Articles | Volume 12, issue 2
https://doi.org/10.5194/se-12-539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-539-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography
Davide Tadiello
CORRESPONDING AUTHOR
Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
Related authors
No articles found.
Tommaso Pivetta, Carla Braitenberg, Franci Gabrovšek, Gerald Gabriel, and Bruno Meurers
Hydrol. Earth Syst. Sci., 25, 6001–6021, https://doi.org/10.5194/hess-25-6001-2021, https://doi.org/10.5194/hess-25-6001-2021, 2021
Short summary
Short summary
Gravimetry offers a valid complement to classical hydrologic measurements in order to characterize karstic systems in which the recharge process causes fast accumulation of large water volumes in the voids of the epi-phreatic system. In this contribution we show an innovative integration of gravimetric and hydrologic observations to constrain a hydrodynamic model of the Škocjan Caves (Slovenia). We demonstrate how the inclusion of gravity observations improves the water mass budget estimates.
Florence Colleoni, Laura De Santis, Enrico Pochini, Edy Forlin, Riccardo Geletti, Giuseppe Brancatelli, Magdala Tesauro, Martina Busetti, and Carla Braitenberg
Geosci. Model Dev., 14, 5285–5305, https://doi.org/10.5194/gmd-14-5285-2021, https://doi.org/10.5194/gmd-14-5285-2021, 2021
Short summary
Short summary
PALEOSTRIP has been developed in the framework of past Antarctic ice sheet reconstructions for periods when bathymetry around Antarctica differed substantially from today. It has been designed for users with no knowledge of numerical modelling and allows users to switch on and off the processes involved in backtracking and backstripping. Applications are broad, and it can be used to restore any continental margin bathymetry or sediment thickness and to perform basin analysis.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodynamics
Magmatic underplating associated with Proterozoic basin formation: insights from gravity study over the southern margin of the Bundelkhand Craton, India
The crustal structure of the Longmenshan fault zone and its implications for seismogenesis: new insight from aeromagnetic and gravity data
Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling
Interpolation of magnetic anomalies over an oceanic ridge region using an equivalent source technique and crust age model constraint
The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models
Mapping undercover: integrated geoscientific interpretation and 3D modelling of a Proterozoic basin
Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation
3-D crustal density model of the Sea of Marmara
A high-resolution lithospheric magnetic field model over southern Africa based on a joint inversion of CHAMP, Swarm, WDMAM, and ground magnetic field data
Density structure and isostasy of the lithosphere in Egypt and their relation to seismicity
Ananya Parthapradip Mukherjee and Animesh Mandal
Solid Earth, 15, 711–729, https://doi.org/10.5194/se-15-711-2024, https://doi.org/10.5194/se-15-711-2024, 2024
Short summary
Short summary
Global gravity data are used to develop 2D models and a Moho depth map from 3D inversion, depicting the crustal structure below the region covered by Proterozoic sedimentary basins, south of the Bundelkhand Craton in central India. The observed thick mafic underplated layer above the Moho indicates Proterozoic plume activity. Thus, the study offers insights into the crustal configuration of this region, illustrating the geodynamic processes that led to the formation of the basins.
Hai Yang, Shengqing Xiong, Qiankun Liu, Fang Li, Zhiye Jia, Xue Yang, Haofei Yan, and Zhaoliang Li
Solid Earth, 14, 1289–1308, https://doi.org/10.5194/se-14-1289-2023, https://doi.org/10.5194/se-14-1289-2023, 2023
Short summary
Short summary
The Wenchuan (Ms 8.0) and Lushan (Ms 7.0) earthquakes show different geodynamic features and form a 40–60 km area void of aftershocks for both earthquakes. The inverse models suggest that the downward-subducted basement of the Sichuan Basin is irregular in shape and heterogeneous in magnetism and density. The different focal mechanisms of the two earthquakes and the genesis of the seismic gap may be closely related to the differential thrusting mechanism caused by basement heterogeneity.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Duan Li, Jinsong Du, Chao Chen, Qing Liang, and Shida Sun
Solid Earth Discuss., https://doi.org/10.5194/se-2021-117, https://doi.org/10.5194/se-2021-117, 2021
Revised manuscript not accepted
Short summary
Short summary
Oceanic magnetic anomalies are generally carried out using only few survey lines and thus there are many areas with data gaps. Traditional interpolation methods based on the morphological characteristics of data are not suitable for data with large gaps. The use of dual-layer equivalent-source techniques may improve the interpolation of magnetic anomaly fields in areas with sparse data which gives a good consideration to the extension of the magnetic lineation feature.
