Articles | Volume 10, issue 3
https://doi.org/10.5194/se-10-599-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-599-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Gerald Gabriel
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Adelheid Weise
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Detlef Vogel
Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hanover, Germany
Related authors
No articles found.
Sarah Beraus, Thomas Burschil, Hermann Buness, Daniel Köhn, Thomas Bohlen, and Gerald Gabriel
Sci. Dril., 33, 237–248, https://doi.org/10.5194/sd-33-237-2024, https://doi.org/10.5194/sd-33-237-2024, 2024
Short summary
Short summary
We conducted seismic crosshole experiments with a sparker source in order to obtain a high-resolution subsurface velocity model in the glacially overdeepened Tannwald Basin (ICDP site 5068_1). The data show complex wave fields that contain a lot of information but also present challenges. Nevertheless, isotropic first-arrival travel-time tomography provides the first high-resolution subsurface models that correlate well with the sonic logs and the core recovered from one of the three boreholes.
Sonja H. Wadas, Hermann Buness, Raphael Rochlitz, Peter Skiba, Thomas Günther, Michael Grinat, David C. Tanner, Ulrich Polom, Gerald Gabriel, and Charlotte M. Krawczyk
Solid Earth, 13, 1673–1696, https://doi.org/10.5194/se-13-1673-2022, https://doi.org/10.5194/se-13-1673-2022, 2022
Short summary
Short summary
The dissolution of rocks poses a severe hazard because it can cause subsidence and sinkhole formation. Based on results from our study area in Thuringia, Germany, using P- and SH-wave reflection seismics, electrical resistivity and electromagnetic methods, and gravimetry, we develop a geophysical investigation workflow. This workflow enables identifying the initial triggers of subsurface dissolution and its control factors, such as structural constraints, fluid pathways, and mass movement.
Flavio S. Anselmetti, Milos Bavec, Christian Crouzet, Markus Fiebig, Gerald Gabriel, Frank Preusser, Cesare Ravazzi, and DOVE scientific team
Sci. Dril., 31, 51–70, https://doi.org/10.5194/sd-31-51-2022, https://doi.org/10.5194/sd-31-51-2022, 2022
Short summary
Short summary
Previous glaciations eroded below the ice deep valleys in the Alpine foreland, which, with their sedimentary fillings, witness the timing and extent of these glacial advance–retreat cycles. Drilling such sedimentary sequences will thus provide well-needed evidence in order to reconstruct the (a)synchronicity of past ice advances in a trans-Alpine perspective. Eventually these data will document how the Alpine foreland was shaped and how the paleoclimate patterns varied along and across the Alps.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Andreas Eberts, Hamed Fazlikhani, Wolfgang Bauer, Harald Stollhofen, Helga de Wall, and Gerald Gabriel
Solid Earth, 12, 2277–2301, https://doi.org/10.5194/se-12-2277-2021, https://doi.org/10.5194/se-12-2277-2021, 2021
Short summary
Short summary
We combine gravity anomaly and topographic data with observations from thermochronology, metamorphic grades, and the granite inventory to detect patterns of basement block segmentation and differential exhumation along the southwestern Bohemian Massif. Based on our analyses, we introduce a previously unknown tectonic structure termed Cham Fault, which, together with the Pfahl and Danube shear zones, is responsible for the exposure of different crustal levels during late to post-Variscan times.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Gravity inversion method using L0-norm constraint with auto-adaptive regularization and combined stopping criteria
Common-mode signals and vertical velocities in the greater Alpine area from GNSS data
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
Estimating ocean tide loading displacements with GPS and GLONASS
The imprints of contemporary mass redistribution on local sea level and vertical land motion observations
Precision of continuous GPS velocities from statistical analysis of synthetic time series
Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014
The glacial isostatic adjustment signal at present day in northern Europe and the British Isles estimated from geodetic observations and geophysical models
Mesay Geletu Gebre and Elias Lewi
Solid Earth, 14, 101–117, https://doi.org/10.5194/se-14-101-2023, https://doi.org/10.5194/se-14-101-2023, 2023
Short summary
Short summary
In this work, a gravity inversion method that can produce compact and sharp images is presented. An auto-adaptive regularization parameter estimation method, improved error-weighting function and combined stopping rule are the contributions incorporated into the presented inversion method. The method is tested by synthetic and real gravity data, and the obtained results confirmed the potential practicality of the method.
