Articles | Volume 17, issue 1
https://doi.org/10.5194/se-17-179-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-17-179-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatial influence of fault-related stress perturbations in northern Switzerland
Lalit Sai Aditya Reddy Velagala
CORRESPONDING AUTHOR
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Oliver Heidbach
CORRESPONDING AUTHOR
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute for Applied Geosciences, Technische Universität Berlin, 10587 Berlin, Germany
Moritz Ziegler
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Professorship of Geothermal Technologies, Technical University Munich, 80333 Munich, Germany
Karsten Reiter
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Mojtaba Rajabi
School of the Environment, The University of Queensland, QLD, 4072, Australia
Andreas Henk
Institute of Applied Geosciences, Technische Universität Darmstadt, 64287 Darmstadt, Germany
Silvio B. Giger
National Cooperative for the Disposal of Radioactive Waste, 5430 Wettingen, Switzerland
Tobias Hergert
Institute of Applied Geosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Related authors
No articles found.
Steffen Ahlers and Andreas Henk
Earth Syst. Sci. Data, 18, 585–596, https://doi.org/10.5194/essd-18-585-2026, https://doi.org/10.5194/essd-18-585-2026, 2026
Short summary
Short summary
The paper presents a 3D geological underground model of Germany and some neighboring countries, combining 27 individual models. The model contains 146 units and is provided as a point dataset with a resolution of 1x1 km². This enables the creation of, e.g., 3D finite element models in a very short amount of time. A comprehensive supplement and 157 figures documents the results and assumptions.
Antonio Olaiz, José A. Álvarez Gómez, Gerardo de Vicente, Alfonso Muñoz-Martín, Juan V. Cantavella, Susana Custódio, Dina Vales, and Oliver Heidbach
Solid Earth, 16, 947–1024, https://doi.org/10.5194/se-16-947-2025, https://doi.org/10.5194/se-16-947-2025, 2025
Short summary
Short summary
Understanding the stress and strain conditions in the Earth's crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Sarah Diekmeier, Karsten Reiter, Andreas Henk, and Colin Friebe
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-489, https://doi.org/10.5194/essd-2024-489, 2025
Manuscript not accepted for further review
Short summary
Short summary
The study explores the potential for storing carbon-rich products in Germany to support climate goals. Using geological data, we identified old mining sites suitable for storing products like graphite and oxalate from negative emissions technologies. Results show significant storage potential, both above and below ground, offering a sustainable solution. By reusing existing mining areas, Germany can advance towards carbon neutrality, reducing costs and environmental impact.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Sophia Morawietz, Moritz Ziegler, Karsten Reiter, and the SpannEnD Project Team
Saf. Nucl. Waste Disposal, 1, 71–72, https://doi.org/10.5194/sand-1-71-2021, https://doi.org/10.5194/sand-1-71-2021, 2021
Short summary
Short summary
Knowledge of the crustal stress state is important for the assessment of subsurface stability. In particular, stress magnitudes are essential for the calibration of geomechanical models that estimate a continuous description of the 3-D stress field from pointwise and incomplete stress data. We present the first comprehensive and open-access stress magnitude database for Germany, consisting of 568 data records. We introduce a quality ranking scheme for stress magnitude data for the first time.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Karsten Reiter
Solid Earth, 12, 1287–1307, https://doi.org/10.5194/se-12-1287-2021, https://doi.org/10.5194/se-12-1287-2021, 2021
Short summary
Short summary
The influence and interaction of elastic material properties (Young's modulus, Poisson's ratio), density and low-friction faults on the resulting far-field stress pattern in the Earth's crust is tested with generic models. A Young's modulus contrast can lead to a significant stress rotation. Discontinuities with low friction in homogeneous models change the stress pattern only slightly, away from the fault. In addition, active discontinuities are able to compensate stress rotation.
Cited articles
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Germany according to a data-calibrated geomechanical model, Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, 2021.
Ahlers, S., Röckel, L., Hergert, T., Reiter, K., Heidbach, O., Henk, A., Müller, B., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: The crustal stress field of Germany: a refined prediction, Geothermal Energy, 10, https://doi.org/10.1186/s40517-022-00222-6, 2022.
Aleksandrowski, P., Inderhaug, O. H. E., and Knapstad, B.: Tectonic structures and wellbore breakout orientation, The 33rd U.S. Symposium on Rock Mechanics (USRMS), Santa Fe, New Mexico, USA, 3–5 June 1992, https://doi.org/10.1016/0148-9062(93)90652-T, 1992.
Amadei, B. and Stephansson, O.: Rock stress and its measurement, Springer Dordrecht, https://doi.org/10.1007/978-94-011-5346-1, 1997.
Azzola, J., Valley, B., Schmittbuhl, J., and Genter, A.: Stress characterization and temporal evolution of borehole failure at the Rittershoffen geothermal project, Solid Earth, 10, 1155–1180, https://doi.org/10.5194/se-10-1155-2019, 2019.