Ángela María Gómez-García, Eline Le Breton, Magdalena Scheck-Wenderoth, Gaspar Monsalve, and Denis Anikiev
Solid Earth, 12, 275–298, https://doi.org/10.5194/se-12-275-2021, https://doi.org/10.5194/se-12-275-2021, 2021
Short summary
Short summary
The Earth’s crust beneath the Caribbean Sea formed at about 90 Ma due to large magmatic activity of a mantle plume, which brought molten material up from the deep Earth. By integrating diverse geophysical datasets, we image for the first time two fossil magmatic conduits beneath the Caribbean. The location of these conduits at 90 Ma does not correspond with the present-day Galápagos plume. Either this mantle plume migrated in time or these conduits were formed above another unknown plume.
Mark D. Lindsay, Sandra Occhipinti, Crystal Laflamme, Alan Aitken, and Lara Ramos
Solid Earth, 11, 1053–1077, https://doi.org/10.5194/se-11-1053-2020, https://doi.org/10.5194/se-11-1053-2020, 2020
Short summary
Short summary
Integrated interpretation of multiple datasets is a key skill required for better understanding the composition and configuration of the Earth's crust. Geophysical and 3D geological modelling are used here to aid the interpretation process in investigating anomalous and cryptic geophysical signatures which suggest a more complex structure and history of a Palaeoproterozoic basin in Western Australia.
Cameron Spooner, Magdalena Scheck-Wenderoth, Hans-Jürgen Götze, Jörg Ebbing, György Hetényi, and the AlpArray Working Group
Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019, https://doi.org/10.5194/se-10-2073-2019, 2019
Short summary
Short summary
By utilising both the observed gravity field of the Alps and their forelands and indications from deep seismic surveys, we were able to produce a 3-D structural model of the region that indicates the distribution of densities within the lithosphere. We found that the present-day Adriatic crust is both thinner and denser than the European crust and that the properties of Alpine crust are strongly linked to their provenance.
Ershad Gholamrezaie, Magdalena Scheck-Wenderoth, Judith Bott, Oliver Heidbach, and Manfred R. Strecker
Solid Earth, 10, 785–807, https://doi.org/10.5194/se-10-785-2019, https://doi.org/10.5194/se-10-785-2019, 2019
Short summary
Short summary
Based on geophysical data integration and 3-D gravity modeling, we show that significant density heterogeneities are expressed as two large high-density bodies in the crust below the Sea of Marmara. The location of these bodies correlates spatially with the bends of the main Marmara fault, indicating that rheological contrasts in the crust may influence the fault kinematics. Our findings may have implications for seismic hazard and risk assessments in the Marmara region.
Foteini Vervelidou, Erwan Thébault, and Monika Korte
Solid Earth, 9, 897–910, https://doi.org/10.5194/se-9-897-2018, https://doi.org/10.5194/se-9-897-2018, 2018
Mikhail K. Kaban, Sami El Khrepy, and Nassir Al-Arifi
Solid Earth, 9, 833–846, https://doi.org/10.5194/se-9-833-2018, https://doi.org/10.5194/se-9-833-2018, 2018
Short summary
Short summary
We present an integrative model of the crust and upper mantle of Egypt based on an analysis of gravity, seismic, and geological data. These results are essential for deciphering the link between the dynamic processes in the Earth system and near-surface processes (particularly earthquakes) that influence human habitat. We identified the distinct fragmentation of the lithosphere of Egypt in several blocks. This division is closely related to the seismicity patterns in this region.