Francesco Pintori, Enrico Serpelloni, and Adriano Gualandi
Solid Earth, 13, 1541–1567, https://doi.org/10.5194/se-13-1541-2022, https://doi.org/10.5194/se-13-1541-2022, 2022
Short summary
Short summary
We study time-varying vertical deformation signals in the European
Alps by analyzing GNSS position time series. We associate the deformation
signals to geophysical forcing processes, finding that atmospheric and
hydrological loading are by far the most important cause of seasonal
displacements. Recognizing and filtering out non-tectonic signals allows us
to improve the accuracy and precision of the vertical velocities.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020, https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
Short summary
The Earth deforms as the weight of ocean mass changes with the tides. GPS has been used to estimate displacements of the Earth at tidal periods and then used to understand the properties of the Earth or to test models of ocean tides. However, there are important inaccuracies in these GPS measurements at major tidal periods. We find that combining GPS and GLONASS gives more accurate results for constituents other than K2 and K1; for these, GLONASS or ambiguity resolved GPS are preferred.
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, https://doi.org/10.5194/se-10-1971-2019, 2019
Short summary
Short summary
Due to ice sheets and glaciers losing mass, and because continents get wetter and drier, a lot of water is redistributed over the Earth's surface. The Earth is not completely rigid but deforms under these changes in the load on top. This deformation affects sea-level observations. With the GRACE satellite mission, we can measure this redistribution of water, and we compute the resulting deformation. We use this computed deformation to improve the accuracy of sea-level observations.
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, https://doi.org/10.5194/se-10-329-2019, 2019
Short summary
Short summary
We use statistical analyses of synthetic position time series to estimate the potential precision of GPS velocities. Regression tree analyses show that the main factors controlling the velocity precision are the duration of the series, the presence of offsets, and the noise. Our analysis allows us to propose guidelines which can be applied to actual GPS data that constrain the velocity accuracies.
Sergei Rudenko, Saskia Esselborn, Tilo Schöne, and Denise Dettmering
Solid Earth, 10, 293–305, https://doi.org/10.5194/se-10-293-2019, https://doi.org/10.5194/se-10-293-2019, 2019
Short summary
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Cited articles
Al-Halbouni, D., Holohan, E. P., Saberi, L., Alrshdan, H., Sawarieh, A.,
Closson, D., Walter, T. R., and Dahm, T.: Sinkholes, subsidence and subrosion
on the eastern shore of the Dead Sea as revealed by a close-range
photogrammetric survey, Geomorphology, 285, 305–324,
https://doi.org/10.1016/j.geomorph.2017.02.006, 2017. a
Al-Halbouni, D., Holohan, E. P., Taheri, A., Schöpfer, M. P. J., Emam, S.,
and Dahm, T.: Geomechanical modelling of sinkhole development using distinct
elements: model verification for a single void space and application to the
Dead Sea area, Solid Earth, 9, 1341–1373,
https://doi.org/10.5194/se-9-1341-2018, 2018. a
Augarde, C. E., Lyamin, A. V., and Sloan, S. W.: Prediction of Undrained
Sinkhole Collapse, J. Geotech. Geoenviron., 129, 197–205,
https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(197), 2003. a
Aurit, M. D., Peterson, R. O., and Blanford, J. I.: A GIS Analysis of the
Relationship between Sinkholes, Dry-Well Complaints and Groundwater Pumping
for Frost-Freeze Protection of Winter Strawberry Production in Florida, PLoS
ONE, 8, e53832, https://doi.org/10.1371/journal.pone.0053832, 2013. a
Beaudoing, H. and Rodell, M.: GLDAS Noah Land Surface Model L4 monthly 0.25 x
0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and
Information Services Center (GES DISC),
NASA/GSFC/HSL, https://doi.org/10.5067/SXAVCZFAQLNO, 2016. a, b
Beck, B. F.: Environmental and engineering effects of Sinkholes – the
processes
behind the problems, Environ. Geol., 12, 71–78, https://doi.org/10.1007/BF02574791,
1988. a
Beck, B. F.: Soil piping and sinkhole failures, in: Encyclopedia of Caves,
2nd Edn., Elsevier, 718–723, 2012. a
Bell, F. G.: Subsidence associated with the abstraction of fluids, Geol. Soc.