Barton, C. A. and Zoback, M. D.: Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement, J. Geophys. Res.-Sol. Ea., 99, 9373–9390, https://doi.org/10.1029/93JB03359, 1994.
Bell, J. S.: Petro Geoscience 1. In situ stresses in sedimentary rocks (Part 1): Measurement Techniques, Geoscience Canada, 23, 85–100, 1996a.
Bell, J. S.: Petro Geoscience 2. In-Situ Stresses in Sedimentary Rocks (Part 2): Application of Stress Measurements, Geoscience Canada, 23, 135–153, 1996b.
Bell, J. S. and Gough, D. I.: Northeast-southwest compressive stress in Alberta evidence from oil wells, Earth Planet. Sc. Lett., 45, 475–482, https://doi.org/10.1016/0012-821X(79)90146-8, 1979.
Bell, J. S. and Grasby, S. E.: The stress regime of the Western Canadian Sedimentary Basin, Geofluids, 12, 150–165, https://doi.org/10.1111/j.1468-8123.2011.00349.x, 2012.
Bérard, T. and Desroches, J.: Geological structure, geomechanical perturbations, and variability in hydraulic fracturing performance at the scale of a square mile, Geomechanics for Energy and the Environment, 26, 100137, https://doi.org/10.1016/j.gete.2019.100137, 2021.
Berard, T., Sinha, B. K., Van Ruth, P., Dance, T., John, Z., and Tan, C.: Stress estimation at the Otway CO2 storage site, Australia, SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, https://doi.org/10.2118/116422-MS, 2008.
Boness, N. L. and Zoback, M. D.: A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth, Geophysics, 71, F131–F146, https://doi.org/10.1190/1.2231107, 2006.
Brandes, C. and Tanner, D. C.: Chapter 2 – Fault mechanics and earthquakes, in: Understanding Faults, edited by: Tanner, D. and Brandes, C., Elsevier, 11–80, https://doi.org/10.1016/B978-0-12-815985-9.00002-3, 2020.
Brodsky, E. E., Mori, J. J., Anderson, L., Chester, F. M., Conin, M., Dunham, E. M., Eguchi, N., Fulton, P. M., Hino, R., Hirose, T., Ikari, M. J., Ishikawa, T., Jeppson, T., Kano, Y., Kirkpatrick, J., Kodaira, S., Lin, W., Nakamura, Y., Rabinowitz, H. S., Regalla, C., Remitti, F., Rowe, C., Saffer, D. M., Saito, S., Sample, J., Sanada, Y., Savage, H. M., Sun, T., Toczko, S., Ujiie, K., Wolfson-Schwehr, M., and Yang, T.: The State of Stress on the Fault Before, During, and After a Major Earthquake, Annual Review of Earth and Planetary Sciences, 48, 49–74, https://doi.org/10.1146/annurev-earth-053018-060507, 2020.
Brooke-Barnett, S., Flottmann, T., Paul, P. K., Busetti, S., Hennings, P., Reid, R., and Rosenbaum, G.: Influence of basement structures on in situ stresses over the Surat Basin, southeast Queensland, J. Geophys. Res.-Sol. Ea., 120, 4946–4965, https://doi.org/10.1002/2015JB011964, 2015.
Brudy, M., Fuchs, K., and Zoback, M. D.: Stress orientation profile to 6 km depth in the KTB main borehole, KTB Report 93-2: Contributions to the 6. Annual KTB-Colloquium, Geoscientific Results, Giessen, Germany, 1–2 June 1993, 195–197, https://doi.org/10.2312/KTB.93-2, 1993.
Brudy, M., Zoback, M. D., Fuchs, K., Rummel, F., and Baumgärtner, J.: Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength, J. Geophys. Res.-Sol. Ea., 102, 18453–18475, https://doi.org/10.1029/96JB02942, 1997.
Buchmann, T. J. and Connolly, P. T.: Contemporary kinematics of the Upper Rhine Graben: A 3D finite element approach, Global and Planetary Change, 58, 287–309, https://doi.org/10.1016/j.gloplacha.2007.02.012, 2007.
Burkhard, M. and Sommaruga, S.: Evolution of the western Swiss Molasse basin: structural relations with the Alps and the Jura belt, Geological Society, London, Special Publications, 134, 279–298, https://doi.org/10.1144/GSL.SP.1998.134.01.13, 1998.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, https://doi.org/10.1007/BF00876528, 1978.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2, 1996.
Catalli, F., Meier, M.-A., and Wiemer, S.: The role of Coulomb stress changes for injection-induced seismicity: The Basel enhanced geothermal system, Geophys. Res. Lett., 40, 72–77, https://doi.org/10.1029/2012GL054147, 2013.
Chéry, J., Zoback, M. D., and Hickman, S.: A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019521, 2004.
Cloetingh, S. and Wortel, R.: Regional stress field of the Indian Plate, Geophys. Res. Lett., 12, 77–80, https://doi.org/10.1029/GL012i002p00077, 1985.
