Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-989-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
(D)rifting in the 21st century: key processes, natural hazards, and geo-resources
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Potsdam, Germany
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
3D Seismic Lab, School of Earth and Environmental Sciences, Cardiff University, Cardiff, United Kingdom
Patricia Cadenas
Earth Sciences Department, Memorial University of Newfoundland, St. John's, Canada
Instituto Dom Luiz (IDL) and Geology Department, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
Mohamed Gouiza
Computational Infrastructure for Geodynamics (CIG), University of California, Davis, Davis, CA, United States of America
School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Jordan J. J. Phethean
School of Science, College of Science and Engineering, University of Derby, Derby, United Kingdom
Sascha Brune
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Anne C. Glerum
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Potsdam, Germany
Related authors
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Frank Zwaan, Guido Schreurs, and Susanne J. H. Buiter
Solid Earth, 10, 1063–1097, https://doi.org/10.5194/se-10-1063-2019, https://doi.org/10.5194/se-10-1063-2019, 2019
Short summary
Short summary
This work was inspired by an effort to numerically reproduce laboratory models of extension tectonics. We tested various set-ups to find a suitable analogue model and in the process systematically charted the impact of set-ups and boundary conditions on model results, a topic poorly described in existing scientific literature. We hope that our model results and the discussion on which specific tectonic settings they could represent may serve as a guide for future (analogue) modeling studies.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
Montserrat Torne, Tiago Alves, Ivone Jiménez-Munt, Joao Carvalho, Conxi Ayala, Elsa Ramalho, Angela Gómez, Hugo Matias, Hanneke Heida, Abraham Balaguera, José Luis García-Lobón, and Jaume Vergés
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-210, https://doi.org/10.5194/essd-2024-210, 2024
Preprint under review for ESSD
Short summary
Short summary
Sediments are like history books for geologists and geophysicists. By studying sediments, we can learn about past environments, sea level and climate changes, and where the sediments came from. To aid in understanding the geology, georesources, and potential hazards in the Iberian Peninsula and surrounding seas, we present the SedDARE-IB sediments data repository. As an application in geothermal exploration, we investigate how sediments thickness affects the depth of the 150 °C isotherm.
Tiago M. Alves
Solid Earth, 15, 39–62, https://doi.org/10.5194/se-15-39-2024, https://doi.org/10.5194/se-15-39-2024, 2024
Short summary
Short summary
Alpine tectonic inversion is reviewed for southwestern Iberia, known for its historical earthquakes and tsunamis. High-quality 2D seismic data image 26 faults mapped to a depth exceeding 10 km. Normal faults accommodated important vertical uplift and shortening. They are 100–250 km long and may generate earthquakes with Mw > 8.0. Regions of Late Mesozoic magmatism comprise thickened, harder crust, forming lateral buttresses to compression and promoting the development of fold-and-thrust belts.
Pâmela C. Richetti, Frank Zwaan, Guido Schreurs, Renata S. Schmitt, and Timothy C. Schmid
Solid Earth, 14, 1245–1266, https://doi.org/10.5194/se-14-1245-2023, https://doi.org/10.5194/se-14-1245-2023, 2023
Short summary
Short summary
The Araripe Basin in NE Brazil was originally formed during Cretaceous times, as South America and Africa broke up. The basin is an important analogue to offshore South Atlantic break-up basins; its sediments were uplifted and are now found at 1000 m height, allowing for studies thereof, but the cause of the uplift remains debated. Here we ran a series of tectonic laboratory experiments that show how a specific plate tectonic configuration can explain the evolution of the Araripe Basin.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Frank Zwaan and Guido Schreurs
Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, https://doi.org/10.5194/se-14-823-2023, 2023
Short summary
Short summary
The East African Rift System (EARS) is a major plate tectonic feature splitting the African continent apart. Understanding the tectonic processes involved is of great importance for societal and economic reasons (natural hazards, resources). Laboratory experiments allow us to simulate these large-scale processes, highlighting the links between rotational plate motion and the overall development of the EARS. These insights are relevant when studying other rift systems around the globe as well.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022, https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Short summary
When a sedimentary basin is subjected to compressional tectonic forces after its formation, it may be inverted. A thorough understanding of such
basin inversionis of great importance for scientific, societal, and economic reasons, and analogue tectonic models form a key part of our efforts to study these processes. We review the advances in the field of basin inversion modelling, showing how the modelling results can be applied, and we identify promising venues for future research.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, https://doi.org/10.5194/se-13-583-2022, 2022
Short summary
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
Frank Zwaan, Pauline Chenin, Duncan Erratt, Gianreto Manatschal, and Guido Schreurs
Solid Earth, 12, 1473–1495, https://doi.org/10.5194/se-12-1473-2021, https://doi.org/10.5194/se-12-1473-2021, 2021
Short summary
Short summary
We used laboratory experiments to simulate the early evolution of rift systems, and the influence of structural weaknesses left over from previous tectonic events that can localize new deformation. We find that the orientation and type of such weaknesses can induce complex structures with different orientations during a single phase of rifting, instead of requiring multiple rifting phases. These findings provide a strong incentive to reassess the tectonic history of various natural examples.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Frank Zwaan, Guido Schreurs, and Susanne J. H. Buiter
Solid Earth, 10, 1063–1097, https://doi.org/10.5194/se-10-1063-2019, https://doi.org/10.5194/se-10-1063-2019, 2019
Short summary
Short summary
This work was inspired by an effort to numerically reproduce laboratory models of extension tectonics. We tested various set-ups to find a suitable analogue model and in the process systematically charted the impact of set-ups and boundary conditions on model results, a topic poorly described in existing scientific literature. We hope that our model results and the discussion on which specific tectonic settings they could represent may serve as a guide for future (analogue) modeling studies.
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman
Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, https://doi.org/10.5194/se-9-267-2018, 2018
Short summary
Short summary
A nonlinear viscoplastic rheology is implemented and benchmarked in the ASPECT software, allowing for the modeling of lithospheric deformation. We showcase the new functionality with a four-dimensional model of thermomechanically coupled subduction.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
From subduction to collision in the Parautochthon and autochthon of the NW Variscan Iberian Massif
The seismogenic fault system of the 2017 Mw 7.3 Iran–Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration
Francisco J. Rubio Pascual, Luis M. Martín Parra, Pablo Valverde-Vaquero, Alejandro Díez Montes, Manuel P. Hacar Rodríguez, Justo Iglesias, Rubén Díez Fernández, Gloria Gallastegui, Nemesio Heredia, and L. Roberto Rodríguez Fernández
Solid Earth Discuss., https://doi.org/10.5194/se-2020-25, https://doi.org/10.5194/se-2020-25, 2020
Preprint withdrawn
Stefano Tavani, Mariano Parente, Francesco Puzone, Amerigo Corradetti, Gholamreza Gharabeigli, Mehdi Valinejad, Davoud Morsalnejad, and Stefano Mazzoli
Solid Earth, 9, 821–831, https://doi.org/10.5194/se-9-821-2018, https://doi.org/10.5194/se-9-821-2018, 2018
Short summary
Short summary
A balanced cross section across the hypocentre of the 2017 Iran–Iraq Mw 7.3 earthquake is presented. The structural style of the area is characterised by inversion tectonics with partial decoupling between the basement and the 10 km thick sedimentary cover. The main shock is located along a low-dipping lateral ramp of the Mountain Front Fault. The balanced cross section indicates that the Mountain Front Fault is the only fault where an Mw 7.3 earthquake may occur.