Cited articles
Abbas, H., Michail, M., Cifelli, F., Mattei, M., Gianolla, P., Lustrino, M., and Carminati, E.: Emplacement modes of the Ladinian plutonic rocks of the Dolomites: Insights from anisotropy of magnetic susceptibility, J. Struct. Geol., 113, 42–61, https://doi.org/10.1016/j.jsg.2018.05.012, 2018.
AlpArray Seismic Network: AlpArray Seismic Network (AASN) temporary component, ETH Zürich, https://doi.org/10.12686/ALPARRAY/Z3_2015, 2015.
Andersen, O. B.: The DTU10 Gravity field and Mean sea surface, Second international symposium of the gravity field of the Earth (IGFS2), 20–22 September 2010, Fairbanks, Alaska, 2010.
Andersen, O. B., Knudsen, P., and Berry, P. A. M.: The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geod., 84, 191–199, https://doi.org/10.1007/s00190-009-0355-9, 2010.
Anderson, E. G.: The effect of topography on solutions of Stokes' problem., Unisurv S-14, Rep., School of Surveying, University of New South Wales, Australia, 1976.
Bai, Z., Zhang, S., and Braitenberg, C.: Crustal density structure from 3D gravity modeling beneath Himalaya and Lhasa blocks, Tibet, J. Asian Earth Sci., 78, 301–317, https://doi.org/10.1016/j.jseaes.2012.12.035, 2013.
Barthelmes, F.: Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models, Scientific Technical Report (STR), STR 09/02, 1–32, Deutsches GeoForschungsZentrum GFZ, https://doi.org/10.2312/GFZ.b103-0902-26, 2013.
Bellieni, G., Fioretti, A. M., Marzoli, A., and Visonà, D.: Permo–Paleogene magmatism in the eastern Alps, Rend. Fis. Acc. Lincei, 21, 51–71, https://doi.org/10.1007/s12210-010-0095-z, 2010.
Bertotti, G., Picotti, V., Bernoulli, D., and Castellarin, A.: From rifting to drifting: tectonic evolution of the South-Alpine upper crust from the Triassic to the Early Cretaceous, Sediment. Geol., 86, 53–76, https://doi.org/10.1016/0037-0738(93)90133-P, 1993.
Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V., Sartori, R., Scandone, P., and Vai, G. B.: Structural Model of Italy scale 1 : 500.000, sheet 1, C.N.R., Progetto Finalizzato Geodinamica, SELCA Firenze, 1990a.
Bigi, G., Castellarin, A., Coli, M., Dal Piaz, G. V. and Vai, G. B.: Structural Model of Italy scale 1 : 500.000, sheet 2, C.N.R., Progetto Finalizzato Geodinamica, SELCA Firenze, 1990b.
Braitenberg, C. and Ebbing, J.: New insights into the basement structure of the West Siberian Basin from forward and inverse modeling of GRACE satellite gravity data, J. Geophys. Res.-Sol. Ea., 114, B06402, https://doi.org/10.1029/2008JB005799, 2009.
Braitenberg, C., Ebbing, J., and Götze, H.-J.: Inverse modelling of elastic thickness by convolution method – The eastern Alps as a case example, Earth Planet. Sc. Lett., 202, 387–404, https://doi.org/10.1016/S0012-821X(02)00793-8, 2002.
Braitenberg, C., Mariani, P., and De Min, A.: The European Alps and Nearby Orogenic Belts Sensed by GOCE, Boll. Geofis. Teor. Appl., 54, 321–334, https://doi.org/10.4430/bgta0105, 2013.
Brocher, T. M.: Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bull. Seismol. Soc. Am., 95, 2081–2092, https://doi.org/10.1785/0120050077, 2005.
Casetta, F., Coltorti, M., and Marrocchino, E.: Petrological evolution of the Middle Triassic Predazzo Intrusive Complex, Italian Alps, Int. Geol. Rev., 60, 977–997, https://doi.org/10.1080/00206814.2017.1363676, 2018.