Eng. Geol. Sp., 5, 363–376,
https://doi.org/10.1144/GSL.ENG.1988.005.01.40, 1988. a
Benito-Calvo, A., Gutiérrez, F., Martínez-Fernández, A., Carbonel,
D.,
Karampaglidis, T., Desir, G., Sevil, J., Guerrero, J., Fabregat, I., and
García-Arnay, A.: 4D Monitoring of Active Sinkholes with a Terrestrial
Laser Scanner (TLS): A Case Study in the Evaporite Karst of the Ebro Valley,
NE Spain, Remote Sensing, 10, 571–589, https://doi.org/10.3390/rs10040571, 2018. a, b
Bosch, F. P. and Müller, I.: Continuous gradient VLF measurements: a new
possibility for high resolution mapping of karst structure, First Break, 19,
343–350, https://doi.org/10.1046/j.1365-2397.2001.00173.x, 2001. a
Brady, B. H. G. and Brown, E. T.: Rock Mechanics – For underground mining,
Springer Science, Berlin, Germany, 3rd Edn., https://doi.org/10.1007/978-1-4020-2116-9,
2006. a
Braitenberg, C., Sampietro, D., Pivetta, T., Zuliani, D., Barbagallo, A., Fabris, P.,
Rossi, L., Fabbri, L., and Mansi, A. H.: Gravity for Detecting Caves:
Airborne and Terrestrial Simulations Based on a Comprehensive
Karstic Cave Benchmark, Pure Appl. Geophys., 173, 1243–1264,
https://doi.org/10.1007/s00024-015-1182-y, 2016. a
Brinkmann, R., Parise, M., and Dye, D.: Sinkhole distribution in a rapidly
developing urban environment: Hillsborough County, Tampa Bay area, Florida,
Eng. Geol., 99, 169–184, https://doi.org/10.1016/j.enggeo.2007.11.020, 2008. a
Caramanna, G., Ciotoli, G., and Nisio, S.: A review of natural sinkhole
phenomena in Italian plain areas, Nat. Hazards, 45, 145–172,
https://doi.org/10.1007/s11069-007-9165-7, 2008. a
Carbone, D., Poland, M. P., Diament, M., and Greco, F.: The added value of
time-variable microgravimetry to the understanding of how volcanoes work,
Earth-Sci. Rev., 169, 146–179, https://doi.org/10.1016/j.earscirev.2017.04.014, 2017. a
Champollion, C., Deville, S., Chéry, J., Doerflinger, E., Le Moigne, N.,
Bayer, R., Vernant, P., and Mazzilli, N.: Estimating epikarst water storage
by time-lapse surface-to-depth gravity measurements, Hydrol. Earth Syst.
Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, 2018. a
Cooper, A. H.: Subsidence and foundering of strata caused by the dissolution of
Permian gypsum in the Ripon and Bedale areas, North Yorkshire, Geol. Soc. Spec.
Publ., 22, 127–139, https://doi.org/10.1144/GSL.SP.1986.022.01.11,
1986. a
Dahm, T., Kühn, D., Ohrnberger, M., Kröger, J., Wiederhold, H.,
Reuther, C. D., Dehghani, A., and Scherbaum, F.: Combining geophysical data
sets to study the dynamics of shallow evaporites in urban environments:
Application to Hamburg, Germany, Geophys. J. Int., 181, 154–172,
https://doi.org/10.1111/j.1365-246X.2010.04521.x, 2010. a
de Pasquale, G. and Mohnke, O.: Numerical Study of Prepolarized Surface
Nuclear Magnetic Resonance in the Vadose Zone, Vadose Zone J., 13, 1–9,
https://doi.org/10.2136/vzj2014.060069, 2014. a
Desir, G., Gutiérrez, F., Merino, J., Carbonel, D., Benito-Calvo, A.,
Guerrero, J., and Fabregat, I.: Rapid subsidence in damaging sinkholes:
Measurement by high-precision leveling and the role of salt dissolution,
Geomorphology, 303, 393–409, https://doi.org/10.1016/j.geomorph.2017.12.004, 2018. a
Deville, S., Jacob, T., Chéry, J., and Champollion, C.: On the impact of
topography and building mask on time varying gravity due to local hydrology,
Geophys. J. Int., 192, 82–93, https://doi.org/10.1093/gji/ggs007, 2013. a
Eppelbaum, L. V.: Application of Microgravity at Archaeological Sites in
Irael: Some Estimation Derived from 3-D Modeling and
Quantitative Analysis of Gravity Field, in: Proceedings of the 22nd
Symposium on the Application of Geophysics to Engineering and Environmental
Problems 2009 (SAGEEP), 434–446, 2009. a
Ezersky, M. G., Eppelbaum, L. V., Al-Zoubi, A., Keydar, S., Abueladas, A.,
Akkawi, E., and Medvedev, B.: Geophysical prediction and following
development sinkholes in two Dead Sea areas, Israel and Jordan, Environ.
