Articles | Volume 10, issue 3
https://doi.org/10.5194/se-10-987-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-987-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deformation of intrasalt competent layers in different modes of salt tectonics
Rowan Consulting, Inc., Boulder, CO 80302, USA
Janos L. Urai
Institute for Structural Geology, Tectonics and Geomechanics, RWTH
Aachen University, 52056 Aachen, Germany
J. Carl Fiduk
Fiduk Consulting LLC, Houston, TX 77063, USA
Peter A. Kukla
Geological Institute, Energy and Mineral Resources, RWTH Aachen
University, 52056 Aachen, Germany
Related authors
No articles found.
Jessica Barabasch, Joyce Schmatz, Jop Klaver, Alexander Schwedt, and Janos L. Urai
Solid Earth, 14, 271–291, https://doi.org/10.5194/se-14-271-2023, https://doi.org/10.5194/se-14-271-2023, 2023
Short summary
Short summary
We analysed Zechstein salt with microscopes and observed specific microstructures that indicate much faster deformation in rock salt with fine halite grains when compared to salt with larger grains. This is important because people build large cavities in the subsurface salt for energy storage or want to deposit radioactive waste inside it. When engineers and scientists use grain-size data and equations that include this mechanism, it will help to make better predictions in geological models.
Trudy M. Wassenaar, Cees W. Passchier, Nora Groschopf, Anna Jantschke, Regina Mertz-Kraus, and Janos L. Urai
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-32, https://doi.org/10.5194/bg-2023-32, 2023
Manuscript not accepted for further review
Short summary
Short summary
Marbles in the desert areas of Namibia and Oman were found to be consumed from inside the rock mass by microbiological activity of a thus far unknown nature that created bands of parallel tubules. These bands formed along fractures in the rock and only surfaced after erosion made them visible. We consider this a new niche for life that has so far not been described. These life forms may have an unknown impact on the global carbon cycle.
Alexander Jüstel, Olga Knaub, Frank Strozyk, Gregor Bussmann, Florian Wellmann, and Peter Kukla
Adv. Geosci., 58, 121–134, https://doi.org/10.5194/adgeo-58-121-2023, https://doi.org/10.5194/adgeo-58-121-2023, 2023
Short summary
Short summary
This study evaluates the structural geological requirements for the city of Minden, Germany, in order to provide thermal energy for domestic, commercial or even industrial usage. The structural geological modeling and the interpretation of a regional seismic line show possible geothermal reservoirs within different Mesozoic stratigraphic units (e.g. Keuper and Middle Bunter sandstones) at varying depths up to 4,100 m including temperatures obtained through analytical calculations above 150°C.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Sivaji Lahiri, Kitty L. Milliken, Peter Vrolijk, Guillaume Desbois, and Janos L. Urai
Solid Earth, 13, 1513–1539, https://doi.org/10.5194/se-13-1513-2022, https://doi.org/10.5194/se-13-1513-2022, 2022
Short summary
Short summary
Understanding the mechanism of mechanical compaction is important. Previous studies on mechanical compaction were mostly done by performing experiments. Studies on natural rocks are rare due to compositional heterogeneity of the sedimentary succession with depth. Due to remarkable similarity in composition and grain size, the Sumatra subduction complex provides a unique opportunity to study the micromechanism of mechanical compaction on natural samples.
Manuel D. Menzel, Janos L. Urai, Estibalitz Ukar, Thierry Decrausaz, and Marguerite Godard
Solid Earth, 13, 1191–1218, https://doi.org/10.5194/se-13-1191-2022, https://doi.org/10.5194/se-13-1191-2022, 2022
Short summary
Short summary
Mantle rocks can bind large quantities of carbon by reaction with CO2, but this capacity requires fluid pathways not to be clogged by carbonate. We studied mantle rocks from Oman to understand the mechanisms allowing their transformation into carbonate and quartz. Using advanced imaging techniques, we show that abundant veins were essential fluid pathways driving the reaction. Our results show that tectonic stress was important for fracture opening and a key ingredient for carbon fixation.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Rahul Prabhakaran, Giovanni Bertotti, Janos Urai, and David Smeulders
Solid Earth, 12, 2159–2209, https://doi.org/10.5194/se-12-2159-2021, https://doi.org/10.5194/se-12-2159-2021, 2021
Short summary
Short summary
Rock fractures are organized as networks with spatially varying arrangements. Due to networks' influence on bulk rock behaviour, it is important to quantify network spatial variation. We utilize an approach where fracture networks are treated as spatial graphs. By combining graph similarity measures with clustering techniques, spatial clusters within large-scale fracture networks are identified and organized hierarchically. The method is validated on a dataset with nearly 300 000 fractures.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Marta Adamuszek, Dan M. Tămaş, Jessica Barabasch, and Janos L. Urai
Solid Earth, 12, 2041–2065, https://doi.org/10.5194/se-12-2041-2021, https://doi.org/10.5194/se-12-2041-2021, 2021
Short summary
Short summary
We analyse folded multilayer sequences in the Ocnele Mari salt mine (Romania) to gain insight into the long-term rheological behaviour of rock salt. Our results indicate the large role of even a small number of impurities in the rock salt for its effective mechanical behaviour. We demonstrate how the development of folds that occur at various scales can be used to constrain the viscosity ratio in the deformed multilayer sequence.
Christopher Weismüller, Rahul Prabhakaran, Martijn Passchier, Janos L. Urai, Giovanni Bertotti, and Klaus Reicherter
Solid Earth, 11, 1773–1802, https://doi.org/10.5194/se-11-1773-2020, https://doi.org/10.5194/se-11-1773-2020, 2020
Short summary
Short summary
We photographed a fractured limestone pavement with a drone to compare manual and automatic fracture tracing and analyze the evolution and spatial variation of the fracture network in high resolution. We show that automated tools can produce results comparable to manual tracing in shorter time but do not yet allow the interpretation of fracture generations. This work pioneers the automatic fracture mapping of a complete outcrop in detail, and the results can be used as fracture benchmark.
Heijn van Gent and Janos L. Urai
Solid Earth, 11, 513–526, https://doi.org/10.5194/se-11-513-2020, https://doi.org/10.5194/se-11-513-2020, 2020
Short summary
Short summary
Faults form due to stresses caused by crustal processes. As faults influence the stress field locally, fault interaction leads to local variations in the stress field, but this is difficult to observe directly.
