Articles | Volume 13, issue 2
https://doi.org/10.5194/se-13-367-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-13-367-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reflection tomography by depth warping: a case study across the Java trench
Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean
Research Kiel, 24148 Kiel, Germany
Dirk Klaeschen
Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean
Research Kiel, 24148 Kiel, Germany
Heidrun Kopp
Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean
Research Kiel, 24148 Kiel, Germany
Department of Geosciences, Kiel University, 24118 Kiel, Germany
Michael Schnabel
Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),
Stilleweg 2, 30655 Hanover, Germany
Related authors
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Helene-Sophie Hilbert, Anke Dannowski, Jörg Bialas, Felix Gross, Jasper Hoffmann, Dirk Kläschen, and Christian Berndt
EGUsphere, https://doi.org/10.5194/egusphere-2025-5275, https://doi.org/10.5194/egusphere-2025-5275, 2026
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
This study investigates gas hydrate distribution in the Danube Fan, NW Black Sea. Using seismic data and drilling results, we analysed the structure, composition, and gas content of underconsolidated sediments. Gas hydrates are present in low concentration and patchy distribution. Free gas is trapped beneath the hydrate stability zone. The area shows signs of past slope failures linked to weak sediments and gas accumulation. The study provides insights into how gas hydrate systems evolve.
Felix N. Wolf, Dietrich Lange, Anke Dannowski, Martin Thorwart, Wayne Crawford, Lars Wiesenberg, Ingo Grevemeyer, Heidrun Kopp, and the AlpArray Working Group
Solid Earth, 12, 2597–2613, https://doi.org/10.5194/se-12-2597-2021, https://doi.org/10.5194/se-12-2597-2021, 2021
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Cited articles
Aarre, V.: On the presence, and possible causes, of apparent lateral shifts
below the Norne reservoir, 78th Soc. Explor. Geophys. Int. Expo. Annu. Meet. SEG 2008 Las Vegas, 3174–3178, https://doi.org/10.1190/1.3064005, 2008.
Audebert, F. and Diet, J.-P.: A focus on focusing, in: Migration I, Prestack Depth Migration and Velocity Model Building, edited by: Jones, I. F., Bloor, R. I., Boindi, B. L., and Etgen, T., Vol. 25, https://doi.org/10.1190/1.9781560801917, 2008.
Audebert, F., Diet, J.-P., Guillaume, P., Jones, I. F., and Zhang, X.:
CRP-Scans: 3D PreSDM velocity analysis via zero-offset tomographic
inversion, in: SEG Technical Program Expanded Abstracts 1997, Dallas, Texas, USA, 1805–1808,
Society of Exploration Geophysicists, https://doi.org/10.1190/1.1885786, 1997.
Bangs, N. L., McIntosh, K. D., Silver, E. A., Kluesner, J. W., and Ranero, C.
R.: Fluid accumulation along the Costa Rica subduction thrust and
development of the seismogenic zone, J. Geophys. Res.-Sol. Ea., 120, 67–86,
https://doi.org/10.1002/2014JB011265, 2015.
Bishop, T. N., Bube, K. P., Cutler, R. T., Langan, R. T., Love, P. L.,
Resnick, J. R., Shuey, R. T., Spindler, D. A., and Wyld, H. W.: Tomographic
determination of velocity and depth in laterally varying media, Geophysics,
50, 903–923, https://doi.org/10.1190/1.1441970, 1985.
Claerbout, J. F.: Earth soundings analysis: Processing versus inversion, edited by: Heydron, J.,
Blackwell Scientific Publications London, http://sepwww.stanford.edu/sep/prof/pvi.pdf (last access: 15 February 2022), 1992.
Collot, J. Y., Ribodetti, A., Agudelo, W., and Sage, F.: The South Ecuador
subduction channel: Evidence for a dynamic mega-shear zone from 2D
fine-scale seismic reflection imaging and implications for material
transfer, J. Geophys. Res.-Sol. Ea., 116, 1–20,
https://doi.org/10.1029/2011JB008429, 2011.