Cassano, E., Anelli, L., Fichera, R., and Cappelli, V.: Pianura Padana: interpretazione integrata di dati geofisici e geologici, 1–28, 29 September–4 October 1986, Proc. 73∘ Meeting Società Geologica Italiana, Rome, 1986.
Cassinis, R.: Reviewing pre-TRANSALP DSS models, Tectonophysics, 414, 79–86, https://doi.org/10.1016/j.tecto.2005.10.026, 2006.
Castellarin, A. and Cantelli, L.: Neo-Alpine evolution of the Southern Eastern Alps, J. Geodyn., 30, 251–274, https://doi.org/10.1016/S0264-3707(99)00036-8, 2000.
Castellarin, A., Vai, G. B., and Cantelli, L.: The Alpine evolution of the Southern Alps around the Giudicarie faults: A Late Cretaceous to Early Eocene transfer zone, Tectonophysics, 414, 203–223, https://doi.org/10.1016/j.tecto.2005.10.019, 2006.
Christensen, N. I. and Mooney, W. D.: Seismic velocity structure and composition of the continental crust: A global view, J. Geophys. Res.-Sol. Ea., 100, 9761–9788, https://doi.org/10.1029/95JB00259, 1995.
Connolly, J. A. D.: Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sc. Lett., 236, 524–541, https://doi.org/10.1016/j.epsl.2005.04.033, 2005.
Dal Piaz, G. V. and Martin, S.: Evoluzione litosferica e magmatismo nel dominio austro-sudalpino dall'orogenesi varisica al rifting mesozoico, Memorie della Società Geologica Italiana, 53, 43–62, 1998.
Dal Piaz, G. V., Bistacchi, A., and Massironi, M.: Geological outline of the Alps, Episodes, 26, 175–180, https://doi.org/10.18814/epiiugs/2003/v26i3/004, 2003.
De Min, A., Velicogna, M., Ziberna, L., Chiaradia, M., Alberti, A., and Marzoli, A.: Triassic magmatism in the European Southern Alps as an early phase of Pangea break-up, Geol. Mag., 1–23, https://doi.org/10.1017/S0016756820000084, 2020.
Ebbing, J., Braitenberg, C., and Götze, H.-J.: Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps, Tectonophysics, 337, 191–208, https://doi.org/10.1016/S0040-1951(01)00119-6, 2001.
Ebbing, J., Braitenberg, C., and Götze, H.-J.: The lithospheric density structure of the Eastern Alps, Tectonophysics, 414, 145–155, https://doi.org/10.1016/j.tecto.2005.10.015, 2006.
Ekström, G.: A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s: Global dispersion model GDM52, Geophys. J. Int., 187, 1668–1686, https://doi.org/10.1111/j.1365-246X.2011.05225.x, 2011.
Fantoni, R. and Franciosi, R.: Tectono-sedimentary setting of the Po Plain and Adriatic foreland, Rend. Fis. Acc. Lincei, 21, 197–209, https://doi.org/10.1007/s12210-010-0102-4, 2010.
Finetti, I. R.: Depth Contour Map of the Moho Discontinuity in the Central Mediterranean Region from New CROP Seismic Data, 597–606, Elsevier, Atlases in Geoscience, Amsterdam, the Netherlands, 2005.
Förste, C., Bruinsma, S., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., and Biancale, R.: EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse, GFZ Data Services, https://doi.org/10.5880/icgem.2015.1, 2014a.
Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.-C., Lemoine, J.-M., Dahle, C., Neumayer, H., Barthelmes, F., König, R., and Biancale, R.: EIGEN-6C4-The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, Geophys. Res. Abstr.,
EGU2014-3707, EGU General Assembly 2014, Vienna, Austria, 2014b.
Gardner, G. H. F., Gardner, L. W., and Gregory, A. R.: Formation Velocity and Density – The Diagnostic Basics for Stratigraphic Traps, Geophysics, 39, 770–780, https://doi.org/10.1190/1.1440465, 1974.