We describe an outcrop of one fault abuting into another one. By careful measurement of structures in the overlapping deformation zones and separating them using published relative age data, we show a rotation in the local stress field resulting from the faults growing to each other
Christopher Weismüller, Janos L. Urai, Michael Kettermann, Christoph von Hagke, and Klaus Reicherter
Solid Earth, 10, 1757–1784, https://doi.org/10.5194/se-10-1757-2019, https://doi.org/10.5194/se-10-1757-2019, 2019
Short summary
Short summary
We use drones to study surface geometries of massively dilatant faults (MDFs) in Iceland, with apertures up to tens of meters at the surface. Based on throw, aperture and structures, we define three geometrically different endmembers of the surface expression of MDFs and show that they belong to one continuum. The transition between the endmembers is fluent and can change at one fault over short distances, implying less distinct control of deeper structures on surface geometries than expected.
Ismay Vénice Akker, Josef Kaufmann, Guillaume Desbois, Jop Klaver, Janos L. Urai, Alfons Berger, and Marco Herwegh
Solid Earth, 9, 1141–1156, https://doi.org/10.5194/se-9-1141-2018, https://doi.org/10.5194/se-9-1141-2018, 2018
Short summary
Short summary
We studied porosity changes of slates from eastern Switzerland, which were deposited in an ocean in front of the emerging Alps during the Cenozoic. The Alpine collision between the European and African plates brought the rocks from this basin to today’s position in the Alps. From the basin to the surface, the porosity first decreased down to a small number of round cavities (<1 vol%) to microfractures, and once at the surface, the porosity increased again due to the formation of macro-fractures.
Simon Virgo, Christoph von Hagke, and Janos L. Urai
Solid Earth, 9, 91–113, https://doi.org/10.5194/se-9-91-2018, https://doi.org/10.5194/se-9-91-2018, 2018
Short summary
Short summary
The marbles of the migmatitic dome on the island Naxos contain deformed layers of amphibolite with multiple phases of boudinage. The boudins formed by E–W shortening normal to the layers and layer parallel extension in various directions. We identified five different generations of boudins that show that E–W shortening is the prevalent deformation in these rocks during the peak metamorphosis and the following cooling, different from other parts of the island dominated by top-to-north shearing.
Rebecca Möller, Marco Möller, Peter A. Kukla, and Christoph Schneider
Earth Syst. Sci. Data, 10, 53–60, https://doi.org/10.5194/essd-10-53-2018, https://doi.org/10.5194/essd-10-53-2018, 2018
Short summary
Short summary
Deposits of volcanic tephra alter the energy balance at the surface of a glacier. The effects reach from intensified melt to complete insulation, mainly depending on tephra thickness. Data from a field experiment on Iceland reveal an additional minor dependency on tephra type and suggest a substantially different behavior of tephra-covered snowpacks than of tephra-covered glacier ice. The related 50-day dataset of hourly records can readily be used for model calibration and validation purposes.
Ben Laurich, Janos L. Urai, Christian Vollmer, and Christophe Nussbaum
Solid Earth, 9, 1–24, https://doi.org/10.5194/se-9-1-2018, https://doi.org/10.5194/se-9-1-2018, 2018
Short summary
Short summary
In Switzerland, the Opalinus Clay (OPA) formation is favored to host a repository for nuclear waste. Thus, we must know its deformation behavior. In this study, we focused on the microstructure of gouge, a thin (< 2 cm), drastically strained clay layer at the so-called Main Fault in the Mont Terri rock laboratory. We suggest that in situ gouge deforms in a more viscous manner than undeformed OPA in laboratory conditions. Moreover, we speculate about the origin and evolution of the gouge layer.
Guillaume Desbois, Nadine Höhne, Janos L. Urai, Pierre Bésuelle, and Gioacchino Viggiani
Solid Earth, 8, 291–305, https://doi.org/10.5194/se-8-291-2017, https://doi.org/10.5194/se-8-291-2017, 2017
Short summary
Short summary
This work integrates measurements of the mechanical and transport properties with microstructures to understand deformation mechanisms in cemented mudrock. Cataclastic mechanisms are dominant down to nanometre scale. At low strain the fabric contains recognizable open fractures, while at high strain the reworked clay gouge shows resealing of initial fracture porosity. In the future, it will provide a microphysical basis for constitutive models to improve their extrapolation for long timescales.
Ben Laurich, Janos L. Urai, and Christophe Nussbaum
Solid Earth, 8, 27–44, https://doi.org/10.5194/se-8-27-2017, https://doi.org/10.5194/se-8-27-2017, 2017
Short summary
Short summary
Scaly clay is a well-known rock fabric that can develop in tectonic systems and that can alter the physical rock properties of a formation. However, the internal microstructure and evolution of this fabric remain poorly understood. We examined the scaly microstructure of progressively faulted Opalinus Clay using optical as well as scanning electron microscopy. We show that as little as 1 vol.% in scaly clay aggregates is strained and present an evolutionary model for this.
A. F. Raith, F. Strozyk, J. Visser, and J. L. Urai
Solid Earth, 7, 67–82, https://doi.org/10.5194/se-7-67-2016, https://doi.org/10.5194/se-7-67-2016, 2016
Short summary
Short summary
3D seismic and well data were used to study the evolution of salt pillows with extreme mechanical stratification to gain a better understanding of layered evaporite deposits. During evaporation an active basement graben caused the local accumulation of thick K-Mg salts. The resulting structure after the following extensional and compressional salt flow was strongly influenced by folding of the ruptured ZIII-AC stringer, leading to thickening and internal deformation of the soft K-Mg salt layers.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Structural geology
Inversion tectonics: a brief petroleum industry perspective
Gábor Tari, Didier Arbouille, Zsolt Schléder, and Tamás Tóth
Solid Earth, 11, 1865–1889, https://doi.org/10.5194/se-11-1865-2020, https://doi.org/10.5194/se-11-1865-2020, 2020
Short summary
Short summary
Inversion tectonics has been studied in detail by both academic researchers and industry experts around the world for the last 30 years. Inverted structures provide important traps for petroleum exploration which can be categorized into two end-member modes of evolution. This paper attempts to provide a brief synoptic view of inversion tectonics from the point of view of the petroleum industry, emphasizing the main subsurface challenges of understanding this structural geology phenomenon.
Cited articles
Abe, S. and Urai, J. L.: Discrete element modeling of boudinage: insights
on rock rheology, matrix flow, and evolution of geometry, J. Geophys. Res.,
117, 12–21, https://doi.org/10.1029/2011JB008555, 2012.
Abe, S., Urai, J. L., and Kettermann, M.: Fracture patterns in non-plane
strain boudinage – insights from 3-D discrete element models, J. Geophys.
