Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-1877-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1877-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydraulic fracture propagation in a heterogeneous stress field in a crystalline rock mass
Center for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
Benoît Valley
Center for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
Valentin Gischig
CSD Engineers, Bern, Switzerland
Linus Villiger
Department of Earth Science, ETH Zurich, Zurich, Switzerland
Hannes Krietsch
Department of Earth Science, ETH Zurich, Zurich, Switzerland
Joseph Doetsch
Department of Earth Science, ETH Zurich, Zurich, Switzerland
Bernard Brixel
Department of Earth Science, ETH Zurich, Zurich, Switzerland
Mohammadreza Jalali
Department of Engineering Geology and Hydrogeology, RWTH Aachen, Aachen, Germany
Florian Amann
Department of Engineering Geology and Hydrogeology, RWTH Aachen, Aachen, Germany
Related authors
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Peter Achtziger-Zupančič, Alberto Ceccato, Alba Simona Zappone, Giacomo Pozzi, Alexis Shakas, Florian Amann, Whitney Maria Behr, Daniel Escallon Botero, Domenico Giardini, Marian Hertrich, Mohammadreza Jalali, Xiaodong Ma, Men-Andrin Meier, Julian Osten, Stefan Wiemer, and Massimo Cocco
Solid Earth, 15, 1087–1112, https://doi.org/10.5194/se-15-1087-2024, https://doi.org/10.5194/se-15-1087-2024, 2024
Short summary
Short summary
We detail the selection and characterization of a fault zone for earthquake experiments in the Fault Activation and Earthquake Ruptures (FEAR) project at the Bedretto Lab. FEAR, which studies earthquake processes, overcame data collection challenges near faults. The fault zone in Rotondo granite was selected based on geometry, monitorability, and hydro-mechanical properties. Remote sensing, borehole logging, and geological mapping were used to create a 3D model for precise monitoring.
Lisa Maria Ringel, Mohammadreza Jalali, and Peter Bayer
Hydrol. Earth Syst. Sci., 26, 6443–6455, https://doi.org/10.5194/hess-26-6443-2022, https://doi.org/10.5194/hess-26-6443-2022, 2022
Short summary
Short summary
Fractured rocks host a class of aquifers that serve as major freshwater resources worldwide. This work is dedicated to resolving the three-dimensional hydraulic and structural properties of fractured rock. For this purpose, hydraulic tomography experiments at the Grimsel Test Site in Switzerland are utilized, and the discrete fracture network is inverted. The comparison of the inversion results with independent findings from other studies demonstrates the validity of the approach.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Xiaodong Ma, Marian Hertrich, Florian Amann, Kai Bröker, Nima Gholizadeh Doonechaly, Valentin Gischig, Rebecca Hochreutener, Philipp Kästli, Hannes Krietsch, Michèle Marti, Barbara Nägeli, Morteza Nejati, Anne Obermann, Katrin Plenkers, Antonio P. Rinaldi, Alexis Shakas, Linus Villiger, Quinn Wenning, Alba Zappone, Falko Bethmann, Raymi Castilla, Francisco Seberto, Peter Meier, Thomas Driesner, Simon Loew, Hansruedi Maurer, Martin O. Saar, Stefan Wiemer, and Domenico Giardini
Solid Earth, 13, 301–322, https://doi.org/10.5194/se-13-301-2022, https://doi.org/10.5194/se-13-301-2022, 2022
Short summary
Short summary
Questions on issues such as anthropogenic earthquakes and deep geothermal energy developments require a better understanding of the fractured rock. Experiments conducted at reduced scales but with higher-resolution observations can shed some light. To this end, the BedrettoLab was recently established in an existing tunnel in Ticino, Switzerland, with preliminary efforts to characterize realistic rock mass behavior at the hectometer scale.