Gebrande, H., Castellarin, A., Lüschen, E., Millahn, K., Neubauer, F., and Nicolich, R.: TRANSALP – A transect through a young collisional orogen: Introduction, Tectonophysics, 414, 1–7, https://doi.org/10.1016/j.tecto.2005.10.030, 2006.
Grad, M., Tiira, T., and ESC Working Group: The Moho depth map of the European Plate, Geophys. J. Int., 176, 279–292, https://doi.org/10.1111/j.1365-246X.2008.03919.x, 2009.
Griffin, W. L., O'Reilly, S. Y., Afonso, J. C., and Begg, G. C.: The Composition and Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic Implications, J. Petrol., 50, 1185–1204, https://doi.org/10.1093/petrology/egn033, 2009.
Grombein, T., Seitz, K., and Heck, B.: Optimized formulas for the gravitational field of a tesseroid, J. Geod., 87, 645–660, https://doi.org/10.1007/s00190-013-0636-1, 2013.
Heck, B. and Seitz, K.: A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling, J. Geod., 81, 121–136, https://doi.org/10.1007/s00190-006-0094-0, 2007.
Hirt, C. and Rexer, M.: Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models – Available as gridded data and degree-10,800 spherical harmonics, Int. J. Appl. Earth Obs. Geoinf., 39, 103–112, https://doi.org/10.1016/j.jag.2015.03.001, 2015.
Hirt, C., Reußner, E., Rexer, M., and Kuhn, M.: Topographic gravity modeling for global Bouguer maps to degree 2160: Validation of spectral and spatial domain forward modeling techniques at the 10 microGal level, J. Geophys. Res.-Sol. Ea., 121, 6846–6862, https://doi.org/10.1002/2016JB013249, 2016.
Holland, T. J. B. and Powell, R.: An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309–343, https://doi.org/10.1111/j.1525-1314.1998.00140.x, 1998.
Kästle, E. D., El-Sharkawy, A., Boschi, L., Meier, T., Rosenberg, C., Bellahsen, N., Cristiano, L., and Weidle, C.: Surface Wave Tomography of the Alps Using Ambient-Noise and Earthquake Phase Velocity Measurements, J. Geophys. Res.-Sol. Ea., 123, 1770–1792, https://doi.org/10.1002/2017JB014698, 2018.
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995.
Laske, G., Masters, G., Ma, Z., and Pasyanos, M.: Update on CRUST1.0 – A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstr.,
EGU2013-2658, EGU General Assembly 2013, Vienna, Austria, 2013.
Macera, P., Gasperini, D., Ranalli, G., and Mahatsente, R.: Slab detachment and mantle plume upwelling in subduction zones: An example from the Italian South-Eastern Alps, J. Geodyn., 45, 32–48, https://doi.org/10.1016/j.jog.2007.03.004, 2008.
Mariani, P., Braitenberg, C., and Ussami, N.: Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations, J. S. Am. Earth Sci., 45, 209–223, https://doi.org/10.1016/j.jsames.2013.03.008, 2013.
Martin, S. and Macera, P.: Tertiary volcanism in the Italian Alps (Giudicarie fault zone, NE Italy): insight for double alpine magmatic arc, Ital. J. Geosci., 133, 63–84, https://doi.org/10.3301/IJG.2013.14, 2014.
Milani, L., Beccaluva, L., and Coltorti, M.: Petrogenesis and evolution of the Euganean Magmatic Complex, Veneto Region, North-East Italy, Europ. J. Mineral., 11, 379–400, https://doi.org/10.1127/ejm/11/2/0379, 1999.
Mooney, W. D.: 1.11 Crust and Lithospheric Structure – Global Crustal Structure, in: Treatise on Geophysics, Volume 1. Seismology and the Structure of the Earth, edited by Schubert, G., Elsevier, Amsterdam, the Netherlands, 1, 57, 2007.