Res., 118, 1304–1315, https://doi.org/10.1002/jgrb.50126, 2013.
Albertz, M. and Ings, S. J.: Some consequences of mechanical stratification
in basin-scale numerical models of passive-margin salt tectonics, in: Salt
Tectonics, Sediments and Prospectivity, edited by: Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T.,
and Hodgkinson, R., Geol. Soc. London Spec. Publ.,
363, 303–330, https://doi.org/10.1144/SP363.14, 2012.
Albrecht, H., Hunsche, U., Plischke, I., and Schulze, O.: Mapping of the
mechanical properties of a salt dome, Sixth Congress of the International
Association of Engineering Geology (IAEG), 6–10
August, Amsterdam, the Netherlands, 1990.
Allen, H., Jackson, C. A.-L., and Fraser, A. J.: Gravity-driven deformation
of a youthful saline giant: the interplay between gliding and spreading in
the Messinian basins of the Eastern Mediterranean, Petrol. Geosci., 22,
340–356, https://doi.org/10.1144/petgeo2016-034, 2016.
Alsop, G. I., Weinberger, R., Levi, T., and Marco, S.: Deformation within an
exposed salt wall: recumbent folding and extrusion of evaporites in the Dead
Sea Basin, J. Struct. Geol., 70, 95–118, https://doi.org/10.1016/j.jsg.2014.11.006, 2015.
Baldschuhn, R., Best, G., and Kockel, F.: Inversion tectonics in the
north-west German basin, in: Generation, Accumulation, and Production of
Europe's Hydrocarbons, edited by: Spencer, A. M., Spec. Publ. EAPG, 1,
149–159, 1991.
Barros, P. M., Fonseca, J. S., Silva, L. M., Maul, A., Yamamoto, T.,
Meneguim, T., Queiroz, L. E., Toribio, T., Martini, A. F., Gobatto, F., and
González, M.: Salt heterogeneities characterization in pre-salt Santos
Basin fields, Offshore Technology Conference, 24–26
October, Rio de Janeiro, Brazil, OTC-28147-MS, 2017.
Beutler, G.: Keuper, Hallesches Jahrbuch für Geowissenschaften, B6,
45–58, 1998.
Biehl, B. C., Reuning, L., Strozyk, F., and Kukla, P. A.: Origin and
deformation of intra-salt sulphate layers: an example from the Dutch
Zechstein (Late Permian), Int. J. Earth Sci., 103, 697–712, https://doi.org/10.1007/s00531-014-0999-4, 2014.
Biot, M. A.: Theory of folding of stratified viscoelastic media and its
implications in tectonics and orogenesis, Geol. Soc. Am. Bull., 72,
1595–1620, https://doi.org/10.1130/0016-7606(1961)72[1595:TOFOSV]2.0.CO;2, 1961.
Bornemann, O., Behlau, J., Keller, S., Mingerzahn, G., and Schramm, M.:
Standortbeschreibung Gorleben: Teil III – Ergebnisse der Erkundung des
Salinars, Bundesanstalt für Geowissenschaften und Rohstoffe, Hanover,
Germany, 2003.
Bosworth, W., Huchon, P., and McClay, K.: The Red Sea and Gulf of Aden
Basins, J. Afr. Earth Sci., 43, 334–378, https://doi.org/10.1016/j.jafrearsci.2005.07.020, 2005.
Brun, J.-P. and Mauduit, T. P.-O.: Salt rollers: structure and kinematics
from analogue modelling, Mar. Petrol. Geol., 26, 249–258, https://doi.org/10.1016/j.marpetgeo.2008.02.002, 2009.
Bukowski, K.: Sedimentation of clastic strata associated with Miocene salts
in Wieliczka (Southern Poland), Slovak Geol. Mag., 3, 157–163, 1997.
Burliga, S.: Kinematics within the Kłodawa salt diapir, central Poland, in:
Salt Tectonics, edited by: Alsop, G. I., Blundell, D. J., and Davison, I.,
Geol. Soc. London Spec. Publ., 100, 11–21, https://doi.org/10.1144/GSL.SP.1996.100.01.03,
1996.
Cailteux, J. L. H., Muchez, P., De Cuyper, J., Dewaele, S., and De Putter,
T.: Origin of the megabreccias in the Katanga Copperbelt (D.R. Congo), J.
Afr. Earth Sci., 140, 76–93, https://doi.org/10.1016/j.jafrearsci.2017.12.029, 2018.
Cámara, P. and Flinch, J. F.: The Southern Pyrenees: a salt-based
fold-and-thrust belt, in: Permo-Triassic Salt Provinces of Europe, North
Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F, and
Tari, G., Elsevier, Amsterdam, Netherlands, 395–415, https://doi.org/10.1016/B978-0-12-809417-4.00019-7, 2017.
Carter, N. L. and Hansen, F. D.: Creep of rocksalt, Tectonophysics, 92,
275–333, https://doi.org/10.1016/0040-1951(83)90200-7, 1983.
Cartwright, J. and Jackson, M. P. A.: Initiation of gravitational collapse
of an evaporite basin margin: the Messinian saline giant, Levant Basin,
eastern Mediterranean, Geol. Soc. Am. Bull., 120, 399–413, https://doi.org/10.1130/B26081X.1, 2008.
Cartwright, J., Jackson, M., Dooley, T., and Higgins, S.: Strain
partitioning in gravity-driven shortening of a thick, multilayered evaporite
sequence, in: Salt Tectonics, Sediments and Prospectivity, Geol. Soc., edited by: Alsop, G. I., Archer, S. G., Hartley, A.
J., Grant, N. T., and Hodgkinson, R.,
London, Spec. Publ., 363,
449–470, https://doi.org/10.1144/SP363.21, 2012.
Cartwright, J., Kirkham, C., Bertoni, C., Hodgson, N., and Rodriguez, K.:
Direct calibration of salt sheet kinematics during gravity-driven
deformation, Geology, 46, 623–626, https://doi.org/10.1130/G40219.1, 2018.
Chemia, Z. and Koyi, H.: The control of salt supply on entrainment of an
anhydrite layer within a salt diapir, J. Struct. Geol., 30, 1192–1200, https://doi.org/10.1016/j.jsg.2008.06.004, 2008.
Chemia, Z., Koyi, H., and Schmeling, H.: Numerical modelling of rise and
fall of a dense layer in salt diapirs, Geophys. J. Int., 172, 798–816, https://doi.org/10.1111/j.1365-246X.2007.03661.x, 2008.
