Ding, Y., Weller, A., Zhang, Z., and Kassab, M.: Fractal dimension of pore space in carbonate samples from Tushka Area (Egypt), Arab. J. Geosci., 10, 388, https://doi.org/10.1007/s12517-017-3173-z, 2017.
Dubelaar, W. C. and Nijland, T. G.: The Bentheim Sandstone: geology, petrophysics, varieties and its use as dimension stone, in: Engineering Geology for Society and Territory, edited by: Lollino, G., Giordan, D., Marunteanu, C., Christaras, B., Yoshinori, I., and Margottini, C., Springer International Publishing, Switzerland, Vol. 8, 557–563, 2015.
Gaboreau, S., Robinet, J. C., Tournassat, C., and Savoye, S.: Diffuse transport in clay media: µm to nm scale characterization of pore space and mineral spatial organization: International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Montpellier, France, 2012.
Halisch, M., Schmitt, M., and Fernandes, C. P.: Pore Shapes and Pore Geometry of Reservoirs Rocks from
μ-CT Imaging and Digital Image Analysis, in: Proceedings of the Annual Symposium of the SCA 2016, Snowmass, Colorado, USA, 21–26 August 2016, SCA2016-093, 2016a.
Halisch, M., Steeb, H., Henkel, S., and Krawczyk, C. M.: Pore-scale tomography and imaging: applications, techniques and recommended practice, Solid Earth, 7, 1141–1143, https://doi.org/10.5194/se-7-1141-2016, 2016b.
Halisch, M., Gramenz, J., Gorling, L., Krause, K., and Bolotovski, I.: An internet based, interactive archive and database for SIP data, 4th International Workshop on Induced Polarization, Aarhus, Denmark, http://www.sip-archiv.de (last access: 1 November 2018), 2016c.
Halisch, M., Kruschwitz, S., Martin, T., and SIP-Archiv Entwickler-Team: Ein internetbasiertes Archiv- und Austauschsystem für Messdaten der Spektralen Induzierten Polarisation. Mitteilungen der Deutschen Geophysikalischen Gesellschaft e.V., 1/2017, ISSN 0934-6554, p. 31 ff., 2017.
Keating, K. and Knight, R.: A laboratory study of the effect of Fe(II)-bearing minerals on nuclear magnetic resonance (NMR) relaxation measurements, Geophysics, 75, F71–F82, 2010.
Keller, L. M., Holzer, L., Wepf, R., Gasser, P., Münch, B., and Marschall, P.: On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay, Phys. Chem. Earth, 36, 1539–1544, https://doi.org/10.1016/j.pce.2011.07.010, 2011.
Kelokaski, M., Siitari-Kauppi, M., Sardini, P., Mori, A., and Hellmuth, K. H.: Characterisation of pore space geometry by
14C-PMMA impregnation-development work for in situ studies, J. Geochem. Explor., 90, 45–52, https://doi.org/10.1016/j.gexplo.2005.09.005, 2005.
Kleinberg, R. L.: Utility of NMR
T2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter
ρ2, Magn. Reson. Imaging, 14, 761–767, 1996.
Klinkenberg, L. J.: The permeability of porous media to liquids and gases, API Drill and Production Practices, 200–213, 1941.
Leroy, P., Revil, A., Kemna, A., Cosenza, P., and Gorbani, A.: Spectral induced polarization of water-saturated packs of glass beads, J. Colloid Interf. Sci, 321, 103–117, https://doi.org/10.1016/j.jcis.2007.12.031, 2008.
Mandelbrot, B. B.: Fractals: form, chance, and dimension, Freeman, San Francisco, 1977.
Mancuso, C., Jommi, C., and D'Onza, F. (Eds.): Unsaturated Soils: Research and Applications, Vol. 1, Springer-Verlag, Berlin Heidelberg, 123–130, https://doi.org/10.1007/978-3-642-31116-1, 2012.
Mees, F., Swennen, R., van Geet, M., and Jacobs, P. (Eds.): Applications of X-ray computed tomography in the geosciences, Geol. Soc. Spec. Publ., 215, 1–6, https://doi.org/10.1144/GSL.SP.2003.215.01.01, 2003.
Müller-Huber, E., Börner, F., Börner, J. H., and Kulke, D.: Combined interpretation of NMR, MICP, and SIP measurements on mud-dominated and grain-dominated carbonate rocks, J. Appl. Geophys., 159, 228–240, https://doi.org/10.1016/j.jappgeo.2018.08.011, 2018.
Niu, Q. and Revil, A.: Connecting complex conductivity spectra to mercury porosimetry of sedimentary rocks, Geophysics, 81, E17–E32, https://doi.org/10.1190/GEO2015-0072.1, 2016.
Niu, Q. and Zhang, C.: Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials, Geophys. J. Int., 212, 1791–1805, https://doi.org/10.1093/gji/ggx501, 2017.
Nordsiek, S. and Weller, A.: A new approach to fitting induced-polarization spectra, Geophysics, 73, F235–F245, https://doi.org/10.1190/1.2987412, 2008.
Pape, H., Arnold, J., Pechnig, R., Clauser, C., Talnishnikh, E., Anferova, S., and Blümlich, B.: Permeability prediction for low porosity rocks by mobile NMR, Pure Appl. Geophys., 166, 1125–1163, 2009.