Cloetingh, S., Cornu, T., Ziegler, P. A., and Beekman, F.: Neotectonics and intraplate continental topography of the northern Alpine Foreland, Earth-Sci. Rev., 74, 127–196, https://doi.org/10.1016/j.earscirev.2005.06.001, 2006.
Coward, M. and Dietrich, D.: Alpine tectonics – an overview, Geological Society, London, Special Publications, 45, 1–29, https://doi.org/10.1144/GSL.SP.1989.045.01.01, 1989.
Desroches, J., Peyret, E., Gisolf, A., Wilcox, A., Di Giovanni, M., de Jong, A. S., Sepehri, S., Garrard, R., and Giger, S.: Stress Measurement Campaign in Scientific Deep Boreholes: Focus on Tool and Methods, SPWLA 62nd Annual Logging Symposium, Virtual Event, 17–20 May 2021, https://doi.org/10.30632/SPWLA-2021-0056, 2021a.
Desroches, J., Peyret, E., Gisolf, A., Wilcox, A., Di Giovanni, M., Schram de Jong, A., Milos, B., Gonus, J., Bailey, E., Sepehri, S., Garitte, B., Garrard, R., and Giger, S.: Stress-Measurement Campaign in Scientific Deep Boreholes: From Planning to Interpretation, 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual Event, 20–23 June 2021, 2021b.
Desroches, J., Peyret, E., Gisolf, A., Wilcox, A., Di Giovanni, M., de Jong, A. S., Sepehri, S., Garrard, R., and Giger, S.: Stress Measurement Campaign in Scientific Deep Boreholes: Focus on Tools and Methods, Petrophysics – The SPWLA Journal, 64, 621–639, https://doi.org/10.30632/PJV64N5-2023a2, 2023.
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., and Shimamoto, T.: Fault lubrication during earthquakes, Nature, 471, 494–498, https://doi.org/10.1038/nature09838, 2011.
Diebold, P. and Noack, T.: Late Palaeozoic troughs and Tertiary structures in the eastern Folded Jura, in: Deep Structure of the Swiss Alps: Results of NRP20, edited by: Pfiffner, O. A., Lehner, P., Heitzmann, P., Mueller, S., and Steck, A., Birkhäuser Verlag, Basel, 59–63, ISBN 13 9783764352547, 1997.
Fiebig, M. and Preusser, F.: Pleistocene glaciations of the northern Alpine Foreland, Geogr. Helv., 63, 145–150, https://doi.org/10.5194/gh-63-145-2008, 2008.
Fischer, K. and Henk, A.: A workflow for building and calibrating 3-D geomechanical models – a case study for a gas reservoir in the North German Basin, Solid Earth, 4, 347–355, https://doi.org/10.5194/se-4-347-2013, 2013.
Gens, A., Garitte, B., Olivella, S., and Vaunat, J.: Applications of multiphysical geomechanics in underground nuclear waste storage, European Journal of Environmental and Civil Engineering, 13, 7–8, https://doi.org/10.1080/19648189.2009.9693162, 2009.
Gorin, G., Signer, C., and Amberger, G.: Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data, Eclogae Geologicae Helvetiae, 86, 693–716, 1993.
Gough, D. I. and Bell, J. S.: Stress orientations from borehole wall fractures with examples from Colorado, east Texas, and northern Canada, Can. J. Earth Sci., 19, 1358–1370, https://doi.org/10.1139/e82-118, 1982.
Hawkes, C., McLellan, P., and Bachu, S.: Geomechanical factors affecting geological storage of CO2 in depleted oil and gas reservoirs, Journal of Canadian Petroleum Technology, 44, 2005.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., and Wenzel, F.: Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database, Tectonics, 26, TC6014, https://doi.org/10.1029/2007TC002133, 2007.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Heidbach, O., Rajabi, M., Di Giacomo, D., Harris, J., Lammers, S., Morawietz, S., Pierdominici, S., Reiter, K., Storchak, D., von Specht, S., and Ziegler, M. O.: World Stress Map Database Release 2025, https://doi.org/10.5880/WSM.2025.001, 2025a.
Heidbach, O., Reinecker, J., Diehl, T., Desroches, J., Ziegler, M. O., Reiter, K., Vietor, T., and Giger, S. B.: The present-day crustal stress field of the Molasse Basin in Switzerland, Swiss Journal of Geosciences, https://doi.org/10.1186/s00015-025-00487-6, 2025b.
Henk, A.: Pre-drilling prediction of the tectonic stress field with geomechanical models, First Break, 23, 53–57, https://doi.org/10.3997/1365-2397.2005021, 2005.
Henk, A.: Perspectives of Geomechanical Reservoir Models – Why Stress is Important, Oil Gas European Magazine, 35, 20–24, 2009.
Henk, A.: Chapter 4 – Numerical modelling of faults, in: Understanding Faults, edited by: Tanner, D. and Brandes, C., Elsevier, 147–165, https://doi.org/10.1016/B978-0-12-815985-9.00004-7, 2020.