Chen, S., Tang, L., Jin, Z., Jia, C., and Pi, X.: Thrust and fold tectonics
and the role of evaporites in deformation in the western Kuqa foreland of
Tarim Basin, Northwest China, Mar. Petrol. Geol., 21, 1027–1042, https://doi.org/10.1016/j.marpetgeo.2004.01.008, 2004.
Coward, M. and Stewart, S.: Salt-influenced structures in the
Mesozoic-Tertiary cover of the Southern North Sea, U.K., in: Salt Tectonics
– a Global Perspective, AAPG Mem., edited by: Jackson, M. P. A.,
Roberts, D. G., and Snelson, S., 65, American Association of Petroleum
Geologists, Tulsa, USA, 229–250, 1995.
Dahlstrom, C. D. A.: Geometric constraints derived from the law of
conservation of volume and applied to evolutionary models for detachment
folding, AAPG Bull., 74, 336–344, 1990.
Dalgarno, C. R. and Johnson, J. E.: Diapiric structures and Late
Precambrian–Early Cambrian sedimentation in Flinders Ranges, South
Australia, in: Diapirs and Diapirism, edited by: Braunstein, J.,
and O'Brien, G. D., AAPG Mem., 8, American Association of Petroleum Geologists, Tulsa,
USA, 301–314, 1968.
Davison, I.: Geology and tectonics of the South Atlantic Brazilian salt
basins, in: Deformation of the Continental Crust: The Legacy of Mike Coward, edited by: Ries, A. C., Butler, R. W.
H., and Graham, R. H.
Geol. Soc. London Spec. Publ., 272,
345–359, https://doi.org/10.1144/GSL.SP.2007.272.01.18, 2007.
Davison, I., Anderson, L., and Nuttall, P.: Salt deposition, loading and
gravity drainage in the Campos and Santos salt basins, in: Salt Tectonics, edited by:
Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T., and Hodgkinson,
R.,
Sediments and Prospectivity, Geol. Soc. London Spec. Publ., 363, 159–174, https://doi.org/10.1144/SP363.8, 2012.
De Jager, J.: Inverted basins in the Netherlands, similarities and
differences, Neth. J. Geosci., 82, 355–366, https://doi.org/10.1017/S0016774600020175, 2003.
Dekker, L.: Potash exploration at Malagawatch, Cape Breton, Nova Scotia, CIM
Bulletin, 78, 27–32, 1985.
Dooley, T. P., Jackson, C. A.-L., Jackson, M. P. A., Hudec, M. R., and
Rodriguez, C. R.: Enigmatic structures within salt walls of the Santos Basin
– Part 2: Mechanical explanation from physical modelling, J. Struct. Geol.,
75, 163–187, https://doi.org/10.1016/j.jsg.2015.01.009, 2015.
Duffy, O. B., Fernandez, N., Hudec, M. R., Jackson, M. P. A., Burg, G.,
Dooley, T. P., and Jackson, C. A.-L.: Lateral mobility of minibasins during
shortening: insights from the SE Precaspian Basin, Kazakhstan, J. Struct.
Geol., 97, 257–276, https://doi.org/10.1016/j.jsg.2017.02.002, 2017.
Feng, Y. E. and Reshef, M.: The Eastern Mediterranean Messinian salt –
depth imaging and velocity analysis considerations, Petrol. Geosci., 22,
333–339, https://doi.org/10.1144/petgeo2015-088, 2016.
Feng, Y. E., Yankelzon, A., Steinberg, J., and Reshef, M.: Lithology and
characteristics of the Messinian evaporite sequence of the deep Levant
Basin, eastern Mediterranean, Mar. Geol., 376, 118–131, https://doi.org/10.1016/j.margeo.2016.04.004, 2016.
Fernandez, N., Duffy, O. B., Hudec, M. R., Jackson, M. P. A., Burg, G.,
Jackson, C. A.-L., and Dooley, T. P.: The origin of salt-encased sediment
packages: observations from the SE Precaspian Basin (Kazakhstan), J. Struct.
Geol., 97, 237–256, https://doi.org/10.1016/j.jsg.2017.01.008, 2017.
Fiduk, J. C. and Rowan, M. G.: Analysis of folding and deformation within
layered evaporites in Blocks BM-S-8 & -9, Santos Basin, Brazil, in: Salt
Tectonics, edited by: Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N. T.,
and Hodgkinson, R., Sediments and Prospectivity, Geol. Soc. London Spec. Publ.,
363, 471–487, https://doi.org/10.1144/SP363.22, 2012.
Flinch, J. F. and Soto, J. I.: Allochthonous Triassic and salt-tectonic
processes in the Betic-Rif orogenic arc, in: Permo-Triassic Salt Provinces of
Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I.,
Flinch, J. F, and Tari, G., Elsevier, Amsterdam, Netherlands, 417–446, https://doi.org/10.1016/B978-0-12-809417-4.00020-3, 2017.
Fossen, H.: Structural Geology, Cambridge University Press, Cambridge, UK,
2010.
Frehner, M.: The neutral lines in buckle folds, J. Struct. Geol., 33,
1501–1508, https://doi.org/10.1016/j.jsg.2011.07.005, 2011.
Gamboa, L. A. P., Machado, M. A. P., da Silveira, D. P., de Freitas, J. T.
R., and da Silva, S. R. P.: Evaporitos estratificados no Atlântico Sul:
interpretação sísmica e controle tectono-estratigráfico na
Bacia de Santos, in: Sal Geologia e Tectônica, edited by: Mohriak, W.,
Szatmari, P., and Couto Anjos, S. M., Beca Ediçôes Ltda., São
Paulo, Brazil, 340–359, 2008.
Gannaway-Dalton, C. E.: Stratigraphic and structural characterization and
evolution of exposed megaflaps flanking salt diapirs, Ph.D. thesis, The
Unversity of Texas at El Paso, El Paso, USA, 2019.
Garcia, S. F. de M., Letouzey, J., Rudkiewicz, J.-L., Filho, A. D., and
Frizon de Lamotte, D.: Structural modeling based on sequential restoration
of gravitational salt deformation in the Santos Basin (Brazil), Mar. Petrol.
Geol., 35, 337–353, https://doi.org/10.1016/j.marpetgeo.2012.02.009, 2012.
Garrison, J. M. and McMillan, N. J.: Jurassic continental rift magmatism in
northeast Mexico: allogenic metaigneous blocks in the El Papalote evaporite
diapir, La Popa basin, Nuevo León, Mexico, in: Mesozoic Sedimentary and
Tectonics History of North-Central Mexico: Geol. S. Am. Spec. Paper, edited by: Bartolini, C., Wilson, J. L., and Lawton, 340, 319–332, https://doi.org/10.1130/0-8137-2340-X.319, 1999.