Cited articles
ADD-ON – Afar Dallol Drilling – ONset of sedimentary processes in an ac4ve rif basin: https://www.afardalloldrilling.com (last access: 11 July 2024), 2023. a
Agartan, E., Gaddipati, M., Yip, Y., Savage, B., and Ozgen, C.: CO2 storage in depleted oil and gas fields in the Gulf of Mexico, Int. J. Greenh. Gas Con., 72, 38–48, https://doi.org/10.1016/j.ijggc.2018.02.022, 2018. a
Agostini, A., Bonini, M., Corti, G., Sani, F., and Mazzarini, F.: Fault architecture in the Main Ethiopian Rift and comparison with experimental models: Implications for rift evolution and Nubia–Somalia kinematics, Earth Planet. Sc. Lett., 301, 479–492, https://doi.org/10.1016/j.epsl.2010.11.024, 2011. a, b
Ahmed, A. H. and Arai, S.: Platinum-group Minerals in Podiform Chromitites of the Oman Ophiolite, Can. Mineral., 41, 597–616, https://doi.org/10.2113/gscanmin.41.3.597, 2003. a
Ajanovic, A., Sayer, M., and Haas, R.: The economics and the environmental benignity of different colors of hydrogen, Int. J. Hydrogen Energ., 47, 24136–24154, https://doi.org/10.1016/j.ijhydene.2022.02.094, 2022. a
Ajayi, T., Gomes, J. S., and Bera, A.: A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches, Petrol. Sci., 16, 1028–1063, https://doi.org/10.1007/s12182-019-0340-8, 2019. a, b
Akçar, N., Tikhomirov, D., Özkaymak, Ç., Ivy-Ochs, S., Alfimov, V., Sözbilir, H., Uzel, B., and Schlüchter, C.: 36Cl exposure dating of paleoearthquakes in the Eastern Mediterranean: First results from the western Anatolian Extensional Province, Manisa fault zone, Turkey, GSA Bulletin, 124, 1724–1735, https://doi.org/10.1130/B30614.1, 2012. a, b
Albers, E., Bach, W., Pérez-Gussinyé, M., McCammon, C., and Frederichs, T.: Serpentinization-driven H2 production from continental break-up to mid-Ocean Ridge spreading: Unexpected high rates at the West Iberia margin, Front. Earth Sci., 9, 673063, https://doi.org/10.3389/feart.2021.673063, 2021. a, b, c
Alewell, C., Ringeval, B., Ballabio, C., Robinson, D. A., Panagos, P., and Borrelli, P.: Global phosphorus shortage will be aggravated by soil erosion, Nat. Commun., 11, 4546, https://doi.org/10.1038/s41467-020-18326-7, 2020. a
Alves, T., Fetter, M., Busby, C., Gontijo, R., Cunha, T. A., and Mattos, N. H.: A tectono-stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems, Mar. Petrol. Geol., 117, 104341, https://doi.org/10.1016/j.marpetgeo.2020.104341, 2020. a, b, c
Ambraseys, N. N.: Earthquakes and archaeology, J. Archaeol. Sci., 33, 1008–1016, https://doi.org/10.1016/j.jas.2005.11.006, 2006. a
Ambraseys, N. N. and Adams, R. D.: Reappraisal of major African earthquakes, south of 20° N, 1900–1930, Nat. Hazards, 4, 389–419, https://doi.org/10.1007/BF00126646, 1991. a, b, c, d
Andrés, S., Santillán, D., Mosquera, J. C., and Cueto-Felgueroso, L.: Thermo-Poroelastic Analysis of Induced Seismicity at the Basel Enhanced Geothermal System, Sustainability: Science Practice and Policy, 11, 6904, https://doi.org/10.3390/su11246904, 2019. a
Andrés-Martínez, M., Pérez-Gussinyé, M., Armitage, J., and Morgan, J. P.: Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins, Tectonics, 38, 641–665, https://doi.org/10.1029/2018TC005346, 2019. a
Ankrah, S. and AL-Tabbaa, O.: Universities–industry collaboration: A systematic review, Scand. J. Manag., 31, 387–408, https://doi.org/10.1016/j.scaman.2015.02.003, 2015. a
Arndt, N. T., Fontboté, L., Hedenquist, J. W., Kesler, S. E., Thompson, J. F. H., and Wood, D. G.: Future Global Mineral Resources, Geochem. Perspect., 6, 1–171, https://doi.org/10.7185/geochempersp.6.1, 2017. a, b
ArRajehi, A., McClusky, S., Reilinger, R., Daoud, M., Alchalbi, A., Ergintav, S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B., Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan, L.: Geodetic constraints on present-day motion of the Arabian Plate: Implications for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011, https://doi.org/10.1029/2009tc002482, 2010. a, b
Arzhannikova, A. V., Arzhannikov, S. G., Ritz, J.-F., Chebotarev, A. A., and Yakhnenko, A. S.: Earthquake geology of the Mondy fault (SW Baikal Rift, Siberia), J. Asian Earth Sci., 248, 105614, https://doi.org/10.1016/j.jseaes.2023.105614, 2023. a
Assier-Rzadkieaicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., and Bourillet, J. F.: Numerical Modelling of a Landslide-generated Tsunami: The 1979 Nice Event, Pure Appl. Geophys., 157, 1707–1727, https://doi.org/10.1007/PL00001057, 2000. a
Augustin, N., Devey, C. W., van der Zwan, F. M., Feldens, P., Tominaga, M., Bantan, R. A., and Kwasnitschka, T.: The rifting to spreading transition in the Red Sea, Earth Planet. Sc. Lett., 395, 217–230, https://doi.org/10.1016/j.epsl.2014.03.047, 2014. a
Aydan, Ö. and Kumsar, H.: Assessment of the earthquake potential of the west Aegean region of Turkey based on seismicity, tectonics, crustal deformation and geo-archaeological evidence and its geotechnical aspects, B. Eng. Geol. Environ., 74, 1037–1055, https://doi.org/10.1007/s10064-014-0684-7, 2015. a
Aydin, H. and Merey, S.: Potential of geothermal energy production from depleted gas fields: A case study of Dodan Field, Turkey, Renew. Energ., 164, 1076–1088, https://doi.org/10.1016/j.renene.2020.10.057, 2021. a
Bajpai, S., Shreyash, N., Singh, S., Memon, A. R., Sonker, M., Tiwary, S. K., and Biswas, S.: Opportunities, challenges and the way ahead for carbon capture, utilization and sequestration (CCUS) by the hydrocarbon industry: Towards a sustainable future, Energy Reports, 8, 15595–15616, https://doi.org/10.1016/j.egyr.2022.11.023, 2022. a, b, c
Barnard, L.: Lava barriers partially protect Icelandic town, Construction Briefing, https://www.constructionbriefing.com/news/lava-barriers-partially-protect-icelandic-town/8034345.article (last access: 11 July 2024), 2024. a
Barrie, C. T. and Hannington, M. D.: Classification of Volcanic-Associated Massive Sulfide Deposits Based on Host-Rock Composition, in: Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings, vol. 8, Society of Economic Geologists, https://doi.org/10.5382/Rev.08.01, 1997. a
Bažant, Z. P., Salviato, M., Chau, V. T., Viswanathan, H., and Zubelewicz, A.: Why Fracking Works, J. Appl. Mech., 81, 101010, https://doi.org/10.1115/1.4028192, 2014. a
Bekele, A. and Schmerold, R.: Characterization of brines and evaporite deposits for their lithium contents in the northern part of the Danakil Depression and in some selected areas of the Main Ethiopian Rift lakes, J. Afr. Earth Sci., 170, 103904, https://doi.org/10.1016/j.jafrearsci.2020.103904, 2020. a