Hergert, T. and Heidbach, O.: Geomechanical model of the Marmara Sea region – II. 3-D contemporary background stress field, Geophysical Journal International, 185, 1090–1102, https://doi.org/10.1111/j.1365-246X.2011.04992.x, 2011.
Hergert, T., Heidbach, O., Bécel, A., and Laigle, M.: Geomechanical model of the Marmara Sea region – I. 3-D contemporary kinematics, Geophysical Journal International, 185, 1073–1089, https://doi.org/10.1111/j.1365-246X.2011.04991.x, 2011.
Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., and Marschall, P.: Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland, Solid Earth, 6, 533–552, https://doi.org/10.5194/se-6-533-2015, 2015.
Hickman, S. and Zoback, M.: Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL020043, 2004.
Homberg, C., Hu, J. C., Angelier, J., Bergerat, F., and Lacombe, O.: Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modelling and field studies (Jura mountains), J. Struct. Geol., 19, 703–718, https://doi.org/10.1016/S0191-8141(96)00104-6, 1997.
Illies, J. H.: The Rhine graben rift system-plate tectonics and transform faulting, Geophysical Surveys, 1, 27–60, https://doi.org/10.1007/BF01449550, 1972.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R. W.: Fundamentals of Rock Mechanics, 4, Blackwell Publishing, ISBN 978-0-632-05759-7, 2007.
Jo, Y., Chang, C., Ji, S.-H., and Park, K.-W.: In situ stress states at KURT, an underground research laboratory in South Korea for the study of high-level radioactive waste disposal, Engineering Geology, 259, 105198, https://doi.org/10.1016/j.enggeo.2019.105198, 2019.
Jones, W. B.: Listric growth faults in the Kenya Rift Valley, J. Struct. Geol., 10, 661–672, https://doi.org/10.1016/0191-8141(88)90074-0, 1988.
Jordan, P.: Triassic. Basin evolution: Switzerland., in: The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic, edited by: McCann, T., Geological Society of London, London, 785–788, https://doi.org/10.1144/CEV2P, 2008.
Kastrup, U.: Seismotectonics and Stress Field Variations in Switzerland, Dissertation, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, 162 pp., https://doi.org/10.3929/ethz-a-004423062, 2002.
Kattenhorn, S. A., Aydin, A., and Pollard, D. D.: Joints at high angles to normal fault strike: an explanation using 3-D numerical models of fault-perturbed stress fields, J. Struct. Geol., 22, 1–23, https://doi.org/10.1016/S0191-8141(99)00130-3, 2000.
Kempf, O. and Adrian, P., O.: Early Tertiary evolution of the North Alpine Foreland Basin of the Swiss Alps and adjoining areas, Basin Research, 16, 549–567, https://doi.org/10.1111/j.1365-2117.2004.00246.x, 2004.
Kingsborough, R. H., Williams, A. F., and Hillis, R. R.: Borehole Instability on the Northwest Shelf of Australia, SPE Asia-Pacific Conference, Perth, Australia, 4–7 November, https://doi.org/10.2118/23015-MS, 1991.
Kohli, A. H. and Zoback, M. D.: Frictional properties of shale reservoir rocks, J. Geophys. Res.-Sol. Ea., 118, 5109–5125, https://doi.org/10.1002/jgrb.50346, 2013.
Laubscher, H.: Jura, Alps and the boundary of the Adria subplate, Tectonophysics, 483, 223–239, https://doi.org/10.1016/j.tecto.2009.10.011, 2010.
Lecampion, B. and Lei, T.: Reconstructing the 3D Initial Stress State over Reservoir Geomechanics Model from Local Measurements and Geological Priors: A Bayesian Approach, Schlumberger J. of Modeling, Design and Simulation, 1, 100–104, https://infoscience.epfl.ch/handle/20.500.14299/119734 (last access: 27 January 2026), 2010.
Li, P., Cai, M.-f., Miao, S.-j., and Guo, Q.-f.: New Insights Into The Current Stress Field Around the Yishu Fault Zone, Eastern China, Rock Mechanics and Rock Engineering, 52, 4133–4145, https://doi.org/10.1007/s00603-019-01792-x, 2019.
Li, X., Hergert, T., Henk, A., and Zeng, Z.: Contemporary background stress field in the eastern Tibetan Plateau: Insights from 3D geomechanical modeling, Tectonophysics, 822, 229177, https://doi.org/10.1016/j.tecto.2021.229177, 2022.
Long, J. C. S. and Ewing, R. C.: Yucca Mountain: Earth-Science Issues at a Geologic Repository for High-Level Nuclear Waste, Annual Review of Earth and Planetary Sciences, 32, 363–401, https://doi.org/10.1146/annurev.earth.32.092203.122444, 2004.
Madritsch, H., Looser, N., Schneeberger, R., Wohlwend, S., Guillong, M., and Malz, A.: Reconstructing the Evolution of Foreland Fold-And-Thrust Belts Using U-Pb Calcite Dating: An Integrated Case-Study From the Easternmost Jura Mountains (Switzerland), Tectonics, 43, e2023TC008181, https://doi.org/10.1029/2023TC008181, 2024.