Lisa Winhausen, Mohammadreza Jalali, and Florian Amann
Saf. Nucl. Waste Disposal, 1, 301–301, https://doi.org/10.5194/sand-1-301-2021, https://doi.org/10.5194/sand-1-301-2021, 2021
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Peter-Lasse Giertzuch, Joseph Doetsch, Alexis Shakas, Mohammadreza Jalali, Bernard Brixel, and Hansruedi Maurer
Solid Earth, 12, 1497–1513, https://doi.org/10.5194/se-12-1497-2021, https://doi.org/10.5194/se-12-1497-2021, 2021
Short summary
Short summary
Two time-lapse borehole ground penetrating radar (GPR) surveys were conducted during saline tracer experiments in weakly fractured crystalline rock with sub-millimeter fractures apertures, targeting electrical conductivity changes. The combination of time-lapse reflection and transmission GPR surveys from different boreholes allowed monitoring the tracer flow and reconstructing the flow path and its temporal evolution in 3D and provided a realistic visualization of the hydrological processes.
Hannes Krietsch, Valentin S. Gischig, Joseph Doetsch, Keith F. Evans, Linus Villiger, Mohammadreza Jalali, Benoît Valley, Simon Löw, and Florian Amann
Solid Earth, 11, 1699–1729, https://doi.org/10.5194/se-11-1699-2020, https://doi.org/10.5194/se-11-1699-2020, 2020
Joseph Doetsch, Hannes Krietsch, Cedric Schmelzbach, Mohammadreza Jalali, Valentin Gischig, Linus Villiger, Florian Amann, and Hansruedi Maurer
Solid Earth, 11, 1441–1455, https://doi.org/10.5194/se-11-1441-2020, https://doi.org/10.5194/se-11-1441-2020, 2020
Linus Villiger, Valentin Samuel Gischig, Joseph Doetsch, Hannes Krietsch, Nathan Oliver Dutler, Mohammadreza Jalali, Benoît Valley, Paul Antony Selvadurai, Arnaud Mignan, Katrin Plenkers, Domenico Giardini, Florian Amann, and Stefan Wiemer
Solid Earth, 11, 627–655, https://doi.org/10.5194/se-11-627-2020, https://doi.org/10.5194/se-11-627-2020, 2020
Short summary
Short summary
Hydraulic stimulation summarizes fracture initiation and reactivation due to high-pressure fluid injection. Several borehole intervals covering intact rock and pre-existing fractures were targets for high-pressure fluid injections within a decameter-scale, crystalline rock volume. The observed induced seismicity strongly depends on the target geology. In addition, the severity of the induced seismicity per experiment counter correlates with the observed transmissivity enhancement.
Donald W. Vasco, Joseph Doetsch, and Ralf Brauchler
Hydrol. Earth Syst. Sci., 23, 4541–4560, https://doi.org/10.5194/hess-23-4541-2019, https://doi.org/10.5194/hess-23-4541-2019, 2019
Short summary
Short summary
This paper presents the application of a new approach for calculating the path of a pressure transient in a heterogeneous porous medium containing a slightly compressible fluid. Unlike previous asymptotic approaches, the expressions for the path and travel time are valid in the presence of rapid variations in material properties. The technique is applied to both synthetic transient pressure variations from a test example and actual field data from a field experiment in Widen, Switzerland.
Jérôme Azzola, Benoît Valley, Jean Schmittbuhl, and Albert Genter
Solid Earth, 10, 1155–1180, https://doi.org/10.5194/se-10-1155-2019, https://doi.org/10.5194/se-10-1155-2019, 2019
Short summary
Short summary
In projects based on enhanced geothermal system (EGS) technology, knowledge of the in situ stress state is of central importance to predict the response of the rock mass to different stimulation programs. We propose a characterization of the in situ stress state from the analysis of ultrasonic borehole imager (UBI) data acquired at different key moments of the reservoir. We discuss a significant stress rotation at depth and the absence of a significant change in the stress magnitude.