Crutchley, G. J., Klaeschen, D., Henrys, S. A., Pecher, I. A., Mountjoy, J.
J., and Woelz, S.: Subducted sediments, upper-plate deformation and
dewatering at New Zealand's southern Hikurangi subduction margin, Earth
Planet. Sc. Lett., 530, 115945, https://doi.org/10.1016/j.epsl.2019.115945, 2020.
Dix, C. H.: Seismic velocities from surface measurements, Geophysics, 20,
68–86, 1955.
Fomel, S.: Applications of plane-wave destruction filters, Geophysics,
67, 1946–1960, 2002.
Fruehn, J., Jones, I. F., Valler, V., Sangvai, P., Biswal, A., and Mathur, M.: Resolving near-seabed velocity anomalies: Deep water offshore eastern India, Geophysics, 73, VE235–VE241, https://doi.org/10.1190/1.2957947, 2008.
GEBCO Bathymetric Compilation Group 2020: The GEBCO_2020 Grid – a continuous terrain model of the global oceans and land, British Oceanographic Data Centre, National Oceanography Centre [data set], NERC, UK, https://doi.org/10/dtg3, 2020.
Górszczyk, A., Operto, S., Schenini, L., and Yamada, Y.: Crustal-scale depth imaging via joint full-waveform inversion of ocean-bottom seismometer data and pre-stack depth migration of multichannel seismic data: a case study from the eastern Nankai Trough, Solid Earth, 10, 765–784, https://doi.org/10.5194/se-10-765-2019, 2019.
Gras, C., Dagnino, D., Jiménez-Tejero, C. E., Meléndez, A., Sallarès, V., and Ranero, C. R.: Full-waveform inversion of short-offset, band-limited seismic data in the Alboran Basin (SE Iberia), Solid Earth, 10, 1833–1855, https://doi.org/10.5194/se-10-1833-2019, 2019.
Guitton, A. and Verschuur, D. J.: Adaptive subtraction of multiples using
the L1-norm, Geophys. Prospect., 52, 27–38, 2004.
Hale, D.: A method for estimating apparent displacement vectors from time-lapse seismic images, Geophysics, 74, V99–V107, https://doi.org/10.1190/1.3184015, 2009.
Hale, D.: Dynamic warping of seismic images, Geophysics, 78, S105–S115,
https://doi.org/10.1190/GEO2012-0327.1, 2013.
Hall, S. A.: A methodology for 7D warping and deformation monitoring using
time-lapse seismic data, Geophysics, 71, O21, https://doi.org/10.1190/1.2212227, 2006.
Hampson, D.: Inverse velocity stacking for multiple elimination, J. Can.
Soc. Explor. Geophys., 22, 44–55, 1986.
Han, S., Bangs, N. L., Carbotte, S. M., Saffer, D. M., and Gibson, J. C.:
Links between sediment consolidation and Cascadia megathrust slip behaviour,
Nat. Geosci., 10, 954–959, https://doi.org/10.1038/s41561-017-0007-2, 2017.
Hardy, P.: High resolution tomographic MVA with automation, in: 66th EAGE
Conference & Exhibition, Paris, 2004, p. cp-133, https://doi.org/10.3997/2214-4609.201405668, 2003.
Horn, B. K. P. and Schunck, B. G.: Determining optical flow, Artif. Intell.,
17, 185–203, https://doi.org/10.1016/0004-3702(81)90024-2, 1981.
Jones, I. F.: A review of 3D PreSDM model building techniques, First Break, 21, https://doi.org/10.3997/1365-2397.21.3.25408, 2003.
Jones, I. F.: Tutorial: Velocity estimation via ray-based tomography, First
Break, 28, 45–52, 2010.
Jones, I. F., Sugrue, M. J., and Hardy, P. B.: Hybrid Gridded Tomography, First Break, 25, https://doi.org/10.3997/1365-2397.2007013, 2007.