Benabdellouahed, M., Klingelhoefer, F., Gutscher, M.-A., Rabineau, M., Biari, Y., Hafid, M., Duarte, J. C., Schnabel, M., Baltzer, A., Pedoja, K., Le Roy, P., Reichert, C., and Sahabi, M.: Recent uplift of the Atlantic Atlas (offshore West Morocco): Tectonic arch and submarine terraces, Tectonophysics, 706–707, 46–58, https://doi.org/10.1016/j.tecto.2017.03.024, 2017. a
Benes, V. and Scott, S. D.: Oblique rifting in the Havre Trough and its propagation into the continental margin of New Zealand: Comparison with analogue experiments, Mar. Geophys. Res., 18, 189–201, https://doi.org/10.1007/BF00286077, 1996. a
Berndt, C., Brune, S., Nisbet, E., Zschau, J., and Sobolev, S. V.: Tsunami modeling of a submarine landslide in the Fram Strait, Geochem. Geophy. Geosy., 10, Q04009, https://doi.org/10.1029/2008gc002292, 2009. a
Berndt, C., Planke, S., Teagle, D., Huismans, R., Torsvik, T., Frieling, J., Jones, M. T., Jerram, D. A., Tegner, C., Faleide, J. I., Coxall, H., and Hong, W.-L.: Northeast Atlantic breakup volcanism and consequences for Paleogene climate change – MagellanPlus Workshop report, Sci. Dril., 26, 69–85, https://doi.org/10.5194/sd-26-69-2019, 2019. a
Bialas, R. W. and Buck, W. R.: How sediment promotes narrow rifting: Application to the Gulf of California, Tectonics, 28, TC4014, https://doi.org/10.1029/2008TC002394, 2009. a
Biggs, J., Ayele, A., Fischer, T. P., Fontijn, K., Hutchison, W., Kazimoto, E., Whaler, K., and Wright, T. J.: Volcanic activity and hazard in the East African Rift Zone, Nat. Commun., 12, 6881, https://doi.org/10.1038/s41467-021-27166-y, 2021. a, b, c
Bird, P.: An updated digital model of plate boundaries, Geochem. Geophy. Geosy., 4, 1027, https://doi.org/10.1029/2001GC000252, 2003. a
Blowes, D. W., Ptacek, C. J., Jambor, J. L., Weisener, C. G., Paktunc, D., Gould, W. D., and Johnson, D. B.: 11.5 – The Geochemistry of Acid Mine Drainage, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 131–190, https://doi.org/10.1016/B978-0-08-095975-7.00905-0, 2014. a
Bochneva, A., Lalomov, A., and LeBarge, W.: Placer mineral deposits of Russian Arctic zone: Genetic prerequisites of formation and prospect of development of mineral resources, Ore Geol. Rev., 138, 104349, https://doi.org/10.1016/j.oregeorev.2021.104349, 2021. a
Bondevik, S., Løvholt, F., Harbitz, C., Mangerud, J., Dawson, A., and Svendsen, J. I.: The Storegga Slide tsunami – comparing field observations with numerical simulations, Mar. Petrol. Geol., 22, 195–208, https://doi.org/10.1016/j.marpetgeo.2004.10.003, 2005. a
Bonini, L., Fracassi, U., Bertone, N., Maesano, F. E., Valensise, G., and Basili, R.: How do inherited dip-slip faults affect the development of new extensional faults? Insights from wet clay analog models, J. Struct. Geol., 169, 104836, https://doi.org/10.1016/j.jsg.2023.104836, 2023. a
Boudoire, G., Calabrese, S., Colacicco, A., Sordini, P., Habakaramo Macumu, P., Rafflin, V., Valade, S., Mweze, T., Kazadi Mwepu, J.-C., Safari Habari, F., Amani Kahamire, T., Mumbere Mutima, Y., Ngaruye, J.-C., Tuyishime, A., Tumaini Sadiki, A., Mavonga Tuluka, G., Mapendano Yalire, M., Kets, E.-D., Grassa, F., D'Alessandro, W., Caliro, S., Rufino, F., and Tedesco, D.: Scientific response to the 2021 eruption of Nyiragongo based on the implementation of a participatory monitoring system, Sci. Rep.-UK, 12, 7488, https://doi.org/10.1038/s41598-022-11149-0, 2022. a
Boudoire, G., Pasdeloup, G., Schiavi, F., Cluzel, N., Rafflin, V., Grassa, F., Giuffrida, G., Liuzzo, M., Harris, A., Laporte, D., and Rizzo, A. L.: Magma storage and degassing beneath the youngest volcanoes of the Massif Central (France): Lessons for the monitoring of a dormant volcanic province, Chem. Geol., 634, 121603, https://doi.org/10.1016/j.chemgeo.2023.121603, 2023. a, b
Bourassa, A. E., Robock, A., Randel, W. J., Deshler, T., Rieger, L. A., Lloyd, N. D., Llewellyn, E. J. T., and Degenstein, D. A.: Large volcanic aerosol load in the stratosphere linked to Asian monsoon transport, Science, 337, 78–81, https://doi.org/10.1126/science.1219371, 2012. a
Bradley, D. C.: Passive margins through earth history, Earth-Sci. Rev., 91, 1–26, https://doi.org/10.1016/j.earscirev.2008.08.001, 2008. a, b
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A data-based landslide susceptibility map of Africa, Earth-Sci. Rev., 185, 102–121, https://doi.org/10.1016/j.earscirev.2018.05.002, 2018. a
Brown, A. C.: 13.10 – Low-Temperature Sediment-Hosted Copper Deposits, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 251–271, https://doi.org/10.1016/B978-0-08-095975-7.01110-4, 2014. a
Brun, J. P.: Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments, Philos. T. Roy. Soc. A, 357, 695–712, https://doi.org/10.1098/rsta.1999.0349, 1999. a, b, c
Brun, J.-P., Sokoutis, D., Tirel, C., Gueydan, F., Van Den Driessche, J., and Beslier, M.-O.: Crustal versus mantle core complexes, Tectonophysics, 746, 22–45, https://doi.org/10.1016/j.tecto.2017.09.017, 2018. a, b, c, d
Brune, S.: Rifts and Rifted Margins, in: Plate Boundaries and Natural Hazards, Geophysical Monograph Series, American Geophysical Union, 11–37, https://doi.org/10.1002/9781119054146.ch2, 2016. a, b, c
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016. a, b
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression, Tectonics, 36, 1767–1786, https://doi.org/10.1002/2017TC004739, 2017. a
Brune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., and Shillington, D. J.: Geodynamics of continental rift initiation and evolution, Nature Reviews Earth & Environment, 4, 235–253, https://doi.org/10.1038/s43017-023-00391-3, 2023. a
Buck, W. R.: Modes of continental lithospheric extension, J. Geophys. Res.-Sol. Ea., 96, 20161–20178, https://doi.org/10.1029/91JB01485, 1991. a, b, c
Buck, W. R.: The role of magma in the development of the Afro-Arabian Rift System, Geological Society, London, Special Publications, 259, 43–54, https://doi.org/10.1144/GSL.SP.2006.259.01.05, 2006. a, b
Buck, W. R.: The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins, Earth Planet. Sc. Lett., 466, 62–69, https://doi.org/10.1016/j.epsl.2017.02.041, 2017. a, b
Buck, W. R., Lavier, L. L., and Poliakov, A. N. B.: Modes of faulting at mid-ocean ridges, Nature, 434, 719–723, https://doi.org/10.1038/nature03358, 2005. a