Florian Amann, Valentin Gischig, Keith Evans, Joseph Doetsch, Reza Jalali, Benoît Valley, Hannes Krietsch, Nathan Dutler, Linus Villiger, Bernard Brixel, Maria Klepikova, Anniina Kittilä, Claudio Madonna, Stefan Wiemer, Martin O. Saar, Simon Loew, Thomas Driesner, Hansruedi Maurer, and Domenico Giardini
Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, https://doi.org/10.5194/se-9-115-2018, 2018
Valentin Samuel Gischig, Joseph Doetsch, Hansruedi Maurer, Hannes Krietsch, Florian Amann, Keith Frederick Evans, Morteza Nejati, Mohammadreza Jalali, Benoît Valley, Anne Christine Obermann, Stefan Wiemer, and Domenico Giardini
Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, https://doi.org/10.5194/se-9-39-2018, 2018
Katrin M. Wild, Patric Walter, and Florian Amann
Solid Earth, 8, 351–360, https://doi.org/10.5194/se-8-351-2017, https://doi.org/10.5194/se-8-351-2017, 2017
Cited articles
Amadei, B. and Stephansson, O.: Rock Stress and Its Measurements, Springer
International Publishing AG, ISBN 978-94-011-5346-1, 1997. a
Amann, F., Gischig, V., Evans, K., Doetsch, J., Jalali, R., Valley, B., Krietsch, H., Dutler, N., Villiger, L., Brixel, B., Klepikova, M., Kittilä, A., Madonna, C., Wiemer, S., Saar, M. O., Loew, S., Driesner, T., Maurer, H., and Giardini, D.: The seismo-hydromechanical behavior during deep geothermal reservoir stimulations: open questions tackled in a decameter-scale in situ stimulation experiment, Solid Earth, 9, 115–137, https://doi.org/10.5194/se-9-115-2018, 2018. a
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially
active faults in crystalline rock, Geology, 23, 683–686, 1995. a
Brown, D. W., Duchane, D. V., Heiken, G., Hriscu, V. T., and Kron, A.: Mining
the earth's heat: Hot dry rock geothermal energy, Springer,
https://doi.org/10.1007/978-3-540-68910-2, 2012. a, b
Bunger, A. and Lecampion, B.: Four Critical Issues for Successful Hydraulic
Fracturing Applications, Rock Mechanics and Engineering, Vol. 5, chap. 16, CRC Press, Balkema, 2017. a
Doetsch, J., Gischig, V., Krietsch, H., Villiger, L., Amann, F., Dutler, N.,
Jalali, R., Brixel, B., Giertzuch, P., Maurer, H., Wiemer, S., Loew, S.,
Saar, M., and Giardini, D.: Grimsel ISC Experiment Description, Tech. Rep.