Maerten, L., Gillespie, P., and Pollard, D. D.: Effects of local stress perturbation on secondary fault development, J. Struct. Geol., 24, 145–153, https://doi.org/10.1016/S0191-8141(01)00054-2, 2002.
Mao, J.: A finite element approach to solve contact problems in geotechnical engineering, International Journal for Numerical and Analytical Methods in Geomechanics, 29, 525–550, https://doi.org/10.1002/nag.424, 2005.
Marchant, R., Ringgenberg, Y., Stampfli, G., Birkhäuser, P., Roth, P., and Meier, B.: Paleotectonic evolution of the Zürcher Weinland (northern Switzerland), based on 2D and 3D seismic data, Eclogae Geologicae Helvetiae, 98, 345–362, https://doi.org/10.1007/s00015-005-1171-8, 2005.
McCann, T., Pascal, C., Timmerman, M. J., Krzywiec, P., López-Gómez, J., Wetzel, L., Krawczyk, C. M., Rieke, H., and Lamarche, J.: Post-Variscan (end Carboniferous-Early Permian) basin evolution in Western and Central Europe, Geological Society, London, Memoirs, 32, 355–388, https://doi.org/10.1144/GSL.MEM.2006.032.01.22, 2006.
Morrow, C., Shi, L., and Byerlee, J.: Strain hardening and strength of clay-rich fault gouges, J. Geophys. Res.-Sol. Ea., 87, 6771–6780, https://doi.org/10.1029/JB087iB08p06771, 1982.
Morrow, C., Radney, B., and Byerlee, J.: Chapter 3 Frictional Strength and the Effective Pressure Law of Montmorillonite and lllite Clays, in: International Geophysics, edited by: Evans, B. and Wong, T.-f., Academic Press, 69–88, https://doi.org/10.1016/S0074-6142(08)62815-6, 1992.
Nagra: Erläuterungen zur Geologischen Karte der zentralen Nordschweiz 1:100 000, NAGRA, Baden, Switzerland, NAGRA Technischer Bericht NTB 84-25, 263 pp., 1984.
Nagra: Zur Tektonik der zentralen Nordschweiz – Interpretation aufgrund regionaler Seismik, Oberflächengeologie und Tiefbohrungen, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 90-04, 277 pp., 1991.
Nagra: 3D-Seismik: Räumliche Erkundung der mesozoischen Sedimentschichten im Zürcher Weinland, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 00-03, 180 pp., 2001.
Nagra: Geologische Entwicklung der Nordschweiz, Neotektonik und Langzeitszenarien Zürcher Weinland, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 99-08, 257 pp., 2002a.
Nagra: Projekt Opalinuston: Synthese der geowissenschaftlichen Untersuchungsergebnisse Entsorgungsnachweis für abgebrannte Brennelemente, verglaste hochaktive sowie langlebige mittelaktive Abfälle, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 02-03, 714 pp., 2002b.
Nagra: Vorschlag geologischer Standortgebiete für das SMA-und das HAA-Lager, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 08-04, 477 pp., 2008.
Nagra: Analyse des rezenten Spannungsfelds der Nordschweiz, NAGRA, Wettingen, Switzerland, NAGRA Arbeitsbericht NAB 12-05, 146 pp., 2013.
Nagra: Tektonische Karte des Nordschweizer Permokarbontrogs: Aktualisierung basierend auf 2D-Seismik und Schweredaten, NAGRA, Wettingen, Switzerland, NAGRA Arbeitsbericht NAB 14-17, 64 pp., 2014.
Nagra: 3D Seismic Interpretation of Stratigraphic Horizons and Structures in Time Domain, NAGRA, Wettingen, Switzerland, NAGRA Arbeitsbericht NAB 23-19, 151 pp., 2024a.
Nagra: Geological Properties of the Jura Ost, Nördlich Lägern and Zürich Nordost Siting Regions for Safety Assessment, NAGRA, Wettingen, Switzerland, NAGRA Arbeitsbericht NAB 24-10 Rev. 1, 44 pp., 2024b.
Nagra: Geosynthesis of Northern Switzerland, NAGRA, Wettingen, Switzerland, NAGRA Technischer Bericht NTB 24-17, 604 pp., 2024c.
Nagra: In-Situ Stress Field in the Siting Regions Jura Ost, Nördlich Lägern and Zürich Nordost, NAGRA, Wettingen, Switzerland, NAGRA Arbeitbericht NAB 24-19, 131 pp., 2024d.
Nicol, A., Walsh, J., Childs, C., and Manzocchi, T.: Chapter 6 – The growth of faults, in: Understanding Faults, edited by: Tanner, D. and Brandes, C., Elsevier, 221–255, https://doi.org/10.1016/B978-0-12-815985-9.00006-0, 2020.