Gaullier, V. and Vendeville, B. C.: Salt tectonics driven by sediment
progradation: Part II – Radial spreading of sedimentary lobes prograding
above salt, AAPG Bull., 89, 1081–1089, https://doi.org/10.1306/03310503064, 2005.
Ge, H., Jackson, M. P. A., and Vendeville, B. C.: Kinematics and dynamics of
salt tectonics driven by progradation, AAPG Bull., 81, 398–423, 1997.
Geluk, M. C.: Late Permian (Zechstein) rifting in the Netherlands: models
and implications for petroleum geology, Petrol. Geosci., 5, 189–199, https://doi.org/10.1144/petgeo.5.2.189, 1999.
Geluk, M. C.: Late Permian (Zechstein) carbonate facies maps, the
Netherlands, Neth. J. Geosci., 79, 17–27, https://doi.org/10.17/S0016774600021545, 2000.
Geluk, M. C.: Stratigraphy and tectonics of Permo-Triassic basin in the
Netherlands and surrounding area, Ph.D. thesis, Utrecht University, Utrecht,
the Netherlands, 2005.
Geluk, M. C.: Permian, in: Geology of the Netherlands, edited by: Wong, T. E.,
Batjes, D. A. J., and de Jager, J., Royal Netherlands Academy of Arts and
Sciences, Amsterdam, the Netherlands, 63–83, 2007a.
Geluk, M. C.: Triassic, in: Geology of the Netherlands, edited by: Wong, T.
E., Batjes, D. A. J., and de Jager, J., Royal Netherlands Academy of Arts
and Sciences, Amsterdam, the Netherlands, 85–106, 2007b.
Geluk, M. C., Brückner-Röhling, S., and Röhling, H.-G.: Salt
occurrences in the Netherlands and Germany: new insights in the formation of
salt basins, in: Proceedings of the 8th World Salt Symposium, edited by:
Geertman, R. M., Elsevier, Amsterdam, the Netherlands, 126–131, 2000.
Geluk, M. C., Paar, W. A., and Fokker, P. A.: Salt, in: Geology of the
Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and de Jager, J.,
Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands,
283–294, 2007.
González, M., Gobatto, F., Maul, A., Falcão, L., González, G.,
Oliveira, L. C., Meneguim, T., and Amaral, P. J.: Proposed workflow to
incorporate stratification within salt section using velocity and seismic
attributes, Third EAGE/SBFG Workshop, 6–7 April, Rio de Janeiro, Brazil, https://doi.org/10.3997/2214-4609.201600050,
2016.
Goscombe, B. D., Passchier, C. W., and Hand, M.: Boudinage classification:
end-member boudin types and modified boudin structures, J. Struct. Geol.,
26, 739–763, https://doi.org/10.1016/j.jsg.2003.08.015, 2004.
Gralla, P. and Marsky, J.: Seismic reveals new eastern Pre-caspian target,
Oil Gas J., 98, 86–89, 2000.
Gvirtzman, Z., Reshef, M., Buch-Leviatan, O., and Ben-Avraham, Z.: Intense
salt deformation in the Levant Basin in the middle of the Messinian Salinity
Crisis, Earth Planet. Sc. Lett., 379, 108–119, https://doi.org/10.1016/j.epsl.2013.07.018, 2013.
Hearon IV, T. E., Rowan, M. G., Lawton, T. G., Hannah, P. T., and Giles, K.
A.: Geology and tectonics of Neoproterozoic salt diapirs and salt sheets in
the eastern Willouran Ranges, South Australia, Bas. Res., 27, 183–207, https://doi.org/10.1111/bre.12067, 2015.
Hill, R.: The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65, 349–354, https://doi.org/10.1088/0370-1298/65/5/307, 1952.
Hite, R. J. and Buckner, D. H.: Stratigraphic correlations, facies
concepts, and cyclicity in Pennsylvanian rocks of the Paradox Basin, in:
Geology of the Paradox Basin, edited by: Wiegand, D. L., Rocky Mountain
Association of Geologists, Denver, USA, 147–159, 1981.
Hofrichter, E.: Probleme der Endlagerung radioaktiver Abfälle in
Salzformazionen, Z. Dtsch. Ges. Geowiss., 131, 409–430, 1980.
Hudec, M. R. and Jackson, M. P. A.: Advance of allochthonous salt sheets in
passive margins and orogens, AAPG Bull., 90, 1535–1564, https://doi.org/10.1306/05080605143, 2006.
Hudleston, P. J. and Treagus, S. H.: Information from folds: a review, J.
Struct. Geol., 32, 2042–2071, https://doi.org/10.1016/j.jsg.2010.08.011, 2010.
Hudson, S. M., Tuttle, T., and Wood, M.: Source within the seal –
distribution and implications of organic-rich shale-bearing stringers within
the Onion Creek diapir, northern Paradox Basin, Utah, Geology of the
Intermountain West, 4, 215–229, 2017.
Hughes, G. W. ap G., and Johnson, R. S.: Lithostratigraphy of the Red Sea
region, GeoArabia, 10, 49–126, 2005.
Jackson, C. A.-L., Jackson, M. P. A., Hudec, M. R., and Rodriguez, C. R.:
Internal structure, kinematics, and growth of a salt wall: insights from 3D
seismic reflection data, Geology, 42, 307–310, https://doi.org/10.1130/G34865.1, 2014.
Jackson, C. A.-L., Jackson, M. P. A., Hudec, M. R., and Rodriguez, C. R.:
Enigmatic structures within salt walls of the Santos Basin – Part 1:
Geometry and kinematics from 3D seismic reflection and well data: J. Struct.
Geol., 75, 135–162, https://doi.org/10.1016/j.jsg.2015.01.010, 2015.
Jackson, M. P. A. and Hudec, M. R.: Salt Tectonics – Principles and
Practice, Cambridge University Press, Cambridge, UK, 2017.
Jackson, M. P. A., Cornelius, R. R., Craig, C. H., Gansser, A.,
Stöcklin, J., and Talbot, C. J.: Salt Diapirs of the Great Kavir,
Central Iran, Geol. Soc. Am. Mem., 177, Geological Society of America,
Boulder, USA, 1990.