December, SCCER-SoE, ETH Zurich, Zurich, https://doi.org/10.3929/ethz-b-000310581, 2018a. a, b
Doetsch, J., Gischig, V., Villiger, L., Krietsch, H., Nejati, M., Amann, F.,
Jalali, M., Madonna, C., Maurer, H., Wiemer, S., Driesner, T., and Giardini,
D.: Subsurface fluid pressure and rock deformation monitoring using seismic
velocity observations, Geophys. Res. Lett., 45, 10389–10397,
https://doi.org/10.1029/2018GL079009, 2018b. a
Dresen, G., Renner, J., Bohnhoff, M., Konietzky, H., Kwiatek, G., Plenkers, K.,
Klee, G., and Backers, T.: STIMTEC – a mine-back experiment in the Reiche
Zeche underground, Geophys. Res. Abstr.,
EGU2019-9357, EGU General Assembly 2019, Vienna, Austria, 2019. a
Dutler, N., Nejati, M., Valley, B., Amann, F., and Molinari, G.: On the link
between fracture toughness, tensile strength, and fracture process zone in
anisotropic rocks, Eng. Fract. Mech., 201, 56–79,
https://doi.org/10.1016/j.engfracmech.2018.08.017, 2018. a, b
Dutler, N., Gischig, V., Doetsch, J., Jalali, M., Krietsch, H., and Amann, F.: Hydro mechanical data set from the six Grimsel ISC hydraulic fracturing experiments, https://doi.org/10.3929/ethz-b-000328270, 2019. a
Economides, M. and Nolte, K.: Reservoir Stimulation, May, Wiley, Chichester,
https://doi.org/10.1017/CBO9781107415324.004, 2000. a, b
Ellsworth, W. L.: Injection-Induced Earthquakes, Science, 341, 1225942,
https://doi.org/10.1126/science.1225942, 2013. a
Evans, K. F. and Meier, P. M.: Hydrojacking and hydrofracturing tests in a fissile schist in South-west Switzerland: In-situ stress characterisation in difficult rock, edited by: Rossmanith, H. P., Proc. 2nd Int. Conf. on the Mechanics of Jointed and Faulted Rock, Vienna, 1995. a
Evans, K. F., Moriya, H., Niitsuma, H., Jones, R. H., Phillips, W. S., Genter,
A., Sausse, J., Jung, R., and Baria, R.: Microseismicity and permeability
enhancement of hydrogeologic structures during massive fluid injections into
granite at 3 km depth at the Soultz HDR site, Geophys. J.
Int., 160, 388–412, https://doi.org/10.1111/j.1365-246X.2004.02474.x, 2005. a, b
Evans, K. F., Zappone, A., Kraft, T., Deichmann, N., and Moia, F.: A survey of
the induced seismic responses to fluid injection in geothermal and CO2
reservoirs in Europe, Geothermics, 41, 30–54,
https://doi.org/10.1016/j.geothermics.2011.08.002, 2012. a
Evans, K. F., Wieland, U., Wiemer, S., and Giardini, D.: Deep Geothermal
Energy R&D Roadmap for Switzerland, 2014, Tech. rep., Swiss Competence
Center for Energy Research – Supply of Electricity, https://doi.org/10.3390/en7074397,
2014. a
Gischig, V. S., Doetsch, J., Maurer, H., Krietsch, H., Amann, F., Evans, K. F., Nejati, M., Jalali, M., Valley, B., Obermann, A. C., Wiemer, S., and Giardini, D.: On the link between stress field and small-scale hydraulic fracture growth in anisotropic rock derived from microseismicity, Solid Earth, 9, 39–61, https://doi.org/10.5194/se-9-39-2018, 2018 (data available at: https://doi.org/10.3929/ethz-b-000217536). a, b, c
Haimson, B. C. and Cornet, F. H.: ISRM suggested methods for rock stress
estimation part 3: Hydraulic fracturing (HF) and/or hydraulic testing of
pre-existing fractures (HTPF), Int. J. Rock Mech.