Pascal, C. and Gabrielsen, R. H.: Numerical modeling of Cenozoic stress patterns in the mid-Norwegian margin and the northern North Sea, Tectonics, 20, 585–599, https://doi.org/10.1029/2001TC900007, 2001.
Pijnenburg, R. P. J., Verberne, B. A., Hangx, S. J. T., and Spiers, C. J.: Inelastic Deformation of the Slochteren Sandstone: Stress–Strain Relations and Implications for Induced Seismicity in the Groningen Gas Field, J. Geophys. Res.-Sol. Ea., 124, 5254–5282, https://doi.org/10.1029/2019JB017366, 2019.
Preusser, F., Graf, H. R., Keller, O., Krayss, E., and Schlüchter, C.: Quaternary glaciation history of northern Switzerland, E&G Quaternary Sci. J., 60, 21, https://doi.org/10.3285/eg.60.2-3.06, 2011.
Qin, X., Zhao, X., Zhang, C., Li, P., Chen, Q., and Wang, J.: Measurement and Assessment of the In-Situ Stress of the Shazaoyuan Rock Block, a Candidate Site for HLW Disposal in Northwest China, Rock Mechanics and Rock Engineering, 57, 4011–4031, https://doi.org/10.1007/s00603-024-03775-z, 2024.
Rajabi, M., Tingay, M., Heidbach, O., and King, R.: The Role of Faults and Fractures in Local and Regional Perturbation of Present-day Horizontal Stresses – An Example from the Clarence-Moreton Basin, Eastern Australia, 2015, 1–5, https://doi.org/10.3997/2214-4609.201413346, 2015.
Rajabi, M., Tingay, M., and Heidbach, O.: The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production, Marine and Petroleum Geology, 77, 776–790, https://doi.org/10.1016/j.marpetgeo.2016.07.021, 2016.
Rajabi, M., Heidbach, O., Tingay, M., and Reiter, K.: Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical–numerical models, Australian Journal of Earth Sciences, 64, 435–454, https://doi.org/10.1080/08120099.2017.1294109, 2017a.
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., and Reynolds, S.: The present-day stress field of Australia, Earth-Sci. Rev., 168, 165–189, https://doi.org/10.1016/j.earscirev.2017.04.003, 2017b.
Rajabi, M., Tingay, M., King, R., and Heidbach, O.: Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: a new high density dataset reveals local stress rotations, Basin Research, 29, 622–640, https://doi.org/10.1111/bre.12175, 2017c.
Rajabi, M., Ziegler, M., Heidbach, O., Mukherjee, S., and Esterle, J.: Contribution of mine borehole data toward high-resolution stress mapping: An example from northern Bowen Basin, Australia, International Journal of Rock Mechanics and Mining Sciences, 173, 105630, https://doi.org/10.1016/j.ijrmms.2023.105630, 2024.
Reisdorf, A. G., Wetzel, A., Schlatter, R., and Jordan, P.: The Staffelegg Formation: a new stratigraphic scheme for the Early Jurassic of northern Switzerland, Swiss Journal of Geosciences, 104, 97–146, https://doi.org/10.1007/s00015-011-0057-1, 2011.
Reiter, K. and Heidbach, O.: 3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada), Solid Earth, 5, 1123–1149, https://doi.org/10.5194/se-5-1123-2014, 2014.
Reiter, K., Heidbach, O., and Ziegler, M. O.: Impact of faults on the remote stress state, Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, 2024.
Richardson, R. M., Solomon, S. C., and Sleep, N. H.: Tectonic stress in the plates, Rev. Geophys., 17, 981–1019, https://doi.org/10.1029/RG017i005p00981, 1979.
Roberts, D. and Myrvang, A.: Contemporary stress orientation features and horizontal stress in bedrock, Trøndelag, central Norway, NGU Bull., 442, 53–63, 2004.
Roche, V., Camanni, G., Childs, C., Manzocchi, T., Walsh, J., Conneally, J., Saqab, M. M., and Delogkos, E.: Variability in the three-dimensional geometry of segmented normal fault surfaces, Earth-Sci. Rev., 216, 103523, https://doi.org/10.1016/j.earscirev.2021.103523, 2021.
Saucier, F., Humphreys, E., and Weldon II, R.: Stress near geometrically complex strike-slip faults: Application to the San Andreas Fault at Cajon Pass, southern California, J. Geophys. Res.-Sol. Ea., 97, 5081–5094, https://doi.org/10.1029/91JB02644, 1992.
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., and Kissling, E.: Geophysical–geological transect and tectonic evolution of the Swiss–Italian Alps, Tectonics, 15, 1036–1064, https://doi.org/10.1029/96TC00433, 1996.
Schmid, S. M., Pfiffner, O. A., Schönborn, G., Froitzheim, N., and Kissling, E.: Integrated cross section and tectonic evolution of the Alps along the Eastern Traverse., in: Deep Structure of the Alps, Results from NFP 20, edited by: Pfiffner, O. A., Lehner, P., Heitzmann, P., Müller, S., and Steck, A., Birkhäuser Verlag, Birkhäuser, Basel, 289–304, ISBN 3-7643-5254-X (Basel), ISBN 0-8176-5254-X (Boston), 1997.