Jones, I. F., Ibbotson, K., Grimshaw, M., and Plasterie, P.: Prestack Depth
Migration and Velocity Model Building, edited by: Jones, I. F., Bloor, R. I.,
Biondi, B. L., and Etgen, J. T., Society of Exploration Geophysicists, https://doi.org/10.1190/1.9781560801917, 2008.
Kosloff, D., Sherwood, J., Koren, Z., Machet, E., and Falkovitz, Y.: Velocity
and interface depth determination by tomography of depth migrated gathers,
Geophysics, 61, 1511–1523, 1996.
Levitus, S.: Climatological Atlas of the World Ocean, EOS T. Am.
Geophys. Un., 64, 962–963,
https://doi.org/10.1029/EO064i049p00962-02, 1983.
Li, J., Shillington, D. J., Saffer, D. M., Bécel, A., Nedimović, M.
R., Kuehn, H., Webb, S. C., Keranen, K. M., and Abers, G. A.: Connections
between subducted sediment, pore-fluid pressure, and earthquake behavior
along the Alaska megathrust, Geology, 46, 299–302, https://doi.org/10.1130/G39557.1,
2018.
Lüschen, E., Müller, C., Kopp, H., Engels, M., Lutz, R., Planert,
L., Shulgin, A., Djajadihardja, Y. S., Lueschen, E., Mueller, C., Kopp, H.,
Engels, M., Lutz, R., Planert, L., Shulgin, A., and Djajadihardja, Y. S.:
Structure, evolution and tectonic activity of the eastern Sunda forearc,
Indonesia, from marine seismic investigations, Tectonophysics, 508,
6–21, https://doi.org/10.1016/j.tecto.2010.06.008, 2011.
MacKay, S. and Abma, R.: Imaging and velocity estimation with depth-focusing
analysis, Geophysics, 57, 1608–1622, 1992.
Martin, T. and Bell, M.: An innovative approach to automation for velocity
model building, First Break, 37, 57–65, https://doi.org/10.3997/1365-2397.n0033,
2019.
Meléndez, A., Jiménez, C. E., Sallarès, V., and Ranero, C. R.: Anisotropic P-wave travel-time tomography implementing Thomsen's weak approximation in TOMO3D, Solid Earth, 10, 1857–1876, https://doi.org/10.5194/se-10-1857-2019, 2019
Neidell, N. S. and Taner, M. T.: Semblance and other coherency measures for
multichannel data, Geophysics, 36, 482–497, 1971.
Nickel, M., Sønneland, L., and Geco-prakla, S.: Non-rigid matching of
migrated time-lapse seismic SEG 1999 Expanded Abstracts SEG 1999 Expanded
Abstracts, Houston, Texas, USA, https://doi.org/10.1190/1.1821191, 1999.
Pappu, S., Gold, S., and Rangarajan, A.:
A framework for nonrigid matching and correspondence, edited by: Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., Advances in Neural Information Processing Systems, 8, MIT Press, Cambridge, MA, 1996.
Perez, G. and Marfurt, K. J.: Warping prestack imaged data to improve stack
quality and resolution, Geophysics, 73, 1–7, https://doi.org/10.1190/1.2829986,
2008.
Planert, L., Kopp, H., Lüschen, E., Mueller, C., Flueh, E. R., Shulgin,
A., Djajadihardja, Y., and Krabbenhoeft, A.: Lower plate structure and upper
plate deformational segmentation at the Sunda-Banda arc transition,
Indonesia, J. Geophys. Res.-Sol. Ea., 115, 1–25,
https://doi.org/10.1029/2009JB006713, 2010.
Reiche, S. and Berkels, B.: Automated stacking of seismic reflection data
based on nonrigid image matching, Geophysics, 83, V171–V183,
https://doi.org/10.1190/geo2017-0189.1, 2018.
Rickett, J. E. and Lumley, D. E.: Cross-equalization data processing for
time-lapse seismic reservoir monitoring: A case study from the Gulf of
Mexico, Geophysics, 66, 1015–1025, 2001.