Min., 40, 1011–1020, https://doi.org/10.1016/j.ijrmms.2003.08.002, 2003. a, b
Häring, M. O., Schanz, U., Ladner, F., and Dyer, B. C.: Characterisation
of the Basel 1 enhanced geothermal system, Geothermics, 37, 469–495,
https://doi.org/10.1016/j.geothermics.2008.06.002, 2008. a
Hertrich, M. and Maurer, H.: Understanding Deep Geothermal Reservoirs: A journey from laboratory-scale experiments to investigations at realistic scales, Newsletter of the NEAR-SURFACE GEOPHYSICS Technical Section of The Society of Exploration Geophysicists, 26, Q1, available at: https://seg.org/Portals/0/SEG/News and Resources/Near Surface/Near Surface Newsletter/2011-present/2019_Q1.pdf (last access: 31 October 2019), 2019. a
Jacob, C. E. and Lohman, S. W.: Nonsteady flow to a well of constant drawdown
in an extensive aquifer, EOS T. Am. Geophys. Un., 33, 559,
https://doi.org/10.1029/TR033i004p00559, 1952. a
Jalali, M., Gischig, V., Doetsch, J., Näf, R., Krietsch, H., Klepikova,
M., Amann, F., and Giardini, D.: Transmissivity Changes and Microseismicity
Induced by Small-scale Hydraulic Fracturing Tests in Crystalline Rock,
Geophys. Res. Lett., 45, 2265–2273, https://doi.org/10.1002/2017GL076781,
2018a. a
Jeffrey, R. G., Bunger, A., Lecampion, B., Zhang, X., Chen, Z., van As, A.,
Allison, D., de Beer, W., Dudley, J., Siebrits, E., Thiercelin, M., and
Mainguy, M.: Measuring Hydraulic Fracture Growth in Naturally Fractured
Rock, SPE Annual Technical Conference and Exhibition, 4–7 October 2009, New Orleans, Louisiana, 1–19,
https://doi.org/10.2118/124919-MS, 2009. a, b
Jeffrey, R. G., Chen, Z., Mills, K., and Pegg, S.: Monitoring and Measuring
Hydraulic Fracturing Growth During Preconditioning of a Roof Rock over a Coal
Longwall Panel, in: Effective and Sustainable Hydraulic Fracturing, InTech, Vol. 45,
893–914, https://doi.org/10.5772/56325, 2013. a
Keusen, H. R., Ganguin, J., Schuler, P., and Buletti, M.: Geologie, Tech.
Rep. NTB87-14, Nagra, Wettingen, 1989. a
Kneafsey, T., Dobson, P., Ajo-Franklin, J., Valladao, C., Blankenship, D.,
Knox, H., Schwering, P., Morris, J., Smith, M., White, M., Johnson, T.,
Podgorney, R., Mattson, E., Neupane, G., Roggenthen, W., and Doe, T.: The
EGS Collab Project: Stimulation and Simulation, ARMA2018–1345,
American Rock Mechanics Association, Seattle, 2018. a
Krietsch, H., Doetsch, J., Dutler, N., Jalali, M., Gischig, V., Loew, S., and
Amann, F.: Comprehensive geological dataset describing a crystalline rock
mass for hydraulic stimulation experiments, Scientific Data, 5, 180269,
https://doi.org/10.1038/sdata.2018.269, 2018. a
Krietsch, H., Löw, S., Gischig, V., Amann, F., and Renner, J.: Hydro-Mechanical Responses of a Fractured Rock Mass during Decameter-Scale Hydraulic Stimulation Experiments, ETH Zürich, https://doi.org/10.3929/ethz-b-000372209,
2019. a, b, c
Krietsch, H., Gischig, V., Evans, K., Doetsch, J., Dutler, N. O., Valley, B.,
and Amann, F.: Stress Measurements for an In Situ Stimulation Experiment in
Crystalline Rock: Integration of Induced Seismicity, Stress Relief and
Hydraulic Methods, Rock Mech. Rock Eng., 52, 517–542,
https://doi.org/10.1007/s00603-018-1597-8, 2019b. a, b, c, d
Lister, J. R. and Kerr, R. C.: Fluid-mechanical models of crack propagation
and their application to magma transport in dykes, J. Geophys.
Res., 96, 10049, https://doi.org/10.1029/91JB00600, 1991. a
López-Comino, J. A., Cesca, S., Heimann, S., Grigoli, F., Milkereit, C.,
Dahm, T., and Zang, A.: Characterization of Hydraulic Fractures Growth
During the Äspö Hard Rock Laboratory Experiment (Sweden), Rock
Mech. Rock Eng., 50, 2985–3001, https://doi.org/10.1007/s00603-017-1285-0,
2017. a
Louis, C., Dessenne, J., and Feuga, B.: Interaction between water flow
phenomena and themechanical behavior of soil or rock masses, in: Finite
Elements in Geomechanics, edited by: Gudehus, G., 479–511, John Wiley
& Sons, New York, 1977. a
Majer, E. L. and Doe, T. W.: Studying hydrofractures by high frequency seismic
monitoring, Int. J. Rock Mech. Min.,
23, 185–199, https://doi.org/10.1016/0148-9062(86)90965-4, 1986. a
Manning, C. E. and Ingebritsen, S. E.: Permeability Implications of the
Continental of Geothermal Data Crust and Metamorphic Systems, Rev.