Buiter, S. J. H. and Torsvik, T. H.: A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures?, Gondwana Res., 26, 627–653, https://doi.org/10.1016/j.gr.2014.02.007, 2014. a
Buiter, S. J. H., Brune, S., Keir, D., and Peron-Pinvidic, G.: Chapter 19 – Rifting Continents, in: Dynamics of Plate Tectonics and Mantle Convection, edited by: Duarte, J. C., Elsevier, 459–481, https://doi.org/10.1016/B978-0-323-85733-8.00016-0, 2023. a
Bungum, H., Olesen, O., Pascal, C., Gibbons, S., Lindholm, C., and VestØl, O.: To what extent is the present seismicity of Norway driven by post-glacial rebound?, J. Geol. Soc. London, 167, 373–384, https://doi.org/10.1144/0016-76492009-009, 2010. a
Burisch, M., Markl, G., and Gutzmer, J.: Breakup with benefits – hydrothermal mineral systems related to the disintegration of a supercontinent, Earth Planet. Sc. Lett., 580, 117373, https://doi.org/10.1016/j.epsl.2022.117373, 2022. a
Burov, E. and Cloetingh, S.: Erosion and rift dynamics: new thermomechanical aspects of post-rift evolution of extensional basins, Earth Planet. Sc. Lett., 150, 7–26, https://doi.org/10.1016/S0012-821X(97)00069-1, 1997. a
Burov, E. B. and Watts, A. B.: The long-term strength of continental lithosphere:“jelly sandwich” or “crème brûlée”?, GSA Today, 16, 4–10, https://doi.org/10.1130/1052-5173(2006)016<4:TLTSOC>2.0.CO;2, 2006. a
Calais, E., Freed, A. M., Van Arsdale, R., and Stein, S.: Triggering of New Madrid seismicity by late-Pleistocene erosion, Nature, 466, 608–611, https://doi.org/10.1038/nature09258, 2010. a
Camelbeeck, T. and Eck, T.: The Roer Valley Graben earthquake of 13 April 1992 and its seismotectonic setting, Terra Nova, 6, 291–300, https://doi.org/10.1111/j.1365-3121.1994.tb00499.x, 1994. a
Cannat, M., Sauter, D., Mendel, V., Ruellan, E., Okino, K., Escartin, J., Combier, V., and Baala, M.: Modes of seafloor generation at a melt-poor ultraslow-spreading ridge, Geology, 34, 605–608, https://doi.org/10.1130/G22486.1, 2006. a
Cantrell, L. and Young, M.: Fatal fall into a volcanic fumarole, Wilderness Environ. Med., 20, 77–79, https://doi.org/10.1580/08-WEME-CR-199.1, 2009. a
Capitanio, F. A., Nebel, O., Cawood, P. A., Weinberg, R. F., and Chowdhury, P.: Reconciling thermal regimes and tectonics of the early Earth, Geology, 47, 923–927, https://doi.org/10.1130/G46239.1, 2019. a
Castro, R. R., Carciumaru, D. D., Collin, M., Vetel, W., Gonzalez-Huizar, H., Mendoza, A., and Pérez-Vertti, A.: Seismicity in the Gulf of California, Mexico, in the period 1901–2018, J. S. Am. Earth Sci., 106, 103087, https://doi.org/10.1016/j.jsames.2020.103087, 2021. a
Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., Fielding, C. R., Fisher, W. L., Galloway, W. E., Gibling, M. R., Giles, K. A., Holbrook, J. M., Jordan, R., Kendall, C. G. S. C., Macurda, B., Martinsen, O. J., Miall, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., and Winker, C.: Towards the standardization of sequence stratigraphy, Earth-Sci. Rev., 92, 1–33, https://doi.org/10.1016/j.earscirev.2008.10.003, 2009. a
Chen, G., Cheng, Q., and Puetz, S.: Special Issue: Data-Driven Discovery in Geosciences: Opportunities and Challenges, Math. Geosci., 55, 287–293, https://doi.org/10.1007/s11004-023-10054-0, 2023. a
Chen, X., Nakata, N., Pennington, C., Haffener, J., Chang, J. C., He, X., Zhan, Z., Ni, S., and Walter, J. I.: The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks, Sci. Rep.-UK, 7, 4945, https://doi.org/10.1038/s41598-017-04992-z, 2017. a
Chenin, P., Manatschal, G., Lavier, L. L., and Erratt, D.: Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach, J. Geol. Soc. London, 172, 711–720, https://doi.org/10.1144/jgs2014-139, 2015. a, b
Chenin, P., Picazo, S., Jammes, S., Manatschal, G., Müntener, O., and Karner, G.: Potential role of lithospheric mantle composition in the Wilson cycle: a North Atlantic perspective, Geological Society, London, Special Publications, 470, 157–172, https://doi.org/10.1144/SP470.10, 2019. a
Cherkose, B. A., Issa, S., Saibi, H., and ElHaj, K.: Building a geospatial model to identify potential geothermal sites in Ayrobera: Afar depression, NE Ethiopia, Geothermics, 110, 102689, https://doi.org/10.1016/j.geothermics.2023.102689, 2023. a
Clark, S. H. B., Poole, F. G., and Wang, Z.: Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India, Ore Geol. Rev., 24, 85–101, https://doi.org/10.1016/j.oregeorev.2003.08.009, 2004. a
Clarke, B., Uken, R., and Reinhardt, J.: Structural and compositional constraints on the emplacement of the Bushveld Complex, South Africa, Lithos, 111, 21–36, https://doi.org/10.1016/j.lithos.2008.11.006, 2009. a
Clift, P. D., Brune, S., and Quinteros, J.: Climate changes control offshore crustal structure at South China Sea continental margin, Earth Planet. Sc. Lett., 420, 66–72, https://doi.org/10.1016/j.epsl.2015.03.032, 2015. a
Cooper, C. L., Savov, I. P., Patton, H., Hubbard, A., Ivanovic, R. F., Carrivick, J. L., and Swindles, G. T.: Is there a climatic control on Icelandic volcanism?, Quaternary Science Advances, 1, 100004, https://doi.org/10.1016/j.qsa.2020.100004, 2020. a
Corbi, F., Sandri, L., Bedford, J., Funiciello, F., Brizzi, S., Rosenau, M., and Lallemand, S.: Machine learning can predict the timing and size of analog earthquakes, Geophys. Res. Lett., 46, 1303–1311, https://doi.org/10.1029/2018gl081251, 2019. a
Corti, G.: Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System, Tectonophysics, 522–523, 1–33, https://doi.org/10.1016/j.tecto.2011.06.010, 2012. a, b
Corti, G., Bonini, M., Sokoutis, D., Innocenti, F., Manetti, P., Cloetingh, S., and Mulugeta, G.: Continental rift architecture and patterns of magma migration: A dynamic analysis based on centrifuge models, Tectonics, 23, TC2012, https://doi.org/10.1029/2003tc001561, 2004. a
Corti, G., van Wijk, J., Cloetingh, S., and Morley, C. K.: Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system, Tectonics, 26, TC6006, https://doi.org/10.1029/2006tc002086, 2007. a
Craig, T. J., Jackson, J. A., Priestley, K., and McKenzie, D.: Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications, Geophys. J. Int., 185, 403–434, https://doi.org/10.1111/j.1365-246X.2011.04950.x, 2011. a
Dahlkamp, F. J.: Uranium deposits of the world, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-78558-3, 2009. a, b
