Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-193-2019
https://doi.org/10.5194/se-10-193-2019
Research article
 | 
25 Jan 2019
Research article |  | 25 Jan 2019

Integration of geoscientific uncertainty into geophysical inversion by means of local gradient regularization

Jeremie Giraud, Mark Lindsay, Vitaliy Ogarko, Mark Jessell, Roland Martin, and Evren Pakyuz-Charrier

Related authors

Integration of automatic implicit geological modelling in deterministic geophysical inversion
Jérémie Giraud, Guillaume Caumon, Lachlan Grose, Vitaliy Ogarko, and Paul Cupillard
Solid Earth, 15, 63–89, https://doi.org/10.5194/se-15-63-2024,https://doi.org/10.5194/se-15-63-2024, 2024
Short summary
Tomofast-x 2.0: an open-source parallel code for inversion of potential field data, to recover density, susceptibility and magnetisation vector, with topography and wavelet compression
Vitaliy Ogarko, Kim Frankcombe, Taige Liu, Jeremie Giraud, Roland Martin, and Mark Jessell
EGUsphere, https://doi.org/10.5194/egusphere-2023-2243,https://doi.org/10.5194/egusphere-2023-2243, 2023
Short summary
Utilisation of probabilistic magnetotelluric modelling to constrain magnetic data inversion: proof-of-concept and field application
Jérémie Giraud, Hoël Seillé, Mark D. Lindsay, Gerhard Visser, Vitaliy Ogarko, and Mark W. Jessell
Solid Earth, 14, 43–68, https://doi.org/10.5194/se-14-43-2023,https://doi.org/10.5194/se-14-43-2023, 2023
Short summary
loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022,https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Blockworlds 0.1.0: a demonstration of anti-aliased geophysics for probabilistic inversions of implicit and kinematic geological models
Richard Scalzo, Mark Lindsay, Mark Jessell, Guillaume Pirot, Jeremie Giraud, Edward Cripps, and Sally Cripps
Geosci. Model Dev., 15, 3641–3662, https://doi.org/10.5194/gmd-15-3641-2022,https://doi.org/10.5194/gmd-15-3641-2022, 2022
Short summary

Related subject area

Subject area: Crustal structure and composition | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Sequential inversion of GOCE satellite gravity gradient data and terrestrial gravity data for the lithospheric density structure in the North China Craton
Yu Tian and Yong Wang
Solid Earth, 11, 1121–1144, https://doi.org/10.5194/se-11-1121-2020,https://doi.org/10.5194/se-11-1121-2020, 2020
Short summary
Towards plausible lithological classification from geophysical inversion: honouring geological principles in subsurface imaging
Jérémie Giraud, Mark Lindsay, Mark Jessell, and Vitaliy Ogarko
Solid Earth, 11, 419–436, https://doi.org/10.5194/se-11-419-2020,https://doi.org/10.5194/se-11-419-2020, 2020
Short summary
Topological analysis in Monte Carlo simulation for uncertainty propagation
Evren Pakyuz-Charrier, Mark Jessell, Jérémie Giraud, Mark Lindsay, and Vitaliy Ogarko
Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019,https://doi.org/10.5194/se-10-1663-2019, 2019
Short summary
Joint analysis of the magnetic field and total gradient intensity in central Europe
Maurizio Milano, Maurizio Fedi, and J. Derek Fairhead
Solid Earth, 10, 697–712, https://doi.org/10.5194/se-10-697-2019,https://doi.org/10.5194/se-10-697-2019, 2019
Short summary

Cited articles

Abtahi, S. M., Pedersen, L. B., Kamm, J., and Kalscheuer, T.: Case History Extracting geoelectrical maps from vintage very-low-frequency airborne data, tipper inversion, and interpretation: A case study from northern Sweden, Geophysics, 81, B135–B147, https://doi.org/10.1190/geo2015-0296.1, 2016. 
Abubakar, A., Gao, G., Habashy, T. M., and Liu, J.: Joint inversion approaches for geophysical electromagnetic and elastic full-waveform data, Inverse Probl., 28, 055016, https://doi.org/10.1088/0266-5611/28/5/055016, 2012. 
Allmendinger, R. W., Siron, C. R., and Scott, C. P.: Structural data collection with mobile devices: Accuracy, redundancy, and best practices, J. Struct. Geol., 102, 98–112, https://doi.org/10.1016/j.jsg.2017.07.011, 2017. 
Brown, V., Key, K., and Singh, S.: Seismically regularized controlled-source electromagnetic inversion, Geophysics, 77, E57–E65, https://doi.org/10.1190/geo2011-0081.1, 2012. 
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth Planet. Inter., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008. 
Download
Short summary
We propose the quantitative integration of geology and geophysics in an algorithm integrating the probability of observation of rocks with gravity data to improve subsurface imaging. This allows geophysical modelling to adjust models preferentially in the least certain areas while honouring geological information and geophysical data. We validate our algorithm using an idealized case and apply it to the Yerrida Basin (Australia), where we can recover the geometry of buried greenstone belts.