Riedel, M., Reiche, S., Aßhoff, K., and Buske, S.: Seismic depth imaging
of sequence boundaries beneath the New Jersey shelf, Mar. Geophys. Res.,
40, 17–32, https://doi.org/10.1007/s11001-018-9360-9, 2019.
Robinson, E. A. and Treitel, S.: Geophysical signal analysis, Society of
Exploration Geophysicists, https://doi.org/10.1190/1.9781560802327, 2000.
Sallarès, V. and Ranero, C. R.: Upper-plate rigidity determines
depth-varying rupture behaviour of megathrust earthquakes, Nature,
576, 96–101, https://doi.org/10.1038/s41586-019-1784-0, 2019.
Shiraishi, K., Moore, G. F., Yamada, Y., Kinoshita, M., Sanada, Y., and
Kimura, G.: Seismogenic zone structures revealed by improved 3-D seismic
images in the Nankai Trough off Kumano, Geochem. Geophy. Geosy.,
20, 2252–2271, 2019.
Sripanich, Y., Fomel, S., Trampert, J., Burnett, W., and Hess, T.:
Probabilistic moveout analysis by time warping, Geophysics, 85, U1–U20,
https://doi.org/10.1190/geo2018-0797.1, 2020.
Stork, C.: Reflection tomography in the postmigrated domain, Geophysics,
57, 680–692, https://doi.org/10.1190/1.1443282, 1992.
Sugrue, M., Jones, I. F., Evans, E., Fairhead, S., and Marsden, G.: Enhanced
velocity estimation using gridded tomography in complex chalk, Geophys.
Prospect., 52, 683–691, 2004.
Thomsen, L.: Weak elastic anisotropy, Geophysics, 51, 1954–1966,
https://doi.org/10.1190/1.1442051, 1986.
Tomar, G., Singh, S. C., and Montagner, J.-P.: Sub-sample time shift and
horizontal displacement measurements using phase-correlation method in
time-lapse seismic, Geophys. Prospect., 65, 407–425, 2017.
Van Trier, J. A.: Tomographic determination of structural velocities from
depth-migrated seismic data, thesis, Stanford University, http://sepwww.stanford.edu/data/media/public/oldreports/sep66/66_00.pdf (last access: 15 February 2022), 1990.
Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A.: Adaptive
surface-related multiple elimination, Geophysics, 57, 1166–1177,
https://doi.org/10.1190/1.1443330, 1992.
Wang, X. and Tsvankin, I.: Ray-based gridded tomography for tilted TI media,
in: SEG Technical Program Expanded Abstracts 2011, San Antonio, Texas, USA, 237–242, Society of
Exploration Geophysicists, https://doi.org/10.1190/1.3627687, 2011.
Wolberg, G.: Digital image warping, IEEE computer Society Press Los
Alamitos, CA, ISBN: 978-08-1868-944-4, 1990.
Woodward, M. J., Nichols, D., Zdraveva, O., Whitfield, P., and Johns, T.: A
decade of tomography, Geophysics, 73, VE5, https://doi.org/10.1190/1.2969907, 2008.
Xia, Y., Klaeschen, D., Kopp, H., and Schnabel, M.: Supplementary code for article “Reflection tomography by depth warping: A case study across the Java trench” on Solid Earth (SE-2021-40), Zenodo [code], https://doi.org/10.5281/zenodo.5998288, 2022.
Xue, Z., Zhang, H., Zhao, Y., and Fomel, S.: Pattern-guided dip estimation
with plane-wave destruction filters, Geophys. Prospect., 67, 1798–1810,
2019.
Yilmaz, Ö.: Seismic data analysis: Processing, inversion, and
interpretation of seismic data, Society of exploration geophysicists, https://doi.org/10.1190/1.9781560801580, 2001.
Zhang, D., Wang, X., Huang, Y., and Schuster, G.: Warping for trim statics,
in: SEG Technical Program Expanded Abstracts 2014, Denver, Colorado, USA, 3946–3950, Society of
Exploration Geophysicists, https://doi.org/10.1190/segam2014-0281.1, 2014.
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Geological interpretations based on seismic depth images depend on an accurate subsurface...