Articles | Volume 15, issue 2
https://doi.org/10.5194/se-15-167-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-167-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
AIST, Geological Survey of Japan, Research Institute of Geology and Geoinformation, Central 7, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8567, Japan
Graduate School of Science, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan
Naoto Hirano
Graduate School of Science, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan
Center for Northeast Asian Studies, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, 980-8576, Japan
Shiki Machida
Ocean Resources Research Center for Next Generation, Chiba Institution of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
Hirochika Sumino
Research Center for Advanced Science and Technology, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
Norikatsu Akizawa
Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8564, Japan
Akihiro Tamura
Earth Science Course, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
Tomoaki Morishita
Earth Science Course, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
Yasuhiro Kato
Ocean Resources Research Center for Next Generation, Chiba Institution of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
Department of Systems Innovation, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
Submarine Resources Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine–Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
Related authors
No articles found.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Johannes Stefanski and Sandro Jahn
Solid Earth, 11, 767–789, https://doi.org/10.5194/se-11-767-2020, https://doi.org/10.5194/se-11-767-2020, 2020
Short summary
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Federico Lucci, Gerardo Carrasco-Núñez, Federico Rossetti, Thomas Theye, John Charles White, Stefano Urbani, Hossein Azizi, Yoshihiro Asahara, and Guido Giordano
Solid Earth, 11, 125–159, https://doi.org/10.5194/se-11-125-2020, https://doi.org/10.5194/se-11-125-2020, 2020
Short summary
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Cited articles
Aftabuzzaman, M. R., Yomogoda, K., Suzuki, S., Takayanagi, H., Ishigaki, A., Machida, S., Asahara, Y., Yamamoto, K., Hirano, N., Sano, S.-I., Chiyonobu, S., Bassi, D., and Iryu, Y.: Multi-approach characterization of shallow-water carbonates off Minamitorishima and their depositional settings/history, Isl. Arc, 30, e12400, https://doi.org/10.1111/iar.12400, 2021.
Akizawa, N., Ohara, Y., Okino, K., Ishizuka, O., Yamashita, H., Machida, S., Sanfilippo, A., Basch, V., Snow, J. E., Sen, A., Hirauchi, K.-I., Michibayashi, K., Harigane, Y., Fujii, M., Asanuma, H., and Hirata, T.: Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: an example of Mado Megamullion, Prog. Earth Planet. Sci., 8, 65, https://doi.org/10.1186/s40645-021-00454-3, 2021.
Akizawa, N., Hirano, N., Matsuzaki, K. M., Machida, S., Tamura, C., Kaneko, J., Iwano, H., Danhara, T., and Hirata, T.: A direct evidence for disturbance of whole sediment layer in the subducting Pacific plate by petit-spot magma–water/sediment interaction, Mar. Geol., 444, 106712, https://doi.org/10.1016/j.margeo.2021.106712, 2022.
Asimow, P. D. and Langmuir, C. H.: The importance of water to oceanic mantle melting regimes, Nature, 421, 815–820, https://doi.org/10.1038/nature01429, 2003.
Audhkhasi, P. and Singh, S. C.: Discovery of distinct lithosphere-asthenosphere boundary and the Gutenberg discontinuity in the Atlantic Ocean, Sci. Adv., 8, eabn5404, https://doi.org/10.1126/sciadv.abn5404, 2022.
Axen G. J., van Wijk, J. W., and Currie, C. A.: Basal continental mantle lithosphere displaced by flat-slab subduction, Nat. Geosci., 11, 961–964, https://doi.org/10.1038/s41561-018-0263-9, 2018.
Azami, K., Machida, S., Hirano, N., Nakamura, K., Yasukawa, K., Kogiso, T., Nakanishi, M., and Kato, Y.: Hydrothermal ferromanganese oxides around a petit-spot volcano on old and cold oceanic crust, Commun. Earth Environ., 4, 191, https://doi.org/10.1038/s43247-023-00832-3, 2023.
Bell, K. and Tilton, G. R.: Probing the mantle: the story from carbonatites, Eos, 83, 273–277, https://doi.org/10.1029/2002EO000190, 2002.
Bellas, A., Zhong, S., and Watts, A. B.: Reconciling lithospheric rheology between laboratory experiments, field observations and different tectonic settings, Geophys. J. Int., 228, 857–875, https://doi.org/10.1093/gji/ggab382, 2022.
Bianco, T. A., Ito, G., Becker, J. M., and Garcia, M. O.: Secondary Hawaiian volcanism formed by flexural arch decompression, Geochem. Geophy. Geosy., 6, Q08009, https://doi.org/10.1029/2005GC000945, 2005.
Bizimis, M., Salters, V. J. M., and Dawson, J. B.: The brevity of carbonatite sources in the mantle: evidence from Hf isotopes, Miner. Petrol., 145, 281–300, https://doi.org/10.1007/s00410-003-0452-3, 2003.
Bizimis, M., Salters, V. J. M., Garcia, M. O., and Norman, M. D.: The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths, Geochem. Geophy. Geosy., 14, 4458–4478, https://doi.org/10.1002/ggge.20250, 2013.
Borisova, A. Y. and Tilhac, R.: Derivation of Hawaiian rejuvenated magmas from deep carbonated mantle sources: A review of experimental and natural constraints, Earth. Sci. Rev., 222, 103819, https://doi.org/10.1016/j.earscirev.2021.103819, 2021.
Buchs, D. M., Pilet, S., Cosca, M., Flores, K. E., Bandini, A. N., and Baumgartner, P. O.: Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica, Geochem. Geophy. Geosy.,14, 1552–1568, https://doi.org/10.1002/ggge.20084, 2013.