Mueller, S. and Talwani, M.: A crustal section across the Eastern Alps based on gravity and seismic refraction data, Pure Appl. Geophys., 85, 226–239, https://doi.org/10.1007/BF00875411, 1971.
Muttoni, G., Gaetani, M., Kent, D. V., Sciunnach, D., Berra, F., Garzanti, E., Mattei, M., and Zanchi, A.: Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian, Geoarabia, 14, 17–48, 2009.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008, J. Geophys. Res.-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Pfiffner, A.: Geologie der Alpen, Dritte Aufl., Haupt Verlag, available at: https://www.utb-shop.de/autoren/pfiffner-o-adrian/geologie-der-alpen-10380.html (last access: 21 March 2020), 2015.
Quick, J. E., Sinigoi, S., and Mayer, A.: Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano zone, northwest Italy, Geology, 23, 739–742, https://doi.org/10.1130/0091-7613(1995)023<0739:EOMPIT>2.3.CO;2, 1995.
Quick, J. E., Sinigoi, S., Peressini, G., Demarchi, G., Wooden, J. L., and Sbisà, A.: Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km, Geology, 37, 603–606, https://doi.org/10.1130/G30003A.1, 2009.
Rexer, M., Hirt, C., Claessens, S., and Tenzer, R.: Layer-Based Modelling of the Earth's Gravitational Potential up to 10-km Scale in Spherical Harmonics in Spherical and Ellipsoidal Approximation, Surv. Geophys., 37, 1035–1074, https://doi.org/10.1007/s10712-016-9382-2, 2016.
Rosenberg, C. L. and Kissling, E.: Three-dimensional insight into Central-Alpine collision: Lower-plate or upper-plate indentation?, Geology, 41, 1219–1222, https://doi.org/10.1130/G34584.1, 2013.
Rottura, A., Bargossi, G. M., Caggianelli, A., Del Moro, A., Visonà, D., and Tranne, C. A.: Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy, Lithos, 45, 329–348, https://doi.org/10.1016/S0024-4937(98)00038-3, 1998.
Scarascia, S. and Cassinis, R.: Crustal structures in the central-eastern Alpine sector: A revision of the available DSS data, Tectonophysics, 271, 157–188, https://doi.org/10.1016/S0040-1951(96)00206-5, 1997.
Schuster, R. and Stüwe, K.: Permian metamorphic event in the Alps, Geology, 36, 603–606, https://doi.org/10.1130/G24703A.1, 2008.
Sinigoi, S., Quick, J. E., Demarchi, G. and Klötzli, U.: The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust, Contrib. Mineral. Petrol., 162, 691–707, https://doi.org/10.1007/s00410-011-0619-2, 2011.
Spada, M., Bianchi, I., Kissling, E., Agostinetti, N. P., and Wiemer, S.: Combining controlled-source seismology and receiver function information to derive 3-D moho topography for italy, Geophys. J. Int., 194, 1050–1068, https://doi.org/10.1093/gji/ggt148, 2013.
Spalla, M. I., Zanoni, D., Marotta, A. M., Rebay, G., Roda, M., Zucali, M., and Gosso, G.: The transition from Variscan collision to continental break-up in the Alps: insights from the comparison between natural data and numerical model predictions, Geol. Soc. London, Special Publications, 405, 363, https://doi.org/10.1144/SP405.11, 2014.
Spiess, R., Cesare, B., Mazzoli, C., Sassi, R., and Sassi, F. P.: The crystalline basement of the Adria microplate in the eastern Alps: a review of the palaeostructural evolution from the Neoproterozoic to the Cenozoic, Rend. Lincei Sci. Fis. Nat., 21, 31–50, https://doi.org/10.1007/s12210-010-0100-6, 2010.
Spooner, C., Scheck-Wenderoth, M., Götze, H.-J., Ebbing, J., Hetényi, G., and the AlpArray Working Group: Density distribution across the Alpine lithosphere constrained by 3-D gravity modelling and relation to seismicity and deformation, Solid Earth, 10, 2073–2088, https://doi.org/10.5194/se-10-2073-2019, 2019.