Jähne-Klingberg, F., Warsitzka, M., and Lutz, R.: Distribution, tectonic
structures and deformation processes of salt-bearing Rotliegend formations
in the German North Sea and surrounding areas, 17th Symposium of
Tectonics, 19–25 March, Jena, Germany, Structural Geology and Crystalline Geology, 2018.
Jones, I. F. and Davison, I.: Seismic imaging in and around salt bodies,
Interpretation, 2, SL1–SL20, https://doi.org/10.1190/INT-2014-0033.1, 2014.
Karlo, J. F., van Buchem, F. S. P., Moen, J., and Milroy, K.: Triassic-age
salt tectonics of the Central North Sea, Interpretation, 2, SM19–SM28, https://doi.org/10.1190/INT-2014-0032.1, 2014.
Kolasa, K. and Ślączka, A.: Sedimentary salt megabreccias exposed
in the Wieliczka mine, Fore-Carpathian Depression, Acta Geol. Pol., 35,
221–230, 1985.
Koyi, H. A.: Modeling the influence of sinking anhydrite blocks on salt
diapirs targeted for hazardous waste disposal, Geology, 29, 387–390, https://doi.org/10.1130/0091-7613(2001)029<0387:MTIOSA>2.0.CO;2, 2001.
Krzywiec, P.: Structural inversion of the Pomeranian and Kuiavian segments
of the Mid-Polish Trough – lateral variations in timing and structural
style, Geol. Q., 50, 151–168, 2006.
Krzywiec, P., Rowan, M. G., and Bukowski, K.: Miocene evaporites of the
Carpathian foredeep basin and their role in contractional salt tectonics –
250 years of perspective, EGU Geophys. Res. Abstr., 20, EGU2018-4972, 2018.
Kukla, P. A., Reuning, L., Becker, S., Urai, J. L., and Schoenherr, J.:
Distribution and mechanisms of overpressure generation and deflation in the
late Neoproterozoic to early Cambrian South Oman Salt Basin, Geofluids, 11,
349–361, https://doi.org/10.1111/j.1468-8123.2011.00340.x, 2011.
Kukla, P. A., Strozyk, F., and Mohriak, W. U.: South Atlantic salt basins –
witnesses of complex passive margin evolution, Gondwana Res., 53, 41–57, https://doi.org/10.1016/j.gr.2017.03.012,
2018.
Lawton, T. F., Vega, F. J., Giles, K. A., and Rosales-Dominguez, C.:
Stratigraphy and origin of the La Popa Basin, Nuevo León and Coahuila,
Mexico, in: The Western Gulf of Mexico Basin: Tectonics, Sedimentary Basins,
and Petroleum Systems, edited by: Bartolini, C., Buffler, R.
T., and Cantú-Chapa, A., AAPG Mem., 75,
219–240, 2001.
Li, J., Webb, A. A. G., Mao, X., Eckhoff, I., Colón, C., Zhang, K., and
He, D.: Active surface salt structures of the western Kuqa fold-thrust belt,
northwestern China, Geosphere, 10, 1219–1234, https://doi.org/10.1130/GES01021.1, 2014.
Li, S., Abe, S., Reuning, L., Becker, S., Urai, J. L., and Kukla, P. A.:
Numerical modelling of the displacement and deformation of embedded rock
bodies during salt tectonics: a case study from the South Oman Salt Basin,
in: Salt Tectonics, Sediments and Prospectivity, edited by: Alsop, G. I., Archer, S. G., Hartley, A. J., Grant, N.
T., and Hodgkinson, R., Geol. Soc. London Spec. Publ., 363, 503–520, https://doi.org/10.1144/SP363.24, 2012a.
Li, S.-Y., Abe, S., Urai, J. L., Strozyk, F., Kukla, P. A., and van Gent,
H.: A method to evaluate long-term rheology of Zechstein salt in the
Tertiary, in: Mechanical Behavior of Salt VII, edited by: Bérest, P.,
Ghoreychi, M., Hadj-Hassen, F., and Tijani, M., CRC Press, London, UK,
215–220, https://doi.org/10.1201/b12041-33, 2012b.
Mattes, B. W. and Conway Morris, S.: Carbonate/evaporite deposition in the
Late Precambrian-Early Cambrian Ara formation of Southern Oman, in: The
Geology and Tectonics of the Oman Region, edited by: Robertson, A. H. F., Searle, M. P., and Ries, A. C., Geol. Soc. London, Spec. Publ.,
49, 617–636, https://doi.org/10.1144/GSL.SP.1992.049.01.37, 1990.
McKie, T.: Paleogeographic evolution of latest Permian and Triassic salt
basins in northwest Europe, in: Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F,
and Tari, G., Elsevier, Amsterdam, the Netherlands, 159–173, https://doi.org/10.1016/B978-0-12-809417-4.00008-2, 2017.
Modica, C. J. and Brush, E. R.: Postrift sequence stratigraphy,
paleogeography, and fill history of the deep-water Santos Basin, offshore
southeast Brazil, AAPG Bull., 88, 923–945, https://doi.org/10.1306/01220403043, 2004.
Mohr, M., Kukla, P. A., Urai, J. L., and Bresser, G.: Multiphase salt
tectonic evolution in NW Germany: seismic interpretation and
retro-deformation, Int. J. Earth Sci., 94, 917–940, https://doi.org/10.1007/s00531-005-0039-5, 2005.
Peters, J. M., Filbrandt, J. B., Grotzinger, J. P., Newall, M. J., Shuster,
M. W., and Al-Siyabi, H. A.: Surface-piercing salt domes of interior North
Oman, and their significance for the Ara carbonate `stringer' hydrocarbon
play, GeoArabia, 8, 231–270, 2003.
Pla, O., Roca, E., Xie, H., Izquierdo-Llavall, E., Muñoz, J. A., Rowan,
M. G., Ferrer, O., Gratacós, O., Yuan, N., and Huang, S.: Influence of
syntectonic sedimentation and décollement rheology on the geometry and
evolution of orogenic wedges: analogue modeling of the Kuqa fold-and-thrust
belt (NW China), Tectonics, in review, 2019.
Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K.
K., and Von Nicolai, C.: Salt tectonics on passive margins: examples from
Santos, Campos and Kwanza basins, in: Salt Tectonics, Sediments and
Prospectivity, edited by: Alsop, G. I.,
Archer, S. G., Hartley, A. J., Grant, N. T., and Hodgkinson, R., Geol. Soc. London Spec. Publ., 363, 207–244, https://doi.org/10.1144/SP363.10, 2012.