Geophys., 37, 127–150, 1999. a
Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., and Dresen, G.:
Stress tensor changes related to fluid injection at the Geysers geothermal
field, California, Geophys. Res. Lett., 40, 2596–2601,
https://doi.org/10.1002/grl.50438, 2013. a
Maxwell, S., Rutledge, J., Jones, R., and Fehler, M.: Petroleum reservoir
characterization using downhole microseismic monitoring, Geophysics, 75,
75A129–75A137, https://doi.org/10.1190/1.3477966, 2010. a
McClure, M. W. and Horne, R. N.: An investigation of stimulation mechanisms in
Enhanced Geothermal Systems, Int. J. Rock Mech.
Min., 72, 242–260, https://doi.org/10.1016/j.ijrmms.2014.07.011, 2014. a, b
McGarr, A.: Maximum magnitude earthquakes induced by fluid injection, J. Geophys. Res.-Sol. Ea., 119, 1008–1019, https://doi.org/10.1002/2013JB010597, 2014. a
Meier, P. M., Rodríguez, A., and Bethmann, F.: Lessons Learned from
Basel: New EGS Projects in Switzerland Using Multistage Stimulation and a
Probabilistic Traffic Light System for the Reduction of Seismic Risk,
Proceedings World Geothermal Congress, 19–25, available at:
https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/31023.pdf (last access: 31 October 2019),
2015. a
Niitsuma, H., Fehler, M., Jones, R., Wilson, S., Albright, J., Green, A.,
Baria, R., Hayashi, K., Kaieda, H., Tezuka, K., Jupe, A., Wallroth, T.,
Cornet, F., Asanuma, H., Moriya, H., Nagano, K., Phillips, W. S., Rutledge,
J., House, L., Beauce, A., Alde, D., and Aster, R.: Current status of
seismic and borehole measurements for HDR/HWR development, Geothermics, 28,
475–490, https://doi.org/10.1016/S0375-6505(99)00024-3, 1999. a
Nolen-Hoeksema, R. C. and Ruff, L. J.: Moment tensor inversion of microseisms
from the B-sand propped hydrofracture, M-site, Colorado, Tectonophysics,
336, 163–181, https://doi.org/10.1016/S0040-1951(01)00100-7, 2001. a
Roberts, R.: nSIGHTS Version 2.41a User Manual, available at: https://github.com/nsights/nSIGHTS/blob/master/documents/nSIGHTS_Users_Manual_V2.41a.pdf, (last access: 31 October 2019) 2006. a
Rubin, A. M.: Propagation of Magma-Filled Cracks, Annu. Rev. Earth
Pl. Sc., 23, 287–336, https://doi.org/10.1146/annurev.ea.23.050195.001443,
1995. a
Rutledge, J. T., Phillips, W., and Mayerhofer, M.: Faulting Induced by Forced
Fluid Injection and Fluid Flow Forced by Faulting: An Interpretation of
Hydraulic-Fracture Microseismicity, Carthage Cotton Valley Gas Field, Texas,
B. Seismol. Soc. Am., 94, 1817–1830,
https://doi.org/10.1785/012003257, 2004. a, b
Rutqvist, J.: Determination of hydraulic normal stiffness of fractures in hard
rock from well testing, Int. J. Rock Mech. Min., 32, 513–523, https://doi.org/10.1016/0148-9062(95)00039-J, 1995. a
Rutqvist, J. and Stephansson, O.: A cyclic hydraulic jacking test to determine
the in situ stress normal to a fracture, Int. J. Rock
Mech. Min., 33, 695–711,
https://doi.org/10.1016/0148-9062(96)00013-7, 1996. a
Rutqvist, J. and Stephansson, O.: The role of hydromechanical coupling in