Schoenball, M., Dorbath, L., Gaucher, E., Wellmann, J. F., and Kohl, T.: Change of stress regime during geothermal reservoir stimulation, Geophys. Res. Lett., 41, 1163–1170, https://doi.org/10.1002/2013GL058514, 2014.
Seithel, R., Gaucher, E., Mueller, B., Steiner, U., and Kohl, T.: Probability of fault reactivation in the Bavarian Molasse Basin, Geothermics, 82, 81–90, https://doi.org/10.1016/j.geothermics.2019.06.004, 2019.
Sibson, R., Ghisetti, F., and Ristau, J.: Stress Control of an Evolving Strike-Slip Fault System during the 2010–2011 Canterbury, New Zealand, Earthquake Sequence, Seismol. Res. Lett., 82, 824–832, https://doi.org/10.1785/gssrl.82.6.824, 2011.
Sibson, R. H.: Implications of fault-valve behaviour for rupture nucleation and recurrence, Tectonophysics, 211, 283–293, https://doi.org/10.1016/0040-1951(92)90065-E, 1992.
Sinclair, H. D. and Allen, P. A.: Vertical versus horizontal motions in the Alpine orogenic wedge: stratigraphic response in the foreland basin, Basin Research, 4, 215–232, https://doi.org/10.1111/j.1365-2117.1992.tb00046.x, 1992.
Smart, K. J., Ferrill, D. A., Morris, A. P., and McGinnis, R. N.: Geomechanical modeling of stress and strain evolution during contractional fault-related folding, Tectonophysics, 576-577, 171–196, https://doi.org/10.1016/j.tecto.2012.05.024, 2012.
Sommaruga, A., Eichenberger, U., and Marillier, F.: Seismic Atlas of the Swiss Molasse Basin, Matériaux pour la Géologie de la Suisse – Géophysique, ISBN 978-3-302-40064-8, 2012.
Stromeyer, D., Heidbach, O., and Ziegler, M.: Tecplot 360 Add-on GeoStress v. 2.0. V. 2.0, GFZ Data Services [code], https://doi.org/10.5880/wsm.2020.001, 2020.
Su, S. and Stephansson, O.: Effect of a fault on in situ stresses studied by the distinct element method, International Journal of Rock Mechanics and Mining Sciences, 36, 1051–1056, https://doi.org/10.1016/S1365-1609(99)00119-7, 1999.
Tanner, D. C. and Brandes, C.: Chapter 1 – Introduction, in: Understanding Faults, edited by: Tanner, D. and Brandes, C., Elsevier, 1–10, https://doi.org/10.1016/B978-0-12-815985-9.00001-1, 2020.
Tavener, E., Flottmann, T., and Brooke-Barnett, S.: In situ stress distribution and mechanical stratigraphy in the Bowen and Surat basins, Queensland, Australia, Geological Society, London, Special Publications, 458, 31–47, https://doi.org/10.1144/SP458.4, 2017.
Tingay, M. R. P., Hillis, R. R., Morley, C. K., King, R. C., Swarbrick, R. E., and Damit, A. R.: Present-day stress and neotectonics of Brunei: Implications for petroleum exploration and production, AAPG Bulletin, 93, 75–100, https://doi.org/10.1306/08080808031, 2009.
Treffeisen, T. and Henk, A.: Representation of faults in reservoir-scale geomechanical finite element models – A comparison of different modelling approaches, J. Struct. Geol., 131, 103931, https://doi.org/10.1016/j.jsg.2019.103931, 2020.
Vadacca, L., Rossi, D., Scotti, A., and Buttinelli, M.: Slip Tendency Analysis, Fault Reactivation Potential and Induced Seismicity in the Val d'Agri Oilfield (Italy), J. Geophys. Res.-Sol. Ea., 126, 2019JB019185, https://doi.org/10.1029/2019JB019185, 2021.
Viganò, A., Ranalli, G., Andreis, D., and Martin, S.: Inversion for the static friction coefficient of seismogenic faults: Application to induced seismicity of the Basel Enhanced Geothermal System, Switzerland, Journal of Geodynamics, 145, 101843, https://doi.org/10.1016/j.jog.2021.101843, 2021.
Yale, D. P.: Fault and stress magnitude controls on variations in the orientation of in situ stress, in: Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs, edited by: Ameen, M., Geological Society of London, 0, https://doi.org/10.1144/GSL.SP.2003.209.01.06, 2003.
Yale, D. P. and Ryan, T. C.: In-Situ Stress and Hydraulic Fracture Orientation in the Mid-Continent Area, US, 1st North American Rock Mechanics Symposium, Austin, Texas, 1–3 June 1994, 1994.