Dahm, T., Stiller, M., Mechie, J., Heimann, S., Hensch, M., Woith, H., Schmidt, B., Gabriel, G., and Weber, M.: Seismological and Geophysical Signatures of the Deep Crustal Magma Systems of the Cenozoic Volcanic Fields Beneath the Eifel, Germany, Geochem. Geophy. Geosy., 21, e2020GC009062, https://doi.org/10.1029/2020GC009062, 2020. a
Danabalan, D., Gluyas, J. G., Macpherson, C. G., Abraham-James, T. H., Bluett, J. J., Barry, P. H., and Ballentine, C. J.: The principles of helium exploration, Petrol. Geosci., 28, etgeo2021-029, https://doi.org/10.1144/petgeo2021-029, 2022. a
Davison, I. and Underhill, J. R.: Tectonics and Sedimentation in Extensional Rifts: Implications for Petroleum Systems, in: Tectonics and Sedimentation: Implications for Petroleum Systems, vol. 100, edited by: Gao, D., American Association of Petroleum Geologists, https://doi.org/10.1306/13351547M1001556, 2013. a
Debure, M., Lassin, A., Marty, N. C., Claret, F., Virgone, A., Calassou, S., and Gaucher, E. C.: Thermodynamic evidence of giant salt deposit formation by serpentinization: an alternative mechanism to solar evaporation, Sci. Rep.-UK, 9, 11720, https://doi.org/10.1038/s41598-019-48138-9, 2019. a
de Jager, J. and Geluk, M. C.: Petroleum geology, in: Geology of the Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and de Jager, J., Royal Netherlands Academy of Arts and Sciences, 241–264, 2007. a
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate motions, Geophys. J. Int., 181, 1–80, https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010. a
Depicker, A., Jacobs, L., Mboga, N., Smets, B., Van Rompaey, A., Lennert, M., Wolff, E., Kervyn, F., Michellier, C., Dewitte, O., and Govers, G.: Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift, Nature Sustainability, 4, 965–974, https://doi.org/10.1038/s41893-021-00757-9, 2021. a, b, c
Dèzes, P., Schmid, S. M., and Ziegler, P. A.: Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere, Tectonophysics, 389, 1–33, https://doi.org/10.1016/j.tecto.2004.06.011, 2004. a
Dick, H. J. B., Lin, J., and Schouten, H.: An ultraslow-spreading class of ocean ridge, Nature, 426, 405–412, https://doi.org/10.1038/nature02128, 2003. a, b
Diessel, C. F. K.: Coal-Producing Tectonic Environments, in: Coal-Bearing Depositional Systems, edited by: Diessel, C. F. K., Springer Berlin Heidelberg, Berlin, Heidelberg, 515–595, https://doi.org/10.1007/978-3-642-75668-9_9, 1992. a, b
Dill, H. G.: A review of mineral resources in Malawi: With special reference to aluminium variation in mineral deposits, J. Afr. Earth Sci., 47, 153–173, https://doi.org/10.1016/j.jafrearsci.2006.12.006, 2007. a
Dill, H. G. and Ludwig, R.-R.: Geomorphological-sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi), Ore Geol. Rev., 33, 411–434, https://doi.org/10.1016/j.oregeorev.2007.02.002, 2008. a
Dompnier, B., Luneau, J.-F., Phalip, B., and Flauraud, V.: Clermont. La cathédrale de pierre noire, haut-lieu symbolique de l'Auvergne à l'histoire prestigieuse, La Nuée bleue, https://uca.hal.science/hal-01651871 (last access: 11 July 2024), 2014. a
Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen, P. E., and Fichler, C.: Principal tectonic events in the evolution of the northwest European Atlantic margin, Geological Society, London, Petroleum Geology Conference Series, 5, 41–61, https://doi.org/10.1144/0050041, 1999. a, b
Doser, D. I.: Faulting within the eastern Baikal rift as characterized by earthquake studies, Tectonophysics, 196, 109–139, https://doi.org/10.1016/0040-1951(91)90292-Z, 1991. a
Duffy, O., Hudec, M., Peel, F., Apps, G., Bump, A., Moscardelli, L., Dooley, T., Fernandez, N., Bhattacharya, S., Wisian, K., and Shuster, M.: The Role of Salt Tectonics in the Energy Transition: An Overview and Future Challenges, τeκτoniκa, 1, 18–48, https://doi.org/10.55575/tektonika2023.1.1.11, 2023. a, b, c, d, e, f
Dumais, M.-A., Gernigon, L., Olesen, O., Johansen, S. E., and Brönner, M.: New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data, Geophys. J. Int., 224, 1422–1428, https://doi.org/10.1093/gji/ggaa527, 2020. a
Ebinger, C. J.: Tectonic development of the western branch of the East African rift system, GSA Bulletin, 101, 885–903, https://doi.org/10.1130/0016-7606(1989)101<0885:TDOTWB>2.3.CO;2, 1989. a
Einarsson, P., Hjartardóttir, Á. R., Hreinsdóttir, S., and Imsland, P.: The structure of seismogenic strike-slip faults in the eastern part of the Reykjanes Peninsula Oblique Rift, SW Iceland, J. Volcanol. Geoth. Res., 391, 106372, https://doi.org/10.1016/j.jvolgeores.2018.04.029, 2020. a
Elbarbary, S., Abdel Zaher, M., Saibi, H., Fowler, A.-R., and Saibi, K.: Geothermal renewable energy prospects of the African continent using GIS, Geothermal Energy, 10, 1–19, https://doi.org/10.1186/s40517-022-00219-1, 2022. a
Erratt, D., Thomas, G. M., and Wall, G. R. T.: The evolution of the Central North Sea Rift, Geological Society, London, Petroleum Geology Conference Series, 5, 63–82, https://doi.org/10.1144/0050063, 1999. a
EU: Critical Raw Materials: ensuring secure and sustainable supply chains for EU's green and digital future, European Commission, Press Corner, https://ec.europa.eu/commission/presscorner/detail/en/ip_23_1661 (last access: 11 July 2024), 2023. a
Fedorik, J., Delaunay, A., Losi, G., Panara, Y., Menegoni, N., Afifi, A. M., Arkadakskiy, S., Al Malallah, M., Oelkers, E., Gislason, S. R., Ahmed, Z., and Kunnummal, N.: Structure and fracture characterization of the Jizan group: Implications for subsurface CO2 basalt mineralization, Front. Earth Sci., 10, 946532, https://doi.org/10.3389/feart.2022.946532, 2023. a, b
Fielding, L., Najman, Y., Millar, I., Butterworth, P., Garzanti, E., Vezzoli, G., Barfod, D., and Kneller, B.: The initiation and evolution of the River Nile, Earth Planet. Sc. Lett., 489, 166–178, https://doi.org/10.1016/j.epsl.2018.02.031, 2018. a, b
Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., and Kulikov, E. A.: The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling, Mar. Geol., 215, 45–57, https://doi.org/10.1016/j.margeo.2004.11.007, 2005. a, b
Fleuchaus, P., Godschalk, B., Stober, I., and Blum, P.: Worldwide application of aquifer thermal energy storage – A review, Renew. Sust. Energ. Rev., 94, 861–876, https://doi.org/10.1016/j.rser.2018.06.057, 2018. a
Forel, B., Monna, F., Petit, C., Bruguier, O., Losno, R., Fluck, P., Begeot, C., Richard, H., Bichet, V., and Chateau, C.: Historical mining and smelting in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs, J. Geochem. Explor., 107, 9–20, https://doi.org/10.1016/j.gexplo.2010.05.004, 2010. a
