Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-1971-2019
https://doi.org/10.5194/se-10-1971-2019
Research article
 | 
15 Nov 2019
Research article |  | 15 Nov 2019

The imprints of contemporary mass redistribution on local sea level and vertical land motion observations

Thomas Frederikse, Felix W. Landerer, and Lambert Caron

Related authors

ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020,https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Sea-level fingerprints emergent from GRACE mission data
Surendra Adhikari, Erik R. Ivins, Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019,https://doi.org/10.5194/essd-11-629-2019, 2019
Short summary
Multi-decadal variability in seasonal mean sea level along the North Sea coast
Thomas Frederikse and Theo Gerkema
Ocean Sci., 14, 1491–1501, https://doi.org/10.5194/os-14-1491-2018,https://doi.org/10.5194/os-14-1491-2018, 2018
The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018,https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018,https://doi.org/10.5194/os-14-187-2018, 2018
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Gravity inversion method using L0-norm constraint with auto-adaptive regularization and combined stopping criteria
Mesay Geletu Gebre and Elias Lewi
Solid Earth, 14, 101–117, https://doi.org/10.5194/se-14-101-2023,https://doi.org/10.5194/se-14-101-2023, 2023
Short summary
Common-mode signals and vertical velocities in the greater Alpine area from GNSS data
Francesco Pintori, Enrico Serpelloni, and Adriano Gualandi
Solid Earth, 13, 1541–1567, https://doi.org/10.5194/se-13-1541-2022,https://doi.org/10.5194/se-13-1541-2022, 2022
Short summary
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021,https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Estimating ocean tide loading displacements with GPS and GLONASS
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020,https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany
Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 10, 599–619, https://doi.org/10.5194/se-10-599-2019,https://doi.org/10.5194/se-10-599-2019, 2019
Short summary

Cited articles

Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.: The Land Ice Contribution to Sea Level during the Satellite Era, Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018. a, b
Blewitt, G., Kreemer, C., Hammond, W. C., and Gazeaux, J.: MIDAS Robust Trend Estimator for Accurate GPS Station Velocities without Step Detection, J. Geophys. Res.-Sol. Ea., 121, 2054–2068, https://doi.org/10.1002/2015JB012552, 2016. a
Blewitt, G., Hammond, W., and Kreemer, C.: Harnessing the GPS Data Explosion for Interdisciplinary Science, Eos, 99, https://doi.org/10.1029/2018EO104623, 2018. a
Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S., and Fasullo, J.: The 2011 La Niña: So Strong, the Oceans Fell, Geophys. Res. Lett., 39, L19602, https://doi.org/10.1029/2012GL053055, 2012. a, b
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast Error Analysis of Continuous GNSS Observations with Missing Data, J. Geodesy, 87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2013 (data available at: http://segal.ubi.pt/hector/ (last access: 25 July 2019). a, b
Download
Short summary
Due to ice sheets and glaciers losing mass, and because continents get wetter and drier, a lot of water is redistributed over the Earth's surface. The Earth is not completely rigid but deforms under these changes in the load on top. This deformation affects sea-level observations. With the GRACE satellite mission, we can measure this redistribution of water, and we compute the resulting deformation. We use this computed deformation to improve the accuracy of sea-level observations.