Earth Sci., 70, 1463–1478, https://doi.org/10.1007/s12665-013-2233-2, 2013. a
Filin, S., Baruch, A., Avni, Y., and Marco, S.: Sinkhole characterization in
the Dead Sea area using airborne laser scanning, Nat. Hazards, 58,
1135–1154, https://doi.org/10.1007/s11069-011-9718-7, 2011. a
Ford, D. and Williams, P. D.: Karst Hydrogeology and Geomorphology, Wiley,
Chichester, https://doi.org/10.1002/9781118684986, 2007. a
Ford, T. W. and Quiring, S. M.: Comparison and application of multiple methods
for temporal interpolation of daily soil moisture, Int. J. Climatol., 34,
2604–2621, https://doi.org/10.1002/joc.3862, 2013. a
Gabrovšek, F. and Stepišnik, U.: On the formation of collapse dolines: A
modelling perspective, Geomorphology, 134, 23–31,
https://doi.org/10.1016/j.geomorph.2011.06.007, 2011. a
Gómez-Ortiz, D. and Martín-Crespo, T.: Assessing the risk of
subsidence of a sinkhole collapse using ground penetrating radar and
electrical resistivity tomography, Eng. Geol., 149-150, 1–12,
https://doi.org/10.1016/j.enggeo.2012.07.022, 2012. a
Gutiérrez, F.: Sinkhole Hazards, Oxf. Res. Encyclop. Nat. Haz. Sci.,
1–85, https://doi.org/10.1093/acrefore/9780199389407.013.40, 2016. a, b
Gutiérrez, F. and Lizaga, I.: Sinkholes, collapse structures and large
landslides in an active salt dome submerged by a reservoir: The unique case
of the Ambal ridge in the Karun River, Zagros Mountains, Iran, Geomorphology,
254, 88–103, https://doi.org/10.1016/j.geomorph.2015.11.020, 2016. a
Gutiérrez, F., Guerrero, J., and Lucha, P.: A genetic classification of
sinkholes illustrated from evaporite paleokarst exposures in Spain, Environ.
Geol., 53, 993–1006, https://doi.org/10.1007/s00254-007-0727-5, 2008. a
Gutiérrez, F., Parise, M., De Waele, J., and Jourde, H.: A review on
natural
and human-induced geohazards and impacts in karst, Earth-Sci. Rev., 138,
61–88, https://doi.org/10.1016/j.earscirev.2014.08.002, 2014. a, b
Hautmann, S., Gottsmann, J., Camacho, A. G., Van Camp, M., and Fournier, N.:
Continuous and campaign-style gravimetric investigations on Montserrat 2006
to 2009, Geol. Soc. Mem., 39, 241–251, https://doi.org/10.1144/M39.14,
2014. a, b
Higuera-Díaz, I. C., Carpenter, P. J., and Thompson, M. D.: Identification
of buried sinkholes using refraction tomography at Ft. Campbell Army
Airfield, Kentucky, Environ. Geol., 53, 805–812,
https://doi.org/10.1007/s00254-007-0693-y,
2007. a
Hunt, B. B., Smith, B. A., Adams, M. T., Hiers, S. E., and Brown, N.:
Cover-Collapse Sinkhole Development in the Cretaceous Edwards Limestone,
Central Texas, in: Proceedings of the 13th Multidisciplinary Conference on
Sinkholes and the Engineering amd Environmetal Impacts of Karst. Carlsbad,
New Mexico, edited by: Land, L., Doctor, D. H., and Stephenson, J. B.,
89–102, 2013. a
Intrieri, E., Gigli, G., Nocentini, M., Lombardi, L., Mugnai, F., Fidolini, F.,
and Casagli, N.: Sinkhole monitoring and early warning: An experimental and
successful GB-InSAR application, Geomorphology, 241, 304–314,
https://doi.org/10.1016/j.geomorph.2015.04.018, 2015. a
Jacob, T., Bayer, R., Chery, J., and Le Moigne, N.: Time-lapse microgravity
surveys reveal water storage heterogeneity of a karst aquifer, J. Geophys.
Res.-Sol. Ea., 115, B06402, https://doi.org/10.1029/2009JB006616,
2010. a
Jentzsch, G., Weise, A., Rey, C., and Gerstenecker, C.: Gravity Changes and
Internal Processes: Some Results Obtained from Observations at Three
Volcanoes, Pure Appl. Geophys., 161, 1415–1431,
https://doi.org/10.1007/s00024-004-2512-7, 2004. a
Jentzsch, G., Schulz, R., and Weise, A.: Automated Burris gravity meter for
single and continuous observation, Geodesy and Geodynamics, 9, 204–209,
https://doi.org/10.1016/j.geog.2017.09.007, 2018. a
Kanngieser, E., Kummer, K., Torge, W., and Wenzel, H.-G.: Das
Gravimeter-Eichsystem Hannover, 120, Wissenschaftliche Arbeiten der
Fachrichtung Vermessungswesen der Universität Hannover, 1983. a
Kaufmann, G.: Geophysical mapping of solution and collapse sinkholes, J. Appl.