Fossen, H., Schultz, R. A., Rundhovde, E., Rotevatn, A., and Buckley, S. J.: Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation, AAPG Bull., 94, 597–613, https://doi.org/10.1306/10130909088, 2010. a
Franke, D., Hinz, K., and Oncken, O.: The Laptev Sea Rift, Mar. Petrol. Geol., 18, 1083–1127, https://doi.org/10.1016/S0264-8172(01)00041-1, 2001. a
Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M., Fritsche, J.-G., and Kracht, M.: The deep thermal field of the Upper Rhine Graben, Tectonophysics, 694, 114–129, https://doi.org/10.1016/j.tecto.2016.11.013, 2017. a
Friedmann, S. J. and Burbank, D. W.: Rift basins and supradetachment basins: intracontinental extensional end-members, Basin Res., 7, 109–127, https://doi.org/10.1111/j.1365-2117.1995.tb00099.x, 1995. a
Frímann, J.: A short history of earthquake activity on South Icelandic Seismic Zone (SISZ), https://icelandgeology.net/?p=745 (last access: 23 October 2023), 2011. a
Fubelli, G. and Dramis, F.: Geo-hazard in Ethiopia, in: Landscapes and Landforms of Ethiopia, edited by: Billi, P., Springer Netherlands, Dordrecht, 351–367, https://doi.org/10.1007/978-94-017-8026-1_20, 2015. a, b
Fuchs, S., Hannington, M. D., and Petersen, S.: Divining gold in seafloor polymetallic massive sulfide systems, Miner. Deposita, 54, 789–820, https://doi.org/10.1007/s00126-019-00895-3, 2019. a
Gallagher, K., Brown, R., Osmaston, M., Ebinger, C., and Bishop, P.: Denudation and Uplift at Passive Margins: The Record on the Atlantic Margin of Southern Africa [and Discussion], Philos. T. Roy. Soc. A, 357, 835–859, 1999. a
Gasanzade, F., Witte, F., Tuschy, I., and Bauer, S.: Integration of geological compressed air energy storage into future energy supply systems dominated by renewable power sources, Energ. Convers. Manage., 277, 116643, https://doi.org/10.1016/j.enconman.2022.116643, 2023. a
Gaucher, E. C.: New Perspectives in the Industrial Exploration for Native Hydrogen, Elements, 16, 8–9, https://doi.org/10.2138/gselements.16.1.8, 2020. a, b
Gaucher, E. C., Moretti, I., Pélissier, N., Burridge, G., and Gonthier, N.: The place of natural hydrogen in the energy transition: A position paper, European Geologist, 55, 5–9, https://doi.org/10.5281/zenodo.8108239, 2023. a, b
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active extensional basins, Basin Res., 12, 195–218, https://doi.org/10.1111/j.1365-2117.2000.00121.x, 2000. a, b
Gayrin, P., Wrona, T., and Brune, S.: Semi-automated fault extraction and quantitative structural analysis from DEM data, a comprehensive tool for fault network analysis, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-12595, https://doi.org/10.5194/egusphere-egu23-12595, 2023. a
Geoscience Australia: Geoscience Australia, https://www.ga.gov.au/nopims, last access: 15 March 2024. a
Gernon, T. M., Jones, S. M., Brune, S., Hincks, T. K., Palmer, M. R., Schumacher, J. C., Primiceri, R. M., Field, M., Griffin, W. L., O'Reilly, S. Y., Keir, D., Spencer, C. J., Merdith, A. S., and Glerum, A.: Rift-induced disruption of cratonic keels drives kimberlite volcanism, Nature, 620, 344–350, https://doi.org/10.1038/s41586-023-06193-3, 2023. a
Glerum, A., Brune, S., Stamps, D. S., and Strecker, M. R.: Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift, Nat. Commun., 11, 2881, https://doi.org/10.1038/s41467-020-16176-x, 2020. a
Goitom, B., Oppenheimer, C., Hammond, J. O. S., Grandin, R., Barnie, T., Donovan, A., Ogubazghi, G., Yohannes, E., Kibrom, G., Kendall, J.-M., Carn, S. A., Fee, D., Sealing, C., Keir, D., Ayele, A., Blundy, J., Hamlyn, J., Wright, T., and Berhe, S.: First recorded eruption of Nabro volcano, Eritrea, 2011, B. Volcanol., 77, 85, https://doi.org/10.1007/s00445-015-0966-3, 2015. a
Goitom, B., Werner, M. J., Goda, K., Kendall, J.-M., Hammond, J. O. S., Ogubazghi, G., Oppenheimer, C., Helmstetter, A., Keir, D., and Illsley-Kemp, F.: Probabilistic Seismic-Hazard Assessment for Eritrea, B. Seismol. Soc. Am., 107, 1478–1494, https://doi.org/10.1785/0120160210, 2017. a
Gong, Y., Pease, V., Wang, H., Gan, H., Liu, E., Ma, Q., Zhao, S., and He, J.: Insights into evolution of a rift basin: Provenance of the middle Eocene-lower Oligocene strata of the Beibuwan Basin, South China Sea from detrital zircon, Sediment. Geol., 419, 105908, https://doi.org/10.1016/j.sedgeo.2021.105908, 2021. a
Gouiza, M. and Naliboff, J.: Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere, Nat. Commun., 12, 4653, https://doi.org/10.1038/s41467-021-24945-5, 2021. a
Groves, D. I. and Bierlein, F. P.: Geodynamic settings of mineral deposit systems, J. Geol. Soc. London, 164, 19–30, https://doi.org/10.1144/0016-76492006-065, 2007. a, b
Gudmundsson, A.: Infrastructure and evolution of ocean-ridge discontinuities in Iceland, J. Geodyn., 43, 6–29, https://doi.org/10.1016/j.jog.2006.09.002, 2007. a
Gudmundsson, M. T., Thordarson, T., Höskuldsson, A., Larsen, G., Björnsson, H., Prata, F. J., Oddsson, B., Magnússon, E., Högnadóttir, T., Petersen, G. N., Hayward, C. L., Stevenson, J. A., and Jónsdóttir, I.: Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep.-UK, 2, 572, https://doi.org/10.1038/srep00572, 2012. a
Gunnell, Y. and Fleitout, L.: Shoulder uplift of the Western Ghats passive margin, India: a denudational model, Earth Surf. Proc. Land., 23, 391–404, https://doi.org/10.1002/(SICI)1096-9837(199805)23:5<391::AID-ESP853>3.0.CO;2-5, 1998. a
Gusiakov, V. K.: Tsunami impact on the African continent: historical cases and hazard evaluation, in: Extreme Natural Hazards, Disaster Risks and Societal Implications, Cambridge University Press, 225–233, https://doi.org/10.1017/CBO9781139523905.021, 2014. a, b
Hagemann, S. G., Lisitsin, V. A., and Huston, D. L.: Mineral system analysis: Quo vadis, Ore Geol. Rev., 76, 504–522, https://doi.org/10.1016/j.oregeorev.2015.12.012, 2016. a
Hand, E.: ECONOMIC GEOLOGY. Massive helium fields found in rift zone of Tanzania, Science, 353, 109–110, https://doi.org/10.1126/science.353.6295.109, 2016. a, b
Hannington, M. D., De Ronde, C. E. J., and Petersen, S.: Sea-Floor Tectonics and Submarine Hydrothermal Systems, in: One Hundredth Anniversary Volume, edited by: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., and Richards, J. P., Society of Economic Geologists, https://doi.org/10.5382/AV100.06, 2005. a