Raith, A. S. F.: Internal deformation of salt bodies with large mechanical
contrast: a case study of the Veendam salt pillow, the Netherlands, Ph.D.
thesis, RWTH Aachen University, Aachen, Germany, 2017.
Raith, A. F., Strozyk, F., Visser, J., and Urai, J. L.: Evolution of rheologically heterogeneous salt structures: a case study from the NE Netherlands, Solid Earth, 7, 67–82, https://doi.org/10.5194/se-7-67-2016, 2016.
Ramberg, H.: Natural and experimental boudinage and pinch-and-swell
structures, J. Geol., 63, 512–526, 1955.
Ramberg, H.: Relationship between length of arc and thickness of
ptygmatically folded veins, Am. J. Sci., 258, 36–46, https://doi.org/10.2475/ajs.258.1.36, 1960.
Ramberg, H.: Contact strain and folding instability of a multilayered body
under compression, Geol. Rundsch., 51, 405–439, https://doi.org/10.1007/BF01820010, 1962.
Ramberg, H.: Selective buckling of composite layers with contrasted
rheological properties, a theory for simultaneous development of several
orders of folds, Tectonophysics, 1, 307–341, https://doi.org/10.1016/0040-1951(64)90020-4, 1964.
Ramsay, J. G.: Folding and fracturing of rocks, McGraw-Hill, New York, USA,
1967.
Ramsay, J. G.: Rock ductility and its influence on the development of
tectonic structures in mountain belts, in: Mountain Building Processes,
edited by: Hsü, K., Academic Press, London, UK, 111–127, 1982.
Ramsay, J. G. and Huber, M. I.: The Techniques of Modern Structural
Geology, Volume 2: Folds and Fractures, Academic Press, London, UK, 1987.
Rasmussen, D. L.: Namakiers in Triassic and Permian formations in the
Paradox Basin (USA) with comparisons to modern examples in the Zagros fold
belt, Iran, in: Geology of Utah's Far South, edited by: MacLean, J. S., Biek, R. F., and Huntoon, J. E., Utah Geological Association
Publication 43, 689–756, 2014.
Reuning, L., Schoenherr, J., Heimann, A., Urai. J. L., Littke, R., Kukla, P.
A., and Rawahi, Z.: Constraints on the diagenesis, stratigraphy and internal
dynamics of the surface-piercing salt domes in the Ghaba Salt Basin (Oman):
a comparison to the Ara Group in the South Oman Salt Basin, GeoArabia, 14,
83–120, 2009.
Richter-Bernburg, G.: Salt tectonics, interior structures of salt bodies, B.
Cent. Rech. Expl., 4, 373–393, 1980.
Rowan, M. G.: Passive-margin salt basins: hyperextension, evaporite
deposition, and salt tectonics, Basin Res., 26, 154–182, https://doi.org/10.1111/bre.12043, 2014.
Rowan, M. G. and Krzywiec, P.: The Szamotuły salt diapir and Mid-Polish
Trough: decoupling during both Triassic-Jurassic rifting and Alpine
inversion, Interpretation, 2, SM1–SM18, https://doi.org/10.1190/INT-2014-0028.1, 2014.
Rowan, M. G. and Lindsø, S.: Salt tectonics of the Norwegian Barents Sea
and northeast Greenland shelf, in: Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F,
and Tari, G., Elsevier, Amsterdam, the Netherlands, 265–286, https://doi.org/10.1016/B978-0-12-809417-4.00013-6, 2017.
Rowan, M. G., Jackson, M. P. A., and Trudgill, B. D.: Salt-related fault
families and fault welds in the northern Gulf of Mexico, AAPG Bull., 83,
1454–1484, 1999.
Rowan, M. G., Hearon IV, T. E., Kernen, R. A., Giles, K. A.,
Gannaway-Dalton, C. E., Williams, N. J., Fiduk, J. C., Lawton, T. F.,
Hannah, P. T., and Fischer, M. P.: A review of allochthonous salt tectonics
in the Flinders and Willouran ranges, South Australia, Austral. J. Earth
Sci., https://doi.org/10.1080/08120099.2018.1553063, 2019.
Salvador, A.: Triassic-Jurassic, in: The Gulf of Mexico Basin, The Geology of
North America, edited by: Salvador, A., Geological Society of
America, Boulder, USA, 131–180, 1991.
Schachl, E.: Exkursion G – Kali- und Steinsalzbergwerk Niedersachsen-Riedel
der Kali und Salz AG, Schachtanlage Riedel: Zechsteinstratigraphie und
Innenbau des Salzstocks von Wathlingen-Hänigsen, in: Exkursionsführer
I – Zechsteinsalinare und Bohrkernausstellungen, edited by: Kulick, J. and
Paul, J., International Symposium Zechstein, Wiesbaden, Germany, 69–100,
1987.
Schléder, Z. and Urai, J. L.: Microstructural evolution of
deformation-modified primary halite from the Middle Triassic Röt
Formation at Hengelo, the Netherlands, Int. J. Earth Sci., 94, 941–956, https://doi.org/10.1007/s00531-005-0503-2,
2005.
Schléder, Z. and Urai, J. L.: Deformation and recrystallization
mechanisms in mylonitic shear zones in naturally deformed extrusive
Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central
Iran), J. Struct. Geol., 29, 241–255, https://doi.org/10.1016/j.jsg.2006.08.014, 2007.
Schmalholz, S. M. and Urai, J.: Rheology of anhydrite during deformation in
nature: a first look, EGU General Assembly, Vienna, Austria, 27 April–2
May, EGU2014-14871, 2014.
Spiers, C. J. and Carter, N. L.: Microphysics of rocksalt flow in nature,
in: The Mechanical Behavior of Salt: Proceedings of the 4th Conference,
edited by: Aubertin, M. and Hardy, H. R., Series on Rock and Soil Mechanics, Trans Tech
Publications, Clausthal-Zellerfeld, 22, 115–128, 1998.
Stadtler, C., Fichler, C., Hokstad, K., Myrlund, E. A., Wienecke, S., and
Fotland, B.: Improved salt imaging in a basin context by high resolution
potential field data: Nordkapp Basin, Barents Sea, Geophys. Prospect., 62,
615–630, https://doi.org/10.1111/1365-2478.12101, 2014.
Stewart, S. A.: Geometry of thin-skinned tectonic systems in relation to
detachment layer thickness in sedimentary basins, Tectonics, 18, 719–732, https://doi.org/10.1029/1999TC900018,
1999.