Geophys., 111, 271–288, https://doi.org/10.1016/j.jappgeo.2014.10.011, 2014. a, b, c, d
Kaufmann, G., Romanov, D., Tippelt, T., Vienken, T., Werban, U., Dietrich, P.,
Mai, F., and Börner, F.: Mapping and modelling of collapse sinkholes in
soluble rock: The Münsterdorf site, northern Germany, J. Appl. Geophys.,
154, 64–80, https://doi.org/10.1016/j.jappgeo.2018.04.021, 2018. a, b
Kawashima, K., Aydan, O., Aoki, T., Kishimoto, I., Konagai, K., Matsui, T.,
Sakuta, J., Takahashi, N., Teodori, S.-P., and Yashima, A.: Reconnaissance
Investigation on the Damage of the 2009 L'Aquila, Central Italy Earthquake,
J. Earthq. Eng., 14, 817–841, https://doi.org/10.1080/13632460903584055, 2010. a
Kent, J. D. and Dunaway, L.: Real-Time GPS Network Monitors Bayou Corne
Sinkhole Event, Eos, 94, 1–2, https://doi.org/10.1002/2013EO430002,
2013. a
Kersten, T., Kobe, M., Gabriel, G., Timmen, L., Schön, S., and Vogel, D.:
Geodetic monitoring of subrosion-induced subsidence processes in urban areas,
J. Appl. Geodesy, 11, 21–29, https://doi.org/10.1515/jag-2016-0029, 2017. a
Klees, R., Reudink, R. H. C., and Flikweert, P. L. M.: Tilt Susceptibility of
the Scintrex CG-5 Autograv Gravity Meter Revisited, in: International
Association of Geodesy Symposia, https://doi.org/10.1007/1345_2017_4, 2017. a
Knolle, F., Kempe, S., Vogel, B., and Rupp, H.: World-wide largest Biosphere
Reserve on sulphate karst and the schlotten caves – endangered geo- and
biodiversity hotspots in the South Harz, Germany, in: Proceedings of
the 17th International Speleology Congress, Sydney, Australia, edited by:
Moore, S. and White, K., vol. 1, 149–152, 2017. a
Krawczyk, C. M., Polom, U., Trabs, S., and Dahm, T.: Sinkholes in the city of
Hamburg – new urban shear-wave reflection seismic system enables
high-resolution imaging of subrosion structures, J. Appl. Geophys., 78,
133–143, https://doi.org/10.1016/j.jappgeo.2011.02.003, 2012. a, b
Krawczyk, C. M., Polom, U., and Buness, H.: Geophysikalische
Schlüsselparameter zur Überwachung von Erdfällen – Stand und Ziele der
aktiven Seismik, in: DGG-Sonderband Geohazards/Sinkholes I/2015,
Deutsche Geophysikalische Gesellschaft (DGG), Hannover, 19–30, 2015. a
Kugler, H.: Studien zur pleistozänen Formung der Hainleite, der Windleite,
des Wippertals und des Frankenhäuser Beckens, Wissenschaftliche Zeitschrift
der Karl-Marx-Universität Leipzig, 2, 355–385, 1958. a
Kupetz, M. and Mucke, D.: Beitrage zur Geologie und Genese der Barbarossahohle
bei Rottleben am Kyffhäuser und Mansfelder Mulde,
Wissenschaftlich-Technischer Informationsdienst des Zentralen Geologischen
Instituts der DDR, 30, Reihe A, Heft 2, 96–103, 1989. a
Lambrecht, J. L., Miller, R. D., and Durrant, S.: Time-Lapse High Resolution
Seismic Imaging of A Catastrophic Salt Dissolution Sinkhole In Central
Kansas, in: Symposium on the Application of Geophysics to Engineering and
Environmental Problems 2005, Society of Exploration
Geophysicists, 943–951, 2005. a
Lee, E. J., Shin, S. Y., Ko, B. C., and Chang, C.: Early sinkhole detection
using a drone-based thermal camera and image processing, Infrared Phys.