Yale, D. P., Strubhar, M. K., and El Rabaa, A. W.: Determination of Hydraulic Fracture Direction, San Juan Basin, New Mexico, SPE Production Operations Symposium, Oklahoma City, Oklahoma 21–23 March 1993, https://doi.org/10.2118/25466-MS, 1993.
Yale, D. P., Rodriguez, J. M., Mercer, T. B., and Blaisdell, D. W.: In-situ Stress Orientation and the Effects of Local Structure – Scott Field, North Sea, Rock Mechanics in Petroleum Engineering, Delft, the Netherlands, 29–31 August 1994, https://doi.org/10.2118/28146-MS, 1994.
Yan, H., Bakk, A., Holt, R. M., and Lozovyi, S.: Numerical analysis of stress path evolution in the overburden of depleting reservoirs: a parametric study, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 11, 91, https://doi.org/10.1007/s40948-025-00989-5, 2025.
Zakharova, N. V. and Goldberg, D. S.: In situ stress analysis in the northern Newark Basin: Implications for induced seismicity from CO2 injection, J. Geophys. Res.-Sol. Ea., 119, 2362–2374, https://doi.org/10.1002/2013JB010492, 2014.
Zang, A. and Stephansson, O.: Stress field of the earth's crust, 2010, Springer Dordrecht, New York, NY, 324 pp., https://doi.org/10.1007/978-1-4020-8444-7, 2010.
Ziegler, M. O. and Heidbach, O.: The 3D stress state from geomechanical–numerical modelling and its uncertainties: a case study in the Bavarian Molasse Basin, Geothermal Energy, 8, 11, https://doi.org/10.1186/s40517-020-00162-z, 2020.
Ziegler, M. O. and Heidbach, O.: Python Script PyFAST Calibration v.1.0 V. 1.0, GFZ Data Services [code], https://doi.org/10.5880/wsm.2021.003, 2021.
Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., and Scheck-Wenderoth, M.: A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365–1382, https://doi.org/10.5194/se-7-1365-2016, 2016.
Ziegler, M., Ziebarth, M., and Reiter, K.: Manual of the Python Script Apple PY v1.3 (WSM Technical Report; 20-02), GFZ German Research Centre for Geosciences, Potsdam [manual], 28 p., https://doi.org/10.48440/wsm.2020.002, 2020.
Ziegler, M. O., Heidbach, O., Morawietz, S., and Wang, Y.: Matlab Script FAST Calibration v 2.4, GFZ German Research Center for Geosciences [code], https://doi.org/10.5880/wsm.2023.002, 2023.
Ziegler, M. O., Seithel, R., Niederhuber, T., Heidbach, O., Kohl, T., Müller, B., Rajabi, M., Reiter, K., and Röckel, L.: Stress state at faults: the influence of rock stiffness contrast, stress orientation, and ratio, Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, 2024.
Zoback, M. and Healy, J.: Friction, faulting and in situ stress, Annales geophysicae (1983), 2, 689–698, 1984.
Zoback, M., Hickman, S., Ellsworth, W., and the SAFOD Science Team: Scientific Drilling Into the San Andreas Fault Zone – An Overview of SAFOD's First Five Years, Sci. Dril., 11, 14–28, https://doi.org/10.2204/iodp.sd.11.02.2011, 2011.
Zoback, M. D.: Reservoir Geomechanics, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511586477, 2009.
Zoback, M. D., Zoback, M. L., Mount, V. S., Suppe, J., Eaton, J. P., Healy, J. H., Oppenheimer, D., Reasenberg, P., Jones, L., Raleigh, C. B., Wong, I. G., Scotti, O., and Wentworth, C.: New Evidence on the State of Stress of the San Andreas Fault System, Science, 238, 1105–1111, https://doi.org/10.1126/science.238.4830.1105, 1987.
Zoback, M. L.: First- and second-order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res.-Sol. Ea., 97, 11703–11728, https://doi.org/10.1029/92JB00132, 1992.
Zoback, M. L., Zoback, M. D., Adams, J., Assumpção, M., Bell, S., Bergman, E. A., Blümling, P., Brereton, N. R., Denham, D., Ding, J., Fuchs, K., Gay, N., Gregersen, S., Gupta, H. K., Gvishiani, A., Jacob, K., Klein, R., Knoll, P., Magee, M., Mercier, J. L., Müller, B. C., Paquin, C., Rajendran, K., Stephansson, O., Suarez, G., Suter, M., Udias, A., Xu, Z. H., and Zhizhin, M.: Global patterns of tectonic stress, Nature, 341, 291–298, https://doi.org/10.1038/341291a0, 1989.
Short summary
We assess the fault impact on the stress field in northern Switzerland using 3D geomechanical models, calibrated with stress data. We see that faults affect the stresses only locally, with negligible impact beyond 1 km, suggesting that faults may not be necessary in reservoir-scale models predicting stresses of undisturbed rock volumes, such as for a geological repository. Omitting them can substantially reduce model set-up time and computational cost without compromising prediction reliability.
We assess the fault impact on the stress field in northern Switzerland using 3D geomechanical...