fractured rock engineering, Hydrogeol. J., 11, 7–40,
https://doi.org/10.1007/s10040-002-0241-5, 2003. a
Rutqvist, J., Noorishad, J., Tsang, C.-F., and Stephansson, O.: Determination
of fracture storativity in hard rocks using high-pressure injection testing,
Water Resour. Res., 34, 2551–2560, 1998. a
Spence, D. A. and Sharp, P.: Self-similar solutions for elastodynamic cavity
flow, Proc. R. Soc. Lon. Ser.-A, 400, 289–313, 1985. a
van As, A. and Jeffrey, R. G.: Caving Induced by Hydraulic Fracturing at
Northparkes Mines, Pacific Rocks, 2000, 353–360, 2000. a
Villiger, L., Gischig, V. S., Doetsch, J., Krietsch, H., Dutler, N. O., Jalali, M., Valley, B., Selvadurai, P. A., Mignan, A., Plenkers, K., Giardini, D., Amann, F., and Wiemer, S.: Influence of reservoir geology on seismic response during decameter scale hydraulic stimulations in crystalline rock, Solid Earth Discuss., https://doi.org/10.5194/se-2019-159, in review, 2019. a, b, c, d
Warpinski, N. R. and Branagan, P. T.: Altered-Stress Fracturing, J.
Petrol. Technol., SPE-17533-PA, 41, 990–997, https://doi.org/10.2118/17533-PA,
1989.
a
Warpinski, N. R., Mayerhofer, M. J., and Agarwal, K.: Hydraulic Fracture
Geomechanics and Microseismic Source Mechanisms, SPE J., 18, 766–780,
https://doi.org/10.2118/158935-PA, 2013. a, b
Warren, W. E. and Smith, C. W.: In situ stress estimates from hydraulic
fracturing and direct observation of crack orientation, J.
Geophys. Res., 90, 6829, https://doi.org/10.1029/JB090iB08p06829, 1985. a
Wenning, Q. C., Madonna, C., de Haller, A., and Burg, J.-P.: Permeability and seismic velocity anisotropy across a ductile–brittle fault zone in crystalline rock, Solid Earth, 9, 683–698, https://doi.org/10.5194/se-9-683-2018, 2018. a
Zang, A., Stephansson, O., Stenberg, L., Plenkers, K., Specht, S., Milkereit,
C., Schill, E., Kwiatek, G., Dresen, G., Zimmermann, G., Dahm, T., and Weber,
M.: Hydraulic fracture monitoring in hard rock at 410 m depth with an
advanced fluid-injection protocol and extensive sensor array, Geophys.
J. Int., 208, 790–813, https://doi.org/10.1093/gji/ggw430, 2016. a
Zimmermann, G., Zang, A., Stephansson, O., Klee, G., and Semiková, H.:
Permeability Enhancement and Fracture Development of Hydraulic In Situ
Experiments in the Äspö Hard Rock Laboratory, Sweden, Rock
Mech. Rock Eng., 52, 495–515,
https://doi.org/10.1007/s00603-018-1499-9, 2019. a
Short summary
In this study, we present seismo-hydromechanical results from six hydraulic fracturing experiments executed in the framework of the In-situ Stimulation and Circulation (ISC) project. The well-characterized and extensively monitored target rock allows for the study of (1) the response of the rock mass, (2) the injection and pore pressure response, and (3) the geometry of newly created fractures and their interaction with the natural fracture network.
In this study, we present seismo-hydromechanical results from six hydraulic fracturing...