Hansen, S. E., Nyblade, A. A., and Benoit, M. H.: Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: Implications for the origin of Cenozoic Afro-Arabian tectonism, Earth Planet. Sc. Lett., 319-320, 23–34, https://doi.org/10.1016/j.epsl.2011.12.023, 2012. a
Hassan, R., Williams, S. E., Gurnis, M., and Müller, D.: East African topography and volcanism explained by a single, migrating plume, Geosci. Front., 11, 1669–1680, https://doi.org/10.1016/j.gsf.2020.01.003, 2020. a, b
Hauber, E., Grott, M., and Kronberg, P.: Martian rifts: Structural geology and geophysics, Earth Planet. Sc. Lett., 294, 393–410, https://doi.org/10.1016/j.epsl.2009.11.005, 2010. a
Hayward, N., Magnall, J. M., Taylor, M., King, R., McMillan, N., and Gleeson, S. A.: The Teena Zn-Pb Deposit (McArthur Basin, Australia). Part I: Syndiagenetic Base Metal Sulfide Mineralization Related to Dynamic Subbasin Evolution, Econ. Geol. Bull. Soc., 116, 1743–1768, https://doi.org/10.5382/econgeo.4846, 2021. a
Heap, M. J., Kushnir, A. R. L., Gilg, H. A., Wadsworth, F. B., Reuschlé, T., and Baud, P.: Microstructural and petrophysical properties of the Permo-Triassic sandstones (Buntsandstein) from the Soultz-sous-Forêts geothermal site (France), Geothermal Energy, 5, 1–37, https://doi.org/10.1186/s40517-017-0085-9, 2017. a
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M.-L., and Zoback, M.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophysics, 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018. a, b
Heinrich, C. A. and Candela, P. A.: 13.1 – Fluids and Ore Formation in the Earth's Crust, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 1–28, https://doi.org/10.1016/B978-0-08-095975-7.01101-3, 2014. a, b, c
Hitzman, M. W., Selley, D., and Bull, S.: Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History, Econ. Geol. Bull. Soc., 105, 627–639, https://doi.org/10.2113/gsecongeo.105.3.627, 2010. a, b
Hoggard, M. J., Czarnota, K., Richards, F. D., Huston, D. L., Jaques, A. L., and Ghelichkhan, S.: Global distribution of sediment-hosted metals controlled by craton edge stability, Nat. Geosci., 13, 504–510, https://doi.org/10.1038/s41561-020-0593-2, 2020. a, b, c
Hosny, A., Omar, K., and Ali, S. M.: The Gulf of Suez earthquake, 30 January 2012, northeast of Egypt, Rend. Lincei-Sci. Fis., 24, 377–386, https://doi.org/10.1007/s12210-013-0244-2, 2013. a
Hosseinpour, M., Müller, R. D., Williams, S. E., and Whittaker, J. M.: Full-fit reconstruction of the Labrador Sea and Baffin Bay, Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, 2013. a
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D.: The Neuquén Basin: an overview, Geological Society, London, Special Publications, 252, 1–14, https://doi.org/10.1144/GSL.SP.2005.252.01.01, 2005. a
Hrubcová, P., Geissler, W. H., Bräuer, K., Vavryčuk, V., Tomek, Č., and Kämpf, H.: Active magmatic underplating in western Eger rift, central Europe, Tectonics, 36, 2846–2862, https://doi.org/10.1002/2017tc004710, 2017. a
Hurni, H., Abate, S., Bantider, A., Debele, B., Ludi, E., Portner, B., Yitaferu, B., and Zeleke, G.: Land degradation and sustainable land management in the Highlands of Ethiopia, in: Global Change and Sustainable Development: A Synthesis of Regional Experiences from Research Partnerships, vol. 5 of Perspectives/NCCR North-South, edited by: Hurni, H. and Wiesmann, U., Geographica Bernensia, Bern, 15, https://boris.unibe.ch/5959/ (last access: 11 July 2024), 2010. a
Husmo, T., Hamar, G. P., Høiland, O., Johannessen, E. P., Rømuld, A., Spencer, A. M., and Tiverton, R.: Lower and middle Jurassic, in: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, edited by: Evans, D., Graham, C., Armour, A., and Bathurst, P., Geological Society, London, 191–211, 2003. a
IEA: Emissions from Oil and Gas Operations in Net Zero Transitions, Tech. rep., IEA, https://www.iea.org/reports/emissions-from-oil-and-gas-operations-in-net-zero-transitions (last access: 11 July 2024), 2023a. a
IEA: International Energy Outlook 2023, Tech. rep., IEA, https://www.eia.gov/outlooks/ieo/pdf/IEO2023_Release_Presentation.pdf (last access: 11 July 2024), 2023b. a
IHFC: International Heat Flow Commission (IHFC), https://ihfc-iugg.org/ (last access: 23 October 2023), 2023. a
Illsley-Kemp, F., Keir, D., Bull, J. M., Gernon, T. M., Ebinger, C., Ayele, A., Hammond, J. O. S., Kendall, J.-M., Goitom, B., and Belachew, M.: Seismicity During Continental Breakup in the Red Sea Rift of Northern Afar, J. Geophys. Res.-Sol. Ea., 123, 2345–2362, https://doi.org/10.1002/2017JB014902, 2018. a
IPCC: AR6 Synthesis Report: Climate Change 2023, Tech. rep., IPCC, https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (last access: 11 July 2024), 2023. a
Ismail, E. H. and Abdelsalam, M. G.: Morpho-tectonic analysis of the Tekeze River and the Blue Nile drainage systems on the Northwestern Plateau, Ethiopia, J. Afr. Earth Sci., 69, 34–47, https://doi.org/10.1016/j.jafrearsci.2012.04.005, 2012. a
Jacobs, L., Dewitte, O., Poesen, J., Maes, J., Mertens, K., Sekajugo, J., and Kervyn, M.: Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda, J. Afr. Earth Sci., 134, 917–930, https://doi.org/10.1016/j.jafrearsci.2016.05.013, 2017. a
Jacobs, L., Dewitte, O., Poesen, J., Sekajugo, J., Nobile, A., Rossi, M., Thiery, W., and Kervyn, M.: Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains, Nat. Hazards Earth Syst. Sci., 18, 105–124, https://doi.org/10.5194/nhess-18-105-2018, 2018. a
Jefferson, C. W. and Delaney, G.: EXTECH IV: Geology and Uranium EXploration TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, Tech. rep., Geological Survey of Canada, Bulletin, https://publications.gc.ca/site/eng/9.617310/publication.html (last access: 11 July 2024), 2007. a
Jelsma, H., Barnett, W., Richards, S., and Lister, G.: Tectonic setting of kimberlites, Lithos, 112, 155–165, https://doi.org/10.1016/j.lithos.2009.06.030, 2009. a
Johansson, L., Zahirovic, S., and Müller, R. D.: The interplay between the eruption and weathering of large igneous provinces and the deep-time carbon cycle, Geophys. Res. Lett., 45, 5380–5389, https://doi.org/10.1029/2017gl076691, 2018. a
Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., Regenspurg, S., Ziegler, M., Ayling, B., Richter, A., and Zemedkun, M. T.: Geological controls on geothermal resources for power generation, Nature Reviews Earth & Environment, 2, 324–339, https://doi.org/10.1038/s43017-021-00154-y, 2021. a
Jun, Y.-S., Zhang, L., Min, Y., and Li, Q.: Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration, Accounts Chem. Res., 50, 1521–1529, https://doi.org/10.1021/acs.accounts.6b00654, 2017. a
Kamenetsky, V. S., Doroshkevich, A. G., Elliott, H. A. L., and Zaitsev, A. N.: Carbonatites: Contrasting, Complex, and Controversial, Elements, 17, 307–314, https://doi.org/10.2138/gselements.17.5.307, 2021. a
Kapetanidis, V., Karakonstantis, A., Papadimitriou, P., Pavlou, K., Spingos, I., Kaviris, G., and Voulgaris, N.: The 19 July 2019 earthquake in Athens, Greece: A delayed major aftershock of the 1999 Mw=6.0 event, or the activation of a different structure?, J. Geodyn., 139, 101766, https://doi.org/10.1016/j.jog.2020.101766, 2020. a
Karstens, J., Preine, J., Crutchley, G. J., Kutterolf, S., van der Bilt, W. G. M., Hooft, E. E. E., Druitt, T. H., Schmid, F., Cederstrøm, J. M., Hübscher, C., Nomikou, P., Carey, S., Kühn, M., Elger, J., and Berndt, C.: Revised Minoan eruption volume as benchmark for large volcanic eruptions, Nat. Commun., 14, 2497, https://doi.org/10.1038/s41467-023-38176-3, 2023. a
Katz, B. J.: A survey of rift basin source rocks, Geological Society, London, Special Publications, 80, 213–240, https://doi.org/10.1144/GSL.SP.1995.080.01.11, 1995. a
Keller, G. R. and Stephenson, R. A.: The Southern Oklahoma and Dniepr-Donets aulacogens: A comparative analysis, in: 4-D Framework of Continental Crust, vol. 200, edited by: Hatcher Jr., R. D., Carlson, M. P., McBride, J. H., and Catalán, J. R. M., Geological Society of America, https://doi.org/10.1130/2007.1200(08), 2007. a
Kellogg, L. H., Lokavarapu, H., and Turcotte, D. L.: Carbonation and the Urey reaction, Am. Mineral., 104, 1365–1368, https://doi.org/10.2138/am-2019-6880, 2019. a, b
Kelman, I., Alexander, D., Fearnley, C., Jenkins, S., and Sammonds, P.: Systemic risks perspectives of Eyjafjallajökull volcano's 2010 eruption, Progress in Disaster Science, 18, 100282, https://doi.org/10.1016/j.pdisas.2023.100282, 2023. a
Khlystov, O. M., Poort, J., Mazzini, A., Akhmanov, G. G., Minami, H., Hachikubo, A., Khabuev, A. V., Kazakov, A. V., De Batist, M., Naudts, L., Chensky, A. G., and Vorobeva, S. S.: Shallow-rooted mud volcanism in Lake Baikal, Mar. Petrol. Geol., 102, 580–589, https://doi.org/10.1016/j.marpetgeo.2019.01.005, 2019. a
Kim, S., Dusseault, M., Babarinde, O., and Wickens, J.: Compressed air energy storage (CAES): current status, geomechanical aspects and future opportunities, Geological Society, London, Special Publications, 528, 87–100, https://doi.org/10.1144/SP528-2022-54, 2023. a, b
Kober, T., Schiffer, H.-W., Densing, M., and Panos, E.: Global energy perspectives to 2060 – WEC's World Energy Scenarios 2019, Energy Strateg. Rev., 31, 100523, https://doi.org/10.1016/j.esr.2020.100523, 2020. a
Kodikara, G. R. L., Woldai, T., van Ruitenbeek, F. J. A., Kuria, Z., van der Meer, F., Shepherd, K. D., and van Hummel, G. J.: Hyperspectral remote sensing of evaporate minerals and associated sediments in Lake Magadi area, Kenya, Int. J. Appl. Earth Obs., 14, 22–32, https://doi.org/10.1016/j.jag.2011.08.009, 2012. a, b, c
Kölbel, L., Kölbel, T., Herrmann, L., Kaymakci, E., Ghergut, I., Poirel, A., and Schneider, J.: Lithium extraction from geothermal brines in the Upper Rhine Graben: A case study of potential and current state of the art, Hydrometallurgy, 221, 106131, https://doi.org/10.1016/j.hydromet.2023.106131, 2023. a, b
Koppers, A. A. P. and Coggon, R.: Digital collections: Exploring Earth by Scientific Ocean Drilling, UC San Diego Library Digital Collections, https://doi.org/10.6075/J0W66J9H, 2020. a
Korup, O.: Earth's portfolio of extreme sediment transport events, Earth-Sci. Rev., 112, 115–125, https://doi.org/10.1016/j.earscirev.2012.02.006, 2012. a, b
Kropáček, J., Vařilová, Z., Baroň, I., Bhattacharya, A., Eberle, J., and Hochschild, V.: Remote Sensing for Characterisation and Kinematic Analysis of Large Slope Failures: Debre Sina Landslide, Main Ethiopian Rift Escarpment, Remote Sens.-Basel, 7, 16183–16203, https://doi.org/10.3390/rs71215821, 2015. a
Kudrass, H., Wood, R., and Falconer, R.: Submarine Phosphorites: The Deposits of the Chatham Rise, New Zealand, off Namibia and Baja California, Mexico – Origin, Exploration, Mining, and Environmental Issues, in: Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations, edited by: Sharma, R., Springer International Publishing, Cham, 165–187, https://doi.org/10.1007/978-3-319-52557-0_5, 2017. a
Kung, A., Svobodova, K., Lèbre, E., Valenta, R., Kemp, D., and Owen, J. R.: Governing deep sea mining in the face of uncertainty, J. Environ. Manage., 279, 111593, https://doi.org/10.1016/j.jenvman.2020.111593, 2021. a
Kydonakis, K., Brun, J.-P., and Sokoutis, D.: North Aegean core complexes, the gravity spreading of a thrust wedge, J. Geophys. Res.-Sol. Ea., 120, 595–616, https://doi.org/10.1002/2014JB011601, 2015. a
La Rosa, A., Pagli, C., Keir, D., Sani, F., Corti, G., Wang, H., and Possee, D.: Observing oblique slip during rift linkage in northern afar, Geophys. Res. Lett., 46, 10782–10790, https://doi.org/10.1029/2019gl084801, 2019. a
Lavier, L. L. and Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins, Nature, 440, 324–328, https://doi.org/10.1038/nature04608, 2006. a
Lawley, C. J. M., McCafferty, A. E., Graham, G. E., Huston, D. L., Kelley, K. D., Czarnota, K., Paradis, S., Peter, J. M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C. A., and Gadd, M. G.: Data–driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials, Ore Geol. Rev., 141, 104635, https://doi.org/10.1016/j.oregeorev.2021.104635, 2022. a, b
Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., and Gardoll, S. J.: Sediment-Hosted Lead-Zinc Deposits in Earth History, Econ. Geol. Bull. Soc., 105, 593–625, https://doi.org/10.2113/gsecongeo.105.3.593, 2010. a, b, c
Ledésert, B. A., Hébert, R. L., Mouchot, J., Bosia, C., Ravier, G., Seibel, O., Dalmais, É., Ledésert, M., Trullenque, G., Sengelen, X., and Genter, A.: Scaling in a Geothermal Heat Exchanger at Soultz-Sous-Forêts (Upper Rhine Graben, France): A XRD and SEM-EDS Characterization of Sulfide Precipitates, Geosci. J., 11, 271, https://doi.org/10.3390/geosciences11070271, 2021. a
Lee, K. C.: Classification of geothermal resources by exergy, Geothermics, 30, 431–442, https://doi.org/10.1016/S0375-6505(00)00056-0, 2001. a
Leeder, M. R., Harris, T., and Kirkby, M. J.: Sediment supply and climate change: implications for basin stratigraphy, Basin Res., 10