Peksa, A., Wolf, K., and Zitha, P.: Bentheimer sandstone revisited for experimental purposes, Mar. Petrol. Geol., 67, 701–719, https://doi.org/10.1016/j.marpetgeo.2015.06.001, 2015.
Peth, S., Horn, R., Beckmann, F., Donath, T., Fischer, J., and Smucker, A. J. M.: Three-dimensional quantification of intra-aggregate pore-space features using Synchrotron-Radiation-Based Microtomography, Soil Sci. Soc. Am. J., 72, 897–907, https://doi.org/10.2136/sssaj2007.0130, 2008.
Revil, A.: Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1 GHz, Water Resour. Res., 49, 306–327, https://doi.org/10.1029/2012WR012700, 2013.
Revil, A. and Florsch, N.: Determination of permeability from spectral-induced-polarization data in granular media, Geophys. J. Int., 181, 1480–1498, 2010.
Revil, A., Koch, K., and Holliger, K.: Is it the grain size or the characteristic pore size that controls the induced polarization relaxation time of clean sands and sandstones?, Water Resour. Res., 48, W05602, https://doi.org/10.1029/2011WR011561, 2012.
Revil, A., Florsch, N., and Camerlynck, C.: Spectral induced polarization porosimetry, Geophys. J. Int., 198, 1016–1033, https://doi.org/10.1093/gji/ggu180, 2014.
Rieckmann, M.: Untersuchung von Turbulenzerscheinungen beim Fließen von Gasen durch Speichergesteine unter Berücksichtigung der Gleitströmung, Erdöl-Erdgas-Zeitschrift, 6, 36–51, 1970.
Rizzo, R. E., Healy, D., and De Siena, L.: Benefits of maximum likelihood estimators for fracture attribute analysis: Implications for permeability and up-scaling, J. Struct. Geol., 95, 17–31, https://doi.org/10.1016/j.jsg.2016.12.005, 2017.
Robinson, J., Slater, L., Weller, A., Keating, K., Robinson, T., Rose, C., and Parker, B.: On permeability prediction from complex conductivity measurements using polarization magnitude and relaxation time, Water Resour. Res., 54, 3436–3452, https://doi.org/10.1002/2017WR022034, 2018.
Rouquerol, J., Avnir, D., Fairbridge, D. C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., and Unger, K. K.: Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem., 66, 1739–1758, 1994.
Schleifer, N., Weller, A., Schneider, S., and Junge, A.: Investigation of a Bronze Age plankway by spectral-induced-polarization, Archeological Prospection, 9, 243–253, https://doi.org/10.1002/arp.194, 2002.
Schmitt, M., Halisch, M., Müller, C., and Fernandes, C. P.: Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography, Solid Earth, 7, 285–300, https://doi.org/10.5194/se-7-285-2016, 2016.
Schwarz, G.: A theory of the low-frequency dielectric dispersion of colloidal particles in electrolyte solution, J. Phys. Chem., 66, 2636–2642, https://doi.org/10.1021/j100818a067, 1962.
Scott, J. B. T. and Barker, R. D.: Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy, Geophys. Res. Lett., 30, 1450, https://doi.org/10.1029/2003GL016951, 2003.
Silin, D. and Patzek, T.: Pore space morphology analysis using maximal inscribed spheres, Phys. A, 371, 336–360, https://doi.org/10.1016/j.physa.2006.04.048, 2006.
Slater, L. and Lesmes, D. P.: Electric-hydraulic relationships observed for unconsolidated sediments, Water Resour. Res., 38, 31-1–31-13, https://doi.org/10.1029/2001WR001075, 2002.
Terasov, A. and Titov, K.: Relaxation time distribution from time domain induced polarization measurements, Geophys. J. Int., 170, 31–43, https://doi.org/10.1111/j.1365-246X.2007.03376.x, 2007.
Thomeer, J. H. M.: Introduction of a pore geometrical factor defined by the capillary pressure curve, J. Petrol. Technol., 12, 73–77, 1960.
Washburn, E. W.: The dynamics of capillary flow, Phys. Rev., 17, 273–283, 1921.
Weigand, M. and Kemna, A.: Debye decomposition of time-lapse spectral-induced-polarization data, Comput. Geosci., 86, 34–45, https://doi.org/10.1016/j.cageo.2015.09.021, 2016.
Weller, A., Nordsiek, S., and Debschütz, W.: Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization, Geophysics, 75, E215–E226, https://doi.org/10.1190/1.3507304, 2010.
Weller, A., Slater, L., Binley, A., Nordsiek, S., and Xu, S.: Permeability prediction based on induced polarization: Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range, Geophysics, 80, D161–D173, https://doi.org/10.1190/GEO2014-0368.1, 2015.
Weller, A., Zhang, Z., Slater, L., Kruschwitz, S., and Halisch, M.: Induced polarization and pore radius – a discussion, Geophysics, 81, 519–526, https://doi.org/10.1190/GEO2016-0135.1, 2016.
Zhang, Z. and Weller, A.: Fractal dimension of pore space geometry of an Eocene sandstone formation, Geophysics, 79, D377–D387, https://doi.org/10.1190/GEO2014-0143.1, 2014.
Zimmermann, E., Kemna, A., Berwix, J., Glaas, W., and Vereecken, H.: EIT measurement system with high phase accuracy for the imaging of spectral induced polarization properties of soils and sediments, Meas. Sci. Technol., 19, 094010, https://doi.org/10.1088/0957-0233/19/9/094010, 2008.