Chantel, J., Manthilake, G., Andrault, D., Novella, D., yu, T., and Wang, Y.: Experimental evidence supports mantle partial melting in the asthenosphere, Sci. Adv., 2, e1600246, https://doi.org/10.1126/sciadv.1600246, 2016.
Chen, X., Wang, M., Inoue, T., Liu, Q., Zhang, L., and Bader, T.: Melting of carbonated pelite at 5.5–15.5 GPa: implications for the origin of alkali-rich carbonatites and the deep water and carbon cycles, Miner. Petrol., 177, 2, https://doi.org/10.1007/s00410-021-01867-5, 2022.
Clague, D. A. and Frey, F. A.: Petrology and Trace element Geochemistry of the Honolulu Volcanics, Oahu: Implications for the Oceanic Mantle below Hawaii, J. Petrol., 23, 447–504, https://doi.org/10.1093/petrology/23.3.447, 1982.
Clague, D. A. and Moore, J. G.: The proximal part of the giant submarine Wailau landslide, Molokai, Hawaii, J. Volcanol. Geoth. Res., 113, 259–287, https://doi.org/10.1016/S0377-0273(01)00261-X, 2002.
Clague, D. A., Holcomb, R. T., Sinton, J. M., Detrick, R. S., and Torresan, M. E.: Pliocene and Pleistocene alkali flood basalts on the seafloor north of the Hawaiian island, Earth Planet. Sc. Lett., 98, 175–191, https://doi.org/10.1016/0012-821X(90)90058-6, 1990.
Collerson, K. D., Williams, Q., Ewart, A. E., and Murphy, D. T.: Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings, Phys. Earth Planet. In., 181, 112–131, https://doi.org/10.1016/j.pepi.2010.05.008, 2010.
Conrad, C. P., Bianco, T. A., Smith, E. I., and Wessel, P.: Patterns of intraplate volcanism controlled by asthenospheric shear, Nat. Geosci., 4, 317–321, https://doi.org/10.1038/ngeo1111, 2011.
Dasgupta, R. and Hirschmann, M. M.: Melting in the Earth's deep upper mantle caused by carbon dioxide, Nature, 440, 659–662, https://doi.org/10.1038/nature04612, 2006.
Dasgupta, R., Hirschmann, M. M., and Stalker, K.: Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3 GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-undersaturated Ocean Island Lavas, J. Petrol., 47, 647–671, https://doi.org/10.1093/petrology/egi088, 2006.
Dasgupta, R., Hirschmann, M. M., and Smith, N. D.: Partial Melting Experiments of Peridotite + CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts, J. Petrol., 48, 2093–2124, https://doi.org/10.1093/petrology/egm053, 2007.
Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M., and Withers, A.: Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts, Chem. Geol., 262, 57–77, https://doi.org/10.1016/j.chemgeo.2009.02.004, 2009.
Dasgupta, R., Mallik, A., Tsuno, K., Withers, A. C., Hirth, G., and Hirschmann, M. M.: Carbon-dioxide-rich silicate melt in the Earth's upper mantle, Nature, 493, 211–215, https://doi.org/10.1038/nature11731, 2013.
Debayle, E., Bodin, T., Durand, S., and Ricard, Y.: Seismic evidence for partial melt below tectonic plates, Nature, 586, 555–559, https://doi.org/10.1038/s41586-020-2809-4, 2020.
Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L., and Uhl, J.: Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii, Geochem. Geophy. Geosy., 9, Q09005, https://doi.org/10.1029/2008GC002076, 2008.
Ebisawa, N., Sumino, H., Okazaki, R., Takigami, Y., Hirano, N., Nagao, K., and Kaneoka, I.: Construction of I-Xe and 40Ar–39Ar dating system using a modified VG3600 noble gas mass spectrometer and the first I-Xe data obtained in Japan, J. Mass Spectrom. Soc. Jpn., 52, 219–229, https://doi.org/10.5702/massspec.52.219, 2004.
Falloon, T. J. and Green, D. H.: The solidus of carbonated, fertile peridotite, Earth Planet. Sc. Lett., 94, 364–370, https://doi.org/10.1016/0012-821X(89)90153-2, 1989.
Falloon, T. J. and Green, D. H.: Solidus of carbonated fertile peridotite under fluid-saturated conditions, Geology, 18, 195–199, https://doi.org/10.1130/0091-7613(1990)018<0195:SOCFPU>2.3.CO;2, 1990.
Falloon, T. J. Hoernle, K., Schaefer, B. F., Bindeman, I. N., Hart, S. R., Garbe-Schonberg, D., and Duncan, R. A.: Petrogenesis of Lava from Christmas Island, Northeast Indian Ocean: Implications for the Nature of Recycled Components in Non-Plume Intraplate Settings, Geosciences, 12, 118, https://doi.org/10.3390/geosciences12030118, 2022.
Foley, S. F., Yaxley, G. M., Rosenthal, A., Buhre, S., Kiseeva, E. S., Rapp, R. P., and Jacob, D. E.: The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar, Lithos, 112, 274–283, https://doi.org/10.1016/j.lithos.2009.03.020, 2009.
Frey, F. A., Green, D. H., and Roy, S. D.: Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data, J. Petrol., 19, 463–513, https://doi.org/10.1093/PETROLOGY/19.3.463, 1978.
Frey, F. A., Clague, D., Mahoney, J. J., and Sinton, J. M.: Volcanism at the edge of the Hawaiian plume: Petrogenesis of submarine alkali lavas from the North Arch volcanic field, J. Petrol., 41, 667–691, https://doi.org/10.1093/petrology/41.5.667, 2000.