Techn., 78, 223–232, https://doi.org/10.1016/j.infrared.2016.08.009, 2016. a
Lei, M., Gao, Y., Jiang, X., and Guan, Z.: Emergency investigation of extremely
large sinkholes, Maohe, Guangxi, China, in: Proceedings of the 13th
Multidisciplinary Conference on Sinkholes and the Engineering and
Environmetal Impacts of Karst, Carlsbad, New Mexico, edited by: Land, L.,
Doctor, D. H., and Stephenson, J. B., 293–297, 2013. a
Leica Geosystems AG, S.: Leica DNA03/DNA10 User Manual, 2nd Edn., available
at: http://surveyequipment.com/assets/index/download/id/59/ (last
access: 1 April 2019),
2006. a
Lollino, P., Martimucci, V., and Parise, M.: Geological survey and numerical
modeling of the potential failure mechanisms of underground caves, Geosys.
Engin., 16, 100–112, https://doi.org/10.1080/12269328.2013.780721, 2013. a
Meng, L. and Quiring, S. M.: A Comparison of Soil Moisture Models Using Soil
Climate Analysis Network Observations, J. Hydrometeorol., 9, 641–659,
https://doi.org/10.1175/2008JHM916.1, 2008. a
Mesescu, A. A.: The Ocnele Mari salt mine collapsing sinkhole – A NATECH
breakdown in the Romanian sub-carpathians, Carpath, J. Earth. Env., 6,
215–220, 2011. a
Messerklinger, S.: Formation mechanism of large subsidence sinkholes in the Lar
valley in Iran, Q. J. Eng. Geol. Hydroge., 47, 237–250,
https://doi.org/10.1144/qjegh2012-062, 2014. a
Miao, X., Qiu, X., Wu, S.-S., Luo, J., Gouzie, D. R., and Xie, H.: Developing
Efficient Procedures for Automated Sinkhole Extraction from Lidar DEMs,
Photogramm. Eng. Rem. S., 79, 545–554, https://doi.org/10.14358/PERS.79.6.545,
2013. a
Miensopust, M. P., Igel, J., Günther, T., Dlugosch, R., and Hupfer, S.:
Electric and Electromagnetic Investigation of a Karst System, in: Near
Surface Geoscience 2015 – 21st European Meeting of Environmental and
Engineering Geophysics, https://doi.org/10.3997/2214-4609.201413704, 2015. a
Milanovic, P.: The environmental impacts of human activities and engineering
constructions in karst regions, Episodes, 25, 13–21, 2002. a
Naujoks, M., Weise, A., Kroner, C., and Jahr, T.: Detection of small
hydrological variations in gravity by repeated observations with relative
gravimeters, J. Geodesy, 82, 543–553, https://doi.org/10.1007/s00190-007-0202-9, 2008. a, b, c
Nof, R. N., Baer, G., Ziv, A., Raz, E., Atzori, S., and Salvi, S.: Sinkhole
precursors along the Dead Sea, Israel, revealed by SAR interferometry,
Geology, 41, 1019–1022, https://doi.org/10.1130/G34505.1, 2013. a
Nooner, S. L., Eiken, O., Hermanrud, C., Sasagawa, G. S., Stenvold, T., and
Zumberge, M. A.: Constraints on the in situ density of CO2 within the Utsira
formation from time-lapse seafloor gravity measurements, Int. J. Greenh. Gas
Con., 1, 198–214, https://doi.org/10.1016/S1750-5836(07)00018-7, 2007. a
Parise, M. and Lollino, P.: A preliminary analysis of failure mechanisms in
karst and man-made underground caves in Southern Italy, Geomorphology, 134,
132–143, https://doi.org/10.1016/j.geomorph.2011.06.008, 2011. a, b
Patterson, D., Davey, J. C., Cooper, A. H., and Ferris, J. K.: The application
of microgravity geophysics in a phased investigation of dissolution
subsidence at Ripon, Yorkshire, Q. J. Eng. Geol., 28, 83–94,
https://doi.org/10.1144/GSL.QJEGH.1995.028.P1.08, 1995. a
Pazzi, V., Di Filippo, M., Di Nezza, M., Carlà, T., Bardi, F., Marini, F.,
Fontanelli, K., Intrieri, E., and Fanti, R.: Integrated geophysical survey in
a sinkhole-prone area: Microgravity, electrical resistivity tomographies, and
seismic noise measurements to delimit its extension, Eng. Geol., 243,
282–293, https://doi.org/10.1016/j.enggeo.2018.07.016, 2018. a
Pfeffer, J., Champollion, C., Favreau, G., Cappelaere, B., Hinderer, J.,
Boucher, M., Nazoumou, Y., Oï, M., Mouyen, M., Henri, C., Le Moigne, N.,
Deroussi, S., Demarty, J., Boulain, N., Benarrosh, N., and Robert, O.:
Evaluating surface and subsurface water storage variations at small time and
space scales from relative gravity measurements in semiarid Niger, Water
Resour. Res., 49, 3276–3291, https://doi.org/10.1002/wrcr.20235,
2013. a
Pivetta, T. and Braitenberg, C.: Laser-scan and gravity joint investigation for
subsurface cavity exploration – The Grotta Gigante benchmark,
Geophysics, 80, B83–B94, https://doi.org/10.1190/GEO2014-0601.1, 2015. a
Polom, U., Alrshdan, H., Al-Halbouni, D., Holohan, E. P., Dahm, T., Sawarieh,
A., Atallah, M. Y., and Krawczyk, C. M.: Shear wave reflection seismic yields
subsurface dissolution and subrosion patterns: application to the Ghor
Al-Haditha sinkhole site, Dead Sea, Jordan, Solid Earth, 9, 1079–1098,
https://doi.org/10.5194/se-9-1079-2018, 2018. a
Reudink, R., Klees, R., Francis, O., Kusche, J., Schlesinger, R., Shabanloui,
A., Sneeuw, N., and Timmen, L.: High tilt susceptibility of the Scintrex CG-5
relative gravimeters, J. Geodesy, 88, 617–622,
https://doi.org/10.1007/s00190-014-0705-0, 2014. a
Richter, B. and Bernburg, G.: Stratigraphische Gliederung des deutschen
Zechsteins, Zeitschrift der Deutschen Geologischen Gesellschaft, 105,
843–854, 1953. a
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C.-J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The global land data
assimilation system, B. Am. Meteorol. Soc., 85, 381–394,
https://doi.org/10.1175/BAMS-85-3-381, 2004. a, b
Rybakov, M., Goldshmidt, V., Fleischer, L., and Rotstein, Y.: Cave detection
and 4-D monitoring: A microgravity case history near the Dead Sea,
The Leading Edge, 20, 896–900, https://doi.org/10.1190/1.1487303, 2001. a
Rybakov, M., Rotstein, Y., Shirman, B., and Al-Zoubi, A.: Cave detection near
the Dead Sea – a micromagnetic feasibility study, The Leading Edge, 24,
585–590, https://doi.org/10.1190/1.1946210, 2005. a
Sahu, P. and Lokhande, R. D.: An Investigation of Sinkhole Subsidence and its
Preventive Measures in Underground Coal Mining, Proced. Earth Plan. Sc., 11,
63–75, https://doi.org/10.1016/j.proeps.2015.06.009, 2015. a
Sandia National Laboratories: September 2016 Bayou Choctaw Subsidence Report,
available at: https://prod.sandia.gov/techlib-noauth/access-control.cgi/2017/175688r.pdf (last access: 1 April 2019),
2016. a
Sargent, C. and Goulty, N. R.: Seismic reflection survey for investigation of
gypsum dissolution and subsidence at Hell Kettles, Darlington, UK, Q. J.
Eng. Geol. Hydroge., 42, 31–38, https://doi.org/10.1144/1470-9236/07-071, 2009. a
Schmidt, W.: Geological and Geotechnical Investigation Procedures for
Evaluation of the Causes of Subsidence Damage in Florida, Flor. Geol. Sur.
Spec. Publ., 57, 1–28, 2005. a
Scintrex: CG-3/3M Autograv – Automated Gravity Meter Operator Manual,
available at: https://scintrexltd.com/wp-content/uploads/2017/02/CG3-Manual.pdf (last access: 1 April 2019),
1995. a
Scintrex: CG5 Scintrex Autograv System Operation Manual,
available at: https://www.aseg.org.au/sites/default/files/Scintrex-CG5manualrelease1.pdf (last access: 1 April 2019),
2006. a
Seidel, G.: Geologie von Thüringen (The Geology of Thuringia), E.
Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 2nd Edn., 2003. a
Sevil, J., Gutiérrez, F., Zarroca, M., Desir, G., Carbonel, D., Guerrero,
J.,
Linares, R., Roque, C., and Fabregat, I.: Sinkhole investigation in an urban
area by trenching in combination with GPR, ERT and high-precision leveling.
Mantled evaporite karst of Zaragoza city, NE Spain, Eng. Geol., 231, 9–20,
https://doi.org/10.1016/j.enggeo.2017.10.009, 2017. a
Shviro, M., Haviv, I., and Baer, G.: High-resolution InSAR constraints on
flood-related subsidence and evaporite dissolution along the Dead Sea shores:
Interplay between hydrology and rheology, Geomorphology, 293, 53–68,
https://doi.org/10.1016/j.geomorph.2017.04.033, 2017. a
Song, K.-I., Cho, G.-C., and Chang, S.-B.: Identification, remediation, and
analysis of karst sinkholes in the longest railroad tunnel in South Korea,
Eng. Geol., 135-136, 92–105, https://doi.org/10.1016/j.enggeo.2012.02.018, 2012. a, b
Timmen, L., Falk, R., Gabriel, G., Lothhammer, A., Schilling, M., and Vogel,
D.: The Relative Gravimeter Calibration System Hannover for 10−4 Scale
Determination, avn – allgemeine vermessungs-nachrichten, 125, 140–150, 2018. a
TrukkSoft: Nigra – Special Software for Levellings, available at:
http://www.nivellement.de/files/Nigra 0Manual.pdf (last access:
1 April 2019), 2018. a
Tuckwell, G., Grossey, T., Owen, S., and Stearns, P.: The use of microgravity
to detect small distributed voids and low-density ground, Q. J. Eng. Geol.
Hydroge., 41, 371–380, https://doi.org/10.1144/1470-9236/07-224, 2008. a
Van Camp, M., Meus, P., Quinif, Y., Kaufmann, O., van Ruymbeke, M.,
Vandiepenbeeck, M., and Camelbeek, T.: Karst aquifer investigation using
absolute gravity, Eos, 87, 294–299,
https://doi.org/10.1029/2006EO300005, 2006. a
Wadas, S. H., Tanner, D. C., Polom, U., and Krawczyk, C. M.: Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone, Nat.
Hazards Earth Syst. Sci., 17, 2335–2350, https://doi.org/10.5194/nhess-17-2335-2017, 2017. a, b, c
Waltham, A. C. and Fookes, P. G.: Engineering classification of karst ground
conditions, Q. J. Eng. Geol. Hydroge., 36, 101–118,
https://doi.org/10.1144/1470-9236/2002-33, 2003. a
Waltham, T.: Control the drainage: the gospel accorded to sinkholes, Q. J.
Eng. Geol. Hydroge., 49, 5–20, https://doi.org/10.1144/qjegh2015-088, 2016. a
Waltham, T., Bell, F. G., and Culshaw, M. G.: Sinkholes and Subsidence:
Karst and Cavernous Rocks in Engineering and Construction,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/b138363, 2005. a, b, c
Wilkinson, M., Mouli-Castillo, J., Morgan, P., and Eid, R.: Time-lapse gravity
surveying as a monitoring tool for CO2 storage, Int. J. Greenh. Gas Con., 60,
93–99, https://doi.org/10.1016/j.ijggc.2017.03.006, 2017. a
Williams, P.: Encyclopedia of Caves and Karst Science, chap. Dolines,
Fitzroy Dearborn, NYC, US, 628–641, 2004. a
Wolf, H.: Ausgleichungsrechnung. Formeln zur praktischen Anwendung., Ferdinand
Dümmlers Verlag, Bonn, 1975. a
Yechieli, Y., Abelson, M., Wachs, D., Shtivelman, V., Crouvi, O., and Baer, G.:
Formation of Sinkholes along the Shore of the Dead Sea – Preliminary
Investigation, in: Ninth Multidisciplinary Conference on Sinkholes and the
Engineering and Environmental Impacts of Karst, Geotechnical Special
Publication, 184–194, https://doi.org/10.1061/40698(2003)16, 2003.
a
Zini, L., Calligaris, C., Forte, E., Petronio, L., Zavagno, E., Boccali, C.,
and Cucchi, F.: A multidisciplinary approach in sinkhole analysis: The Quinis
village case study (NE-Italy), Eng. Geol., 197, 132–144,
https://doi.org/10.1016/j.enggeo.2015.07.004, 2015. a
Short summary
Subrosion, i.e. the underground leaching of soluble rocks, causes disastrous sinkhole events worldwide. We investigate the accompanying mass transfer using quarter-yearly time-lapse gravity campaigns over 4 years in the town of Bad Frankenhausen, Germany. After correcting for seasonal soil water content, we find evidence of underground mass loss and attempt to quantify its amount. This is the first study of its kind to prove the feasibility of this approach in an urban area.
Subrosion, i.e. the underground leaching of soluble rocks, causes disastrous sinkhole events...