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33, https://doi.org/10.1016/S0012-821X(01)00588-X, 2002.
Steinberger, B., Werner, S. C. and Torsvik, T. H.: Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars, Icarus, 207, 564–577, https://doi.org/10.1016/j.icarus.2009.12.025, 2010.
Szwillus, W., Ebbing, J., and Holzrichter, N.: Importance of far-field topographic and isostatic corrections for regional density modelling, Geophys J. Int., 207, 274–287, https://doi.org/10.1093/gji/ggw270, 2016.
Tadiello, D. and Braitenberg, C.: Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography [Data set], Zenodo, https://doi.org/10.5281/zenodo.3885404, 2020.
Tenzer, R., Foroughi, I., Hirt, C., Novák, P., and Pitoňák, M.: How to Calculate Bouguer Gravity Data in Planetary Studies, Surv. Geophys., 40, 107–132, https://doi.org/10.1007/s10712-018-9504-0, 2019.
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: EuCRUST-07: A new reference model for the European crust, Geophys. Res. Lett., 35, L05313, https://doi.org/10.1029/2007GL032244, 2008.
Thybo, H. and Artemieva, I. M.: Moho and magmatic underplating in continental lithosphere, Tectonophysics, 609, 605–619, https://doi.org/10.1016/j.tecto.2013.05.032, 2013.
Torge, W.: Geodesy, 3rd compl. rev. and extend. Edn, De Gruyter, Berlin, Boston, 2011.
Torge, W. and Müller, J.: Geodesy, 4th Edn., De Gruyter, Berlin, Boston, 2012.
Uieda, L., Barbosa, V. C. F., and Braitenberg, C.: Tesseroids: Forward-modeling gravitational fields in spherical coordinates, Geophysics, 81, F41–F48, https://doi.org/10.1190/geo2015-0204.1, 2016.
Vaníček, P., Tenzer, R., Sjöberg, L. E., Martinec, Z., and Featherstone, W. E.: New views of the spherical Bouguer gravity anomaly, Geophys. J. Int., 159, 460–472, https://doi.org/10.1111/j.1365-246X.2004.02435.x, 2004.
Viganò, A., Scafidi, D., Martin, S., and Spallarossa, D.: Structure and properties of the Adriatic crust in the central-eastern Southern Alps (Italy) from local earthquake tomography, Terra Nova, 25, 504–512, https://doi.org/10.1111/ter.12067, 2013.
Wild-Pfeiffer, F.: A comparison of different mass elements for use in gravity gradiometry, J. Geod., 82, 637–653, https://doi.org/10.1007/s00190-008-0219-8, 2008.
Zampieri, D.: Tertiary extension in the southern Trento Platform, Southern Alps, Italy, Tectonics, 14, 645–657, https://doi.org/10.1029/94TC03093, 1995.
Zanchetta, S., Garzanti, E., Doglioni, C., and Zanchi, A.: The Alps in the Cretaceous: a doubly vergent pre-collisional orogen: The Alps in the Cretaceous, Terra Nova, 24, 351–356, https://doi.org/10.1111/j.1365-3121.2012.01071.x, 2012.
Zanolla, C., Braitenberg, C., Ebbing, J., Bernabini, M., Bram, K., Gabriel, G., Götze, H.-J., Giammetti, S., Meurers, B., Nicolich, R., and Palmieri, F.: New gravity maps of the Eastern Alps and significance for the crustal structures, Tectonophysics, 414, 127–143, https://doi.org/10.1016/j.tecto.2005.10.012, 2006.
Short summary
We present an innovative approach to estimate a lithosphere density distribution model based on seismic tomography and gravity data. In the studied area, the model shows that magmatic events have increased density in the middle to lower crust, which explains the observed positive gravity anomaly. We interpret the densification through crustal intrusion and magmatic underplating. The proposed method has been tested in the Alps but can be applied to other geological contexts.
We present an innovative approach to estimate a lithosphere density distribution model based on...