Strozyk, F.: The internal structure of the Zechstein salt and related
drilling risks in the northern Netherlands, in: Permo-Triassic Salt Provinces
of Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I.,
Flinch, J. F, and Tari, G., Elsevier, Amsterdam, the Netherlands, 115–128, https://doi.org/10.1016/B978-0-12-809417-4.00006-9, 2017.
Strozyk, F., Van Gent, H., Urai, J. L., and Kukla, P. A.: 3D seismic study
of complex intra-salt deformation: an example from the Upper Permian
Zechstein 3 stringer, western Dutch offshore, in: Salt Tectonics, Sediments
and Prospectivity, edited by: Alsop, G.
I., Archer, S. G., Hartley, A. J., Grant, N. T., and Hodgkinson, R., Geol. Soc. London Spec. Publ., 363, 489–501, https://doi.org/10.1144/SP363.23, 2012.
Strozyk, F., Urai, J. L., van Gent, H., de Keijzer, M., and Kukla, P. A.:
Regional variations in the structure of the Permian Zechstein 3 intrasalt
stringer in the northern Netherlands: 3D seismic interpretation and
implications for salt tectonic evolution, Interpretation, 2, SM101–SM117, https://doi.org/10.1190/INT-2014-0037.1,
2014.
Talbot, C. J.: Extrusions of Hormuz salt in Iran, in: Lyell: the Past is the
Key to the Present, edited by:
Blundell, D. J. and Scott, A. C., Geol. Soc. London Spec. Publ., 143, 315–334, https://doi.org/10.1144/GSL.SP1998.143.01.21,
1998.
Talbot, C. J. and Jackson, M. P. A.: Internal kinematics of salt diapirs,
AAPG Bull., 71, 1068–1093, 1987.
Tubbs Jr, R. E., Aly Fouda, H. G., Afifi, A. M., Raterman, N. S., Hughes,
G. W., and Fadolalkarem, Y. K.: Midyan Peninsula, northern Red Sea, Saudi
Arabia: seismic imaging and regional interpretation, GeoArabia, 19, 165–184,
2014.
Urai, J. L.: Water-assisted dynamic recrystallization and weakening in
polycrystalline bischofite, Tectonophysics, 96, 125–157, https://doi.org/10.1016/0040-1951(83)90247-0, 1983.
Urai, J. L.: Water-enhanced dynamic recrystallization and solution transfer
in experimentally deformed carnallite, Tectonophysics, 120, 285–317, https://doi.org/10.1016/0040-1951(85)90055-1, 1985.
Urai, J. L., Spiers, C. J., Zwart, H. J., and Lister, G. S.: Weakening of
rock salt by water during long-term creep, Nature, 324, 554–557, https://doi.org/10.1038/32455, 1986.
Urai, J. L., Schléder, Z., Spiers, C. J., and Kukla, P. A.: Flow and transport properties of salt rocks, in: Dynamics of Complex Intracontinental Basins: The Central European Basin System, edited by: Littke, R., Bayer, U., Gajewski, D., and Nelskamp, S., Springer-Verlag, Berlin Heidelberg, 277–290, 2008.
Van Adrichem-Boogaert, H. A. and Kouwe, W. F. P.: Stratigraphic nomenclature of the Netherlands; revision and update by RGD and NOGEPA, TNO-NITG, Mededelingen Rijks Geologische Dienst, Haarlem, 50, 50, 1994.
Van Gent, H., Urai, J. L., and de Keijzer, M.: The internal geometry of salt
structures – a first look using 3D seismic data from the Zechstein of the
Netherlands, J. Struct. Geol., 33, 292–311, https://doi.org/10.1016/j.jsg.2010.07.005, 2011.
Vendeville, B. C. and Jackson, M. P. A.: The rise of diapirs during
thin-skinned extension, Mar. Petrol. Geol., 9, 331–353, https://doi.org/10.1016/0264-8172(92)90047-I, 1992.
Volozh, Y., Talbot, C., and Ismail-Zadeh, A.: Salt structures and
hydrocarbons in the Pricaspian basin, AAPG Bull., 87, 313–334, https://doi.org/10.1306/09060200896, 2003.
von Hagke, C., Bamberg, B., Virgo, S., and Urai, J. L.: Outcrop-scale
tomography: insights into the 3D structure of multiphase boudins, J. Struct.
Geol., 115, 311–317, https://doi.org/10.1016/j.jsg.2018.02.014, 2018.
Wade, J. A. and MacLean, B. C.: The geology of the southeastern margin of
Canada, in: Geology of the Continental Margin of Eastern Canada, Geology of
Canada no. 2, edited by: Keen, M. J. and Williams, G. L., Geological Survey
of Canada, Ottawa, Canada, 167–238, 1990.
Wagner III, B. H. and Jackson, M. P. A.: Viscous flow during salt welding,
Tectonophysics, 210, 309–326, https://doi.org/10.1016/j.tecto.2011.07.012, 2011.
Warren, J. K.: Evaporites: A Geological Compendium, 2nd edn.,
Springer, Berlin, Germany, 2016.
Warsitzka, M., Kley, J., and Kukowski, N.: Analogue experiments of salt flow and pillow growth due to basement faulting and differential loading, Solid Earth, 6, 9–31, https://doi.org/10.5194/se-6-9-2015, 2015.
Wegmann, C. E.: Note sur le boudinage, B. Soc. Geol. Fr., 2, 477–491, 1932.
Weijermars, R., Jackson, M. P. A., and Vendeville, B. C.: Rheological and
tectonic modeling of salt tectonic provinces, Tectonophysics, 217, 143–174, https://doi.org/10.1016/0040-1951(93)90208-2,
1993.
Weijermars, R., Jackson, M. P. A., and Dooley, T. P.: Quantifying drag on
wellbore casings in moving salt sheets, Geophys. J. Int., 198, 965–977, https://doi.org/10.1093/gji/ggu174,
2014.
Zulauf, J., Zulauf, G., Kraus, R., Gutiérrez-Alonso, G., and Zanella, F.:
The origin of tablet boudinage: results from experiments using power-law
rock analogs, Tectonophysics, 510, 327–336, https://doi.org/10.1016/j.tecto.2011.07.013, 2011.
Short summary
Ancient evaporite sequences were deposited as interlayered rocksalt, other evaporites, and non-evaporite rocks that have enormous differences in strength. Whereas the ductile layers flow during deformation, strong layers are folded and/or torn apart, with the intrasalt deformation dependent on the mode and history of salt tectonics. This has important implications for accurately imaging and interpreting subsurface seismic data and for drilling wells through evaporite sequences.
Ancient evaporite sequences were deposited as interlayered rocksalt, other evaporites, and...