Fujie, G., Kodaira, S., Nakamura, Y., Morgan, J. P. Dannowski, A., Thorwart, M., Grevemeyer, I., and Miura, S.: Spatial variations of incoming sediments at the northeastern Japan arc and their implications for megathrust earthquakes, Geology, 48, 614–619, https://doi.org/10.1130/G46757.1, 2020.
Fujiwara, T., Hirano, N. Abe, N., and Takizawa, K.: Subsurface structure of the “petit-spot” volcanoes on the northwestern Pacific Plate, Geophys. Res. Lett., 34, L13305, https://doi.org/10.1029/2007GL030439, 2007.
Garcia, M. O., Weis, D., Jicha, B. R., Ito, G., and Hanano, D.: Petrology and geochronology of lavas from Ka`ula Volcano: Implications for rejuvenated volcanism of the Hawaiian mantle plume, Geochim. Cosmochim. Ac., 185, 278–301, https://doi.org/10.1016/j.gca.2016.03.025, 2016.
Ghosh, S., Ohtani, E., Litasov, K. K., and Terasaki, H.: Solidus of carbonated peridotite from 10 to 20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle, Chem. Geol., 262, 17–28, https://doi.org/10.1016/j.chemgeo.2008.12.030, 2009.
Grassi, D. and Schmidt, M. W.: The Melting of Carbonated Pelites from 70 to 700 km Depth, J. Petrol., 52, 765–789, https://doi.org/10.1093/petrology/egr002, 2011.
Gripp, A. E. and Gordon, R. G.: Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model, Geophys. Res. Lett., 17, 1109–1112, https://doi.org/10.1029/GL017i008p01109, 1990.
Hammouda, T., Manthilake, G., Goncalves, P., Chantel, J., Guignard, J., Crichton, W., and Gaillard, F.: Is There a Global Carbonate Layer in the Oceanic Mantle?, Geophys. Res. Lett., 48, e2020GL089752, https://doi.org/10.1029/2020GL089752, 2020.
Hanano, D., Scoates, J. S., and Weis, D.: Alteration mineralogy and the effect of acid-leaching on the Pb-isotope systematics of ocean-island basalts, Am. Mineral., 94, 17–26, https://doi.org/10.2138/am.2009.2845, 2009.
Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., Takahashi, T., Kawabata, H., Suzuki, K., Kimura, J-I., and Nakai, S.: Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle, Geochem. Geophy. Geosy., 12, Q0AC09, https://doi.org/10.1029/2010GC003252, 2011.
Hart, S. R.: A large-scale isotope anomaly in the Southern Hemisphere mantle, Nature, 309, 753–757, https://doi.org/10.1038/309753a0, 1984.
Hart, S. R., Gerlach, D. C., and White, W. M.: A Possible new Sr-Nd-Pb mantle array and consequences for mantle mixing, Geochim. Cosmochim. Ac., 50, 1551–1557, https://doi.org/10.1016/0016-7037(86)90329-7, 1986.
Hart, S. R., Coetzee, M., Workman, R. K., Blusztajn, L., Johnson, K. T. M., Sinton, J. M., Steinberger, B., and Hawkins, J. W.: Genesis of the Western Samoa seamount province: Age, geochemical fingerprint and tectonics, Earth Planet. Sc. Lett., 227, 37–56, https://doi.org/10.1016/j.epsl.2004.08.005, 2004.
Hein, J. R., Koschinsky, A., Bau, M., Manheim, F. T., Kang, J. K., and Roberts, L.: Cobalt-rich ferromanganese crusts in the Pacific, in: Handbook of Marine Mineral Deposits, edited by: Cronan D. S., CRC Press, Boca Raton, Florida, 239–279, https://pubs.usgs.gov/publication/70127614 (last access: 6 February 2024), 1999.
Helz, R. T. and Thornber, C. R.: Geochemistry of Kilauea Iki lava lake, Hawaii, B. Volcanol., 49, 651–658, https://doi.org/10.1007/BF01080357, 1987.
Herath, P., Stern, T. A., Savage, M. K., Bassett, D., and Henrys, S.: Wide-angle seismic reflections reveal a lithosphere-asthenosphere boundary zone in the subducting Pacific Plate, New Zealand, Sci. Adv., 8, eabn5697, https://doi.org/10.1126/sciadv.abn5697, 2022.
Herzberg, C.: Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano, Nature, 444, 605–609, https://doi.org/10.1038/nature05254, 2006.
Herzberg, C.: Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins, J. Petrol., 52, 113–146, https://doi.org/10.1093/petrology/egq075, 2011.
Hirano, N.: Petit-spot volcanism: a new type of volcanic zone discovered near a trench, Geochem. J., 45, 157–167, https://doi.org/10.2343/geochemj.1.0111, 2011.
Hirano, N. and Machida, S.: The mantle structure below petit-spot volcanoes, Commun. Earth Environ., 3, 110, https://doi.org/10.1038/s43247-022-00438-1, 2022.
Hirano, N., Takahashi, E., Yamamoto, J., Abe, N., Ingle, S. P., Kaneoka, I., Hirata, T., Kimura, J.-I., Ishii, T., Ogawa, Y., Machida, S., and Suyehiro, K.: Volcanism in response to plate flexure, Science, 313, 1426–1428. https://doi.org/10.1126/science.1128235, 2006.
Hirano, N., Machida, S., Abe, N., Morishita, T., Tamura, A., and Arai, S.: Petit-spot lava fields off the central Chile trench induced by plate flexure, Geochem. J., 47, 249–257, https://doi.org/10.2343/geochemj.2.0227, 2013.
Hirano, N., Nakanishi, M., Abe, N., and Machida, S.: Submarine lava fields in French Polynesia, Mar. Geol., 373, 39–48, https://doi.org/10.1016/j.margeo.2016.01.002, 2016.
Hirano, N., Machida, S., Sumino, H., Shimizu, K., Tamura, A., Morishita, T., Iwano, H., Sakata, S., Ishii, T., Arai, S., Yoneda, S., Danhara, T., and Hirata, T.: Petit-spot volcanoes on the oldest portion of the Pacific Plate, Deep-Sea Res. Pt. I, 154, 103142, https://doi.org/10.1016/j.dsr.2019.103142, 2019.
Hirano, N., Sumino, H., Morishita, T., Machida, S., Kawano, T., Yasukawa, K., Hirata, T., Kato, Y., and Ishii, T.: A Paleogene magmatic overprint on Cretaceous seamounts of the western Pacific, Isl. Arc, 30, e12386, https://doi.org/10.1111/iar.12386, 2021.
Hirth, G. and Kohlstedt, D. L.: Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sc. Lett., 144, 93–108, https://doi.org/10.1016/0012-821X(96)00154-9, 1996.
Hoernle, K., Tilton, G., Le Bas, M. J., Duggem, S., and Garbe-Schönberg, D.: Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate, Miner. Petrol., 142, 520–542, https://doi.org/10.1007/s004100100308, 2002.
Hofmann, A. W.: Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219–229, https://doi.org/10.1038/385219a0, 1997.
Hofmann, A. W.: Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements, in: Treatise on Geochemistry, 2, The Mantle and Core, edited by: Carson, R. W., Elsevier, 61–101, https://doi.org/10.1016/B0-08-043751-6/02123-X, 2003.
Hosseini, K., Matthews, K. J., Sigloch, K., Shephard, G. E., Domeier, M., and Tsekhmistrenko, M.: SubMachine: Web-Based tools for exploring seismic tomography and other models of Earth's deep interior, Geochem. Geophy. Geosy., 19, 1464–1483, https://doi.org/10.1029/2018GC007431, 2018.
Hua, J., Fisher, K. M., Becker, T. W., Gazel, E., and Hirth, G.: Asthenospheric low-velocity zone consistent with globally prevalent partial melting, Nat. Geosci., 16, 175–181, https://doi.org/10.1038/s41561-022-01116-9, 2023.
Hulett, S. R., Simonetti, A., Rasbury, E. T., and Hemming, N. G.: Recycling of subducted crustal components into carbonatite melts revealed by boron isotopes, Nat. Geosci., 9, 904–908, https://doi.org/10.1038/ngeo2831, 2016.
Irvine, T. N. and Baragar, W. R. A.: A Guide to the Chemical Classification of the Common Volcanic Rocks, Can. J. Earth Sci., 8, 523–548, https://doi.org/10.1139/e71-055, 1971.
Irving, A. J. and Green, D. H.: Geochemistry and petrogenesis of the newer basalts of Victoria and South Australia, J. Geol. Soc. Aust., 23, 45–66, https://doi.org/10.1080/00167617608728920, 1976.
Iwata, N.: Geochronological study of the Deccan volcanism by the 40Ar–39Ar method, Doctor Thesis, University of Tokyo, 168 pp., https://doi.org/10.11501/3157813, 1998.
Jochum, K. P. and Nohl, U.: Reference materials in geochemistry and environmental research and the GeoReM database, Chem. Geol., 253, 50–53, https://doi.org/10.1016/j.chemgeo.2008.04.002, 2008.
Johnson, K. T. M., Dick, H. J. B., and Shimizu, N.: Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites, J. Geophys. Res., 95, 2661–2678, https://doi.org/10.1029/JB095iB03p02661, 1990.
Juriček, M. P and Keppler, H.: Amphibole stability, water storage in the mantle, and the nature of the lithosphere–asthenosphere boundary, Earth Planet. Sc. Lett., 608, 118082, https://doi.org/10.1016/j.epsl.2023.118082, 2023.
Kaneko, J., Machida, S., Hirano, N., Kasaya, T., and Kumagai, H.: Near bottom MBES survey mounted on a HOV at 5500 m depth, in: Oceans Conference Record (IEEE) 2022, 1–24 February 2022, Chennai, India, 1–5, https://doi.org/10.1109/OCEANSChennai45887.2022.9775366, 2022.
Kang, L. and Karato, S. -I.: Hydrogen Partitioning Between Olivine and Orthopyroxene: Implications for the Lithosphere-Asthenosphere Structure, J. Geophys. Res., 128, e2022JB025259, https://doi.org/10.1029/2022JB025259, 2023.
Karato, S.-I. and Jung, H.: Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle, Earth Planet. Sc. Lett., 157, 193–207, https://doi.org/10.1016/S0012-821X(98)00034-X, 1998.
Katsura, T. and Fei, H.: Asthenosphere dynamics based on the H2O dependence of element diffusivity in olivine, Natl. Sci. Rev., 8, nwaa278. https://doi.org/10.1093/nsr/nwaa278, 2021.
Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K.: Seismic Evidence for Sharp Lithosphere–Asthenosphere Boundaries of Oceanic Plates, Science, 324, 499–502, https://doi.org/10.1126/science.1169499, 2009.
Kelemen, P. B., Yogodzinskim G. M., and Scholl, D. W.: Along-strike variation in the Aleutian Island Arc: genesis of high Mg# andesite and implications for continental crust, in: Inside the subduction Factory, edited by: Eiler, J., American Geophysical Union, Geophysical Monograph, 138, 223–276, https://doi.org/10.1029/138GM11, 2003.
Keshav, S. and Gudfinnsson, G. H.: Silicate liquid-carbonatite liquid transition along the melting curve of model, vapor-saturated peridotite in the system CaO-MgO-Al2O3-SiO2-CO2 from 1.1 to 2 GPa, J. Geophys. Res., 118, 3341–3353, https://doi.org/10.1002/jgrb.50249, 2013.
Kiseeva, E. S., Litasov, K. D., Yaxley, G. M., Ohtani, E., and Kamenetsky, V. S.: Melting and Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the Deep Mantle, J. Petrol., 54, 1555–1583, https://doi.org/10.1093/petrology/egt023, 2013.
Kobayashi, M., Sumino, H., Saito, T., Nagao, K.: Determination of halogens in geological reference materials using neutron irradiation noble gas mass spectrometry, Chem. Geol., 582, 120420, https://doi.org/10.1016/j.chemgeo.2021.120420, 2021.
Konovalov, Y. I. and Martynov, Y. A.: Volcanic complex of the La Mont Guyot; Marcus-Wake Uplift, Pacific Ocean, Pacific Geology, 5, 40–47, 1992.
Konter, J. G. and Jackson, M. G.: Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on late-stage volcanism, Geochem. Geophy. Geosy., 13, Q0AM04, https://doi.org/10.1029/2011GC003974, 2012.
Konter, J. G., Hanan, B. B., Blicher-Toft, J., Koppers, A. A. P., Plank, T., and Staudigel, H.: One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature, Earth Planet. Sc. Lett., 275, 285–295, https://doi.org/10.1016/j.epsl.2008.08.023, 2008.
Koppers, A. A. P., Staudigel, H., and Wijbrans, J. R.: Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the incremental heating technique, Chem. Geol., 166, 139–158. https://doi.org/10.1016/S0009-2541(99)00188-6, 2000.
Koppers, A. A. P., Staudigel, H., Pringle, M. S., and Wijbrans, J. R.: Short-lived and discontinuous intra-plate volcanism in the South Pacific: hotspots or extensional volcanism?, Geochem. Geophy. Geosy., 4, 1089, https://doi.org/10.1029/2003GC000533, 2003.
Koppers, A. A. P., Russell, J. A., Jackson, M. G., Konter, J., Staudigel, H., and Hart, S. R.: Samoa reinstated as a primary hotspot trail, Geology, 36, 435–438, https://doi.org/10.1130/G24630A.1, 2008.
Korenaga, J.: Plate tectonics and surface environment: Role of the oceanic upper mantle, Earth Sci. Rev., 205, 103185, https://doi.org/10.1016/j.earscirev.2020.103185, 2020.
Le Bas, M. J., Le Maitre, R., Strackeisen, A., and Zanettin, B.: A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Liu, J., Hirano, N., Machida, S., Xia, Q., Tao, C., Liao, S., Liang, J., Li W., Yang, W. Zhang, G., and Ding, T.: Melting of recycled ancient crust responsible for the Gutenberg discontinuity, Nat. Commun., 11, 172, https://doi.org/10.1038/s41467-019-13958-w, 2020.
Longerich, H. P., Jackson, S. E., and Gunther, D.: Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, J. Anal. Atom. Spectrom., 11, 899–904, https://doi.org/10.1039/ja9961100899, 1996.
Lu, C., Grand, S. P., Lai, H., and Garnero, E. J.: TX2019slab: A New P and S Tomography Model Incorporating Subducting Slabs, J. Geophys. Res., 124, 11549–11567, https://doi.org/10.1029/2019JB017448, 2019.
Machida, S., Hirano, N., and Kimura, J.-I.: Evidence for recycled material in Pacific upper mantle unrelated to plumes, Geochim. Cosmochim. Ac., 73, 3028–3037, https://doi.org/10.1016/j.gca.2009.01.026, 2009.
Machida, S., Orihashi, Y., Magnani, M., Neo, N., Wilson, S., Tanimizu, M., Yoneda, S., Yasuda, A., and Tamaki, K.: Regional mantle heterogeneity regulates melt production along the Réunion hotspot-influenced Central Indian Ridge, Geochem. J., 48, 433–449, https://doi.org/10.2343/geochemj.2.0320, 2014.
Machida, S., Hirano, N., Sumino, H., Hirata, T., Yoneda, S., and Kato, Y.: Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere, Earth Planet. Sc. Lett., 426, 267–279, https://doi.org/10.1016/j.epsl.2015.06.018, 2015.
Machida, S., Kogiso, T., and Hirano, N.: Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2, Nat. Commun., 8, 14302, https://doi.org/10.1038/ncomms14302, 2017.
Massuyeau, M., Gardés, E., Morizet, Y., and Gaillard, F.: A model for the activity of silica along the carbonatite–kimberlite–mellilitite–basanite melt compositional joint, Chem. Geol., 418, 206–216, https://doi.org/10.1016/j.chemgeo.2015.07.025, 2015.
Massuyeau, M., Gardés, E., Rogerie, G., Aulbach, S., Tappe, S., Le Trong, E., Sifré, D., and Gaillaer, F.: MAGLAB: A computing platform connecting geophysical signatures to melting processes in Earth's mantle, Phys. Earth Planet. In., 314, 106638, https://doi.org/10.1016/j.pepi.2020.106638, 2021.
McKenzie, D. and O'Nions, R. K.: Partial melt distributions from inversion of rare Earth element concentrations, J. Petrol., 32, 1021–1091, https://doi.org/10.1093/petrology/32.5.1021, 1991.
McKenzie, D. and O'Nions, R. K.: The Source Regions of Ocean Island Basalts, J. Petrol., 36, 133–159, https://doi.org/10.1093/petrology/36.1.133, 1995.
Melson, W. G., Thompson, G., and van Andel, T. H.: Volcanism and metamorphism in the Mid-Atlantic Ridge, 22∘ N latitude, J. Geophys. Res., 73, 5925–5941, https://doi.org/10.1029/JB073i018p05925, 1968.
Mierdel, K., Keppler, H., Smyth, J. R., and Langenhorst, F.: Water solubility in aluminous orthopyroxene and the origin of Earth's Asthenosphere, Science, 315, 364–368, https://doi.org/10.1126/science.1135422, 2007.
Mikuni, K., Hirano, N., Akizawa, N., Yamamoto, J., Machida, S., Tamura, A., Hagiwara, Y., and Morishita, T.: Lithological structure of western Pacific lithosphere reconstructed from mantle xenoliths in a petit-spot volcano, Prog. Earth Planet. Sci., 9, 62, https://doi.org/10.1186/s40645-022-00518-y, 2022.
Mikuni, K., Hirano, N., Machida, S., Sumino, H., Akizawa, N., Tamura, A., Morishita, T., Kato, Y.: Results of geochemical analysis and modeling of Mikuni et al. “Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate”, Version 1.0, Interdisciplinary Earth Data Alliance (IEDA) [data set], https://doi.org/10.60520/IEDA/113084, 2024.
Miyashiro, A., Shido, F., and Ewing, M.: Metamorphism on the Mid-Atlantic Ridge near 24 and 30∘ N, Philos. T. R. Soc. Lond., 268, 589–603, https://doi.org/10.1098/rsta.1971.0014, 1971.
Moore, J. G., Fornari, D. J., and Clague, D. A.: Basalts from the 1877 Submarine Eruption of Mauna Loa, Hawaii; New Data on the Variation of Palagonitization Rate with Temperature, United States Geol. Surv. Bull. 1663, US Geological Survye, 1–11, https://doi.org/10.3133/b1663, 1985.
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008.
Natland, J.: Petrology of Volcanic Rocks Dredged from Seamounts in the Line Islands, Initial Rep. Deep Sea, 33, 749–777. https://doi.org/10.2973/dsdp.proc.33.126.1976, 1976.
Nier, A.: A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium, Phys. Rev., 77, 789–793, https://doi.org/10.1103/PhysRev.77.789, 1950.
Nobre Silva, I. G., Weis, D., Barling, J., and Scoates, J. S.: Leaching systematics and matrix elimination for the determination of high-precision Pb isotope compositions of ocean island basalts, Geochem. Geophy. Geosy., 10, Q08012, https://doi.org/10.1029/2009GC002537, 2009.
Novella, D., Keshav, S., Gudfinnsson, G. H., and Ghosh, S.: Melting phase relations of model carbonated peridotite from 2 to 3 GPa in the system CaO-MgO-Al2O3-SiO2-CO2 and further indication of possible unmixing between carbonatite and silicate liquids, J. Geophys. Res., 119, 2780–2800, https://doi.org/10.1002/2013JB010913, 2014.
Nozaki, T., Tokumaru, A., Takaya, Y., Kato, Y., Suzuki, K., and Urabe, T.: Major and trace element compositions and resource potential of ferromanganese crust at Takuyo Daigo Seamount, northwestern Pacific Ocean, Geochem. J., 50, 527–537, https://doi.org/10.2343/geochemj.2.0430, 2016.
Okumura, S. and Hirano, N.: Carbon dioxide emission to earth's surface by deep-sea volcanism, Geology, 41, 1167–1170, https://doi.org/10.1130/G34620.1, 2013.
Orihashi, Y., Maeda, J., Tanaka, R., Zeniya, R., and Niida, K.: Sr and Nd isotopic data for the seven GSJ rock reference samples; JA-1, JB-1a, JB-2, JB-3, JG-1a, JGb-1 and JR-1, Geochem. J., 32, 205–211, https://doi.org/10.2343/geochemj.32.205, 1998.
Ozawa, K.: Mass balance equations for open magmatic systems: Trace element behavior and its application to open system melting in the upper mantle. J. Geophys. Res., 106, 13407–13434, https://doi.org/10.1029/2001JB900001, 2001.
Pearce, N. J. G., Perkins, W. T., Westgate, J. A., Gorton, M. P., Jackson, S. E., Neal, C. R., and Chenery, S. P.: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostanddard. Newslett., 21, 115–144, https://doi.org/10.1111/j.1751-908X.1997.tb00538.x, 1997.
Pilet, S.: Generation of low-silica alkaline lavas: Petrological constrains, models, and thermal implications, in: The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson, edited by: Foulger, G. R., Lustrino, M., and King, S. D., The Geological Society of America, https://doi.org/10.1130/2015.2514(17), 2015.
Pilet, S., Baker, M. B., and Stolper, E. M.: Metasomatized Lithosphere and the Origin of Alkaline Lavas, Science, 320, 916–919, https://doi.org/10.1126/science.1156563, 2008.
Pilet, S., Abe, N., Rochat, L., Kaczmarek, M.-A., Hirano, N., Machida, S., Buchs, D. M., Baumgarther, P. O., and Müntener, O.: Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure, Nat. Geosci., 9, 898–903, https://doi.org/10.1038/ngeo2825, 2016.
Reinhard, A. A., Jackson, M. G., Blusztajn, J., Koppers, A. A. P., Simms, A. R., and Konter, J. G.: “Petit Spot” Rejuvenated Volcanism Superimposed on Plume-Derived Samoan Shield Volcanoes: Evidence From a 645 m Drill Core From Tutuila Island, American Samoa, Geochem. Geophy. Geosy., 20, 1485–1507, https://doi.org/10.1029/2018GC007985, 2019.
Resing, J. A. and Sansone, F. J.: The chemistry of lava–seawater interactions: the generation of acidity, Geochim. Cosmochim. Ac., 63, 2183–2198, https://doi.org/10.1016/S0016-7037(99)00193-3, 1999.
Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V. S., and Kuzmin, D. V.: Metal saturation in the upper mantle, Nature, 449, 456–458, https://doi.org/10.1038/nature06183, 2007.
Rychert, C. A. and Shearer, P. M.: A global view of the lithosphere–asthenosphere boundary, Science, 324, 495–498, https://doi.org/10.1126/science.1169754, 2009.
Sakamaki, T., Suzuki, A., Ohtani, E., Terasaki, H., urakawa, S., Katayama, Y., Funakoshi, K.-I., Wang, Y. Hernlund, J. H., and Ballmer, M. D.: Ponded melt at the boundary between the lithosphere and asthenosphere, Nat. Geosci., 6, 1041–1044, https://doi.org/10.1038/ngeo1982, 2013.
Shaw, C. S. J.: Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: Further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths, Miner. Petrol., 135, 114–132, https://doi.org/10.1007/s004100050501, 1999.
Sifré, D., Gardés, E., Massuyeau, M., Hashim, L., Hier-Majumder, S., and Gaillard, F.: Electrical conductivity during incipient melting in the oceanic low-velocity zone, Nature, 509, 81–85, https://doi.org/10.1038/nature13245, 2014.
Smith, W. H. F., Staudigel, H., Watts, A. B., and Pringle, M. S.: The Magellan seamounts: early Cretaceous record of the South Pacific isotopic and thermal anomaly, J. Geophys. Res., 94, 10501–10523, https://doi.org/10.1029/JB094iB08p10501, 1989.
Staudigel, H. and Hart, S. R.: Alteration of basaltic glass: processes and significance for the oceanic crust-sewater budget, Geochim. Cosmochim. Ac., 47, 337–350, https://doi.org/10.1016/0016-7037(83)90257-0, 1983.
Staudigel, H., Park, K. H., Pringle, M., Rubenstone, J. L., Smith, W. H. F., and Zindler, A.: The longevity of the South-Pacific isotopic and thermal anomaly, Earth Planet. Sc. Lett., 102, 24–44, https://doi.org/10.1016/0012-821X(91)90015-A, 1991.
Stixrude, L. and Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals — I. Physical properties, Geophys. J. Int., 162, 610–632, https://doi.org/10.1111/j.1365-246X.2005.02642.x, 2005.
Stracke, A., Michael, W., Felix, G., Paul, B., and Erin, T.: Major and trace element concentrations and Sr, Nd, Hf, Pb isotope ratios of global mid ocean ridge and ocean island basalts, GRO data, V1, DIGIS [data set], https://doi.org/10.25625/0SVW6S, 2022.
Sun, S.-S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Takahashi, E.: Origin of basaltic magmas: Implications from peridotite melting experiments and an olivine fractionation model, B. Volcanol. Soc. Jpn., 2nd Ser, 30, S17–S40, https://doi.org/10.18940/kazanc.30.TOKUBE_S17, in Japanese with English abstract, 1986.
Tamura, A., Arai, S., Takeuchi, M., Miura, M., and Pirnia, T.: Compositional heterogeneity of a websterite xenolith from Kurose, southwest Japan: insights into the evolution of lower crust beneath the Japan Arc, Eur. J. Mineral., 31, 35–47, https://doi.org/10.1127/ejm/2018/0030-2803, 2019.
Taneja, R., Rushmer, T., Blichert-Toft, J., Turner, S., and O'Neill, C.: Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island, Lithos, 262, 561–575, https://doi.org/10.1016/j.lithos.2016.07.027, 2016.
Tanimizu, M. and Ishikawa, T.: Development of rapid and precise Pb isotope analytical techniques using MC-ICPMS and new results for GSJ rock reference samples, Geochem. J., 40, 121–133. https://doi.org/10.2343/geochemj.40.121, 2006.
Tatsumi, Y., Sakuyama, M., Fukuyama, H., and Kushiro, I.: Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones, J. Geophys. Res., 88, 5815–5825, https://doi.org/10.1029/JB088iB07p05815, 1983.
Tivey, M. A., Sager, W. W., Lee, S.-M., and Tominaga, M.: Origin of the Pacific Jurassic quiet zone, Geology, 34, 789–792, https://doi.org/10.1130/G22894.1, 2006.
Uenzelmann-Neben, G., Schmidt, D. N., Niessen, F., and Stein, R.: Intraplate volcanism off South Greenland: caused by glacial rebound?, Geophys. J. Int., 190, 1–7, https://doi.org/10.1111/j.1365-246X.2012.05468.x, 2012.
Valentine, G. A. and Hirano, N.: Mechanisms of low-flux intraplate volcanic fields—Basin and Range (North America) and northwest Pacific Ocean, Geology, 38, 55–58, https://doi.org/10.1130/G30427.1, 2010.
Wakaki, S., Shibata, S.-N., and Tanaka, T.: Isotope ratio measurements of trace Nd by the total evaporation normalization (TEN) method in thermal ionization mass spectrometry, Int. J. Mass Spectrom., 264, 157–163, https://doi.org/10.1016/j.ijms.2007.04.006, 2007.
Walter, M. J.: Melting of garnet peridotite and the origin of komatiite and depleted lithosphere, J. Petrol., 39, 29–60, https://doi.org/10.1093/petroj/39.1.29, 1998.
Wang, D., Mookherjee, M., Xu Y., and Karato, S.-I.: The effect of water on the electrical conductivity of olivine, Nature, 443, 977–980, https://doi.org/10.1038/nature05256, 2006.
Wang, X.-J., Chen, L.-H., Hofmann, A. W., Hanyu, T., Kawabata, H., Zhong, Y., Xie, L.-W., Shi, J.-H., Miyazaki, T., Hirata, Y., Takahashi, T., Senda, R., Chang, O., Vaglarov, B. S., and Kimura, J.-I.: Recycled ancient ghost carbonate in the Pitcairn mantle plume, P. Natl. Acad. Sci. USA, 115, 8682–8687, https://doi.org/10.1073/pnas.1719570115, 2018.
Weis, D. and Frey, F. A.: Isotope geochemistry of the Ninetyeast Ridge basement basalts: Sr, Nd, and Pb evidence for involvement of the Kerguelen hot spot, Proc. Ocean Drill. Program Sci. Results, 121, 591–610, 1991.
Weis, D. and Frey, F. A.: Role of the Kerguelen Plume in generating the eastern Indian Ocean seafloor. J. Geophys. Res., 101, 13381–13849, https://doi.org/10.1029/96JB00410, 1996.
Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G. A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J. S., Goolaerts, A., Friedman, R. M., and Mahoney, J. B.: High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS, Geochem. Geophy. Geosy., 7, Q08006, https://doi.org/10.1029/2006GC001283, 2006.
Weiss, Y., Class, C., Goldstein, S. L., and Hanyu, T.: Key new pieces of the HIMU puzzle from olivines and diamond inclusions, Nature, 537, 666–670, https://doi.org/10.1038/nature19113, 2016.
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools version 6, Geochem Geophys Geosyst., 20, 5556–5564, https://doi.org/10.1029/2019GC008515, 2019.
Workman, R. K., Hart, S. R., Jackson, M., Regelous, M., Farley, K. A., Blusztajn, J., Kurz, M., and Staudigel, H.: Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain, Geochem. Geophy. Geosy., 5, Q04008, https://doi.org/10.1029/2003GC000623, 2004.
Yamamoto, J., Korenaga, J., Hirano, N., and Kagi, H.: Melt-rich lithosphere-asthenosphere boundary inferred from petit-spot volcanoes, Geology, 42, 967–970, https://doi.org/10.1130/G35944.1, 2014.
Yamamoto, J., Kawano, T., Takahata, N., and Sano, Y.: Noble gas and carbon isotopic compositions of petit-spot lavas from southeast of Marcus Island, Earth Planet. Sc. Lett., 497, 139–148, https://doi.org/10.1016/j.epsl.2018.06.020, 2018.
Yamamoto, J., Hirano, N., and Kurz, M. D.: Noble gas isotopic compositions of seamount lavas from the central Chile trench: Implications for petit-spot volcanism and the lithosphere asthenosphere boundary, Earth Planet. Sc. Lett., 552, 116611, https://doi.org/10.1016/j.epsl.2020.116611, 2020.
Yang, H.-J., Frey, F. A., and Clague, D. A.: Constraints on the Source Components of Lavas Forming the Hawaiian North Arch and Honolulu Volcanics, J. Petrol., 44, 603–627, https://doi.org/10.1093/petrology/44.4.603, 2003.
Yoshino, T., Matsuzaki, T., Yamashita, S., and Katsura T.: Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere, Nature, 443, 973–976, https://doi.org/10.1038/nature05223, 2006.
Zakharov, D. O., Tanaka, R., Butterfield, D. A., and Nakamura, E.: A New Insight Into Seawater–Basalt Exchange Reactions Based on Combined δ18O– — Values of Hydrothermal Fluids From the Axial Seamount Volcano, Pacific Ocean, Front. Earth Sci., 9, 691699, https://doi.org/10.3389/feart.2021.691699, 2021.
Zhang, F., Lin, J., and Zhan, W.: Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sc. Lett., 401, 206–214, https://doi.org/10.1016/j.epsl.2014.05.032, 2014.
Zhang, G., Wang, S., Huang, S., Zhan, M., and Yao, J.: CO2-rich rejuvenated stage lavas on Hawaiian Islands, Geochem. Geophy. Geosy., 23, e2022GC010525, https://doi.org/10.1029/2022GC010525, 2022.
Zhang, G. L., Chen, L. H., Jackson, M., and Hofmann, A. W.: Evolution of carbonated melt to alkali basalt in the South China Sea, Nat. Geosci., 10, 229–235, https://doi.org/10.1038/ngeo2877, 2017.
Zhang, J., Xu, M., and Sun, Z.: Lithospheric flexural modelling of the seaward and trenchward of the subducting oceanic plates, Int. Geol. Rev., 62, 908–923, https://doi.org/10.1080/00206814.2018.1550729, 2020.
Zhang, W., Johnston, S., and Currie, C. A.: Kimberlite magmatism induced by west-dipping subduction of the North American plate, Geology, 47, 395–398, https://doi.org/10.1130/G45813.1, 2019.
Zhong, Y., Zhang, G.-L., Zhong, L.-F., Chen, L.-H., and Wang, X.-J.: Post-spreading volcanism triggered by CO2 along the South China Sea fossil spreading axis, Lithos, 404–405, 106478, https://doi.org/10.1016/j.lithos.2021.106478, 2021.
Zindler, A. and Hart, S.: Chemical geodynamics, Annu. Rev. Earth Pl. Sci., 14, 493–571, https://doi.org/10.1146/annurev.ea.14.050186.002425, 1986.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(15740 KB) - Full-text XML
- Corrigendum
-
Supplement
(5234 KB) - BibTeX
- EndNote
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones...