the Turkish–Iranian High Plateau, Gondwana Res., 26, 1028–1050, https://doi.org/10.1016/j.gr.2013.09.015, 2014.
Shahabpour, J.: Island-arc affinity of the central Iranian volcanic belt, J. Asian Earth Sci., 30, 652–665, https://doi.org/10.1016/j.jseaes.2007.02.004, 2007.
Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and Beate, B.: The Geological History of Northwestern South America: from Pangaea to the Early Collision of the Caribbean Large Igneous Province (290–75 Ma), Gondwana Res., 27, 95–139, https://doi.org/10.1016/j.gr.2014.06.004, 2015.
Stracke, A., Bizimis, M., and Salters, V. J. M.: Recycling oceanic crust: quantitative constraints, Geochem. Geophy. Geosy., 4, 8003, https://doi.org/10.1029/2001GC000223, 2003.
Stracke, A., Hofmann, A. W., and Hart, S. R.: FOZO, HIMU, and the rest of the mantle zoo, Geochem. Geophy. Geosy., 6, Q05007, https://doi.org/10.1029/2004GC000824, 2005.
Straub, S. M., Gómez-Tuena, A., Bindeman, I. N., Bolge, L. L., Brandle, P. A., Espinasa-Perena, R., Solari, L., Stuart, F. M., Vannucchi, P., and Zellmer, G. F.: Crustal recycling by subduction erosion in the central Mexican Volcanic Belt, Geochim. Cosmochim. Ac., 166, 29–52, https://doi.org/10.1016/j.gca.2015.06.001, 2015.
Streck, M. J., Leeman, W. P., and Chesley, J.: High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt, Geology, 35, 351–354, https://doi.org/10.1130/G23286A.1, 2007.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, J. Geol. Soc., London, Special Publications, 42, 313–345, https://doi.org/10.1144/gsl.sp.1989.042.01.19, 1989.
Szabó, C., Falus, G., Zajacz, Z., Kovács, I., and Bail, E.: Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review, Tectonophysics, 393, 119–137, https://doi.org/10.1016/j.tecto.2004.07.031, 2004.
van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vossers, R. L. M., Gürer, D., and Spakman, W.: Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Res., 81, 79–229, https://doi.org/10.1016/j.gr.2019.07.009, 2020.
Verdel, C., Wernicke, B. P., Hassanzadeh, J., and Guest, B.: A Paleogene extensional arc flare up in Iran, Tectonics, 30, 1–20, https://doi.org/10.1029/2010TC002809, 2011.
Wilson, B. M.: Igneous Petrogenesis: A Global Tectonic Approach, Chapman and Hall, London, https://doi.org/10.1007/978-1-4020-6788-4, 1989.
Xia, L. Q.: The geochemical criteria to distinguish continental basalts from arc related ones, Earth-Sci. Rev., 139, 195–212, https://doi.org/10.1016/j.earscirev.2014.09.006, 2014.
Yeganehfar, H., Ghorbani, M. R., Shinjo, R., and Ghaderi, M.: Magmatic and geodynamic evolution of Urumieh-Dokhtar basic volcanism, Central Iran: major, trace element, isotopic, and geochronologic implications, Int. Geol. Rev., 55, 767–786, https://doi.org/10.1080/00206814.2012.752554, 2013.
Zahedi, M. and Rahmati, M.: Geological map of the Tarq quadrangle, Geological Survey of Iran, scale 1:100 000, 1 sheet, 2002.
Zheng, Y. F.: Subduction zone geochemistry, Geosci. Front., 10, 1223–1254, https://doi.org/10.1016/j.gsf.2019.02.003, 2019.
Short summary
The vast Cenozoic arc magmatism of Iran introduced three distinct rock series. The LILE (large-ion lithophile elements)-rich and LILE-poor series show signatures of fluid-rich and fluid-poor slab-melt mantle metasomatism, furnished by hot slab subduction. The slab was more hydrated in the northern segment of the study area, where the LILE-rich series dominates. The third series rich in incompatible trace elements, the ITE-rich series, indicates the input of asthenosphere as well.
The vast Cenozoic arc magmatism of Iran introduced three distinct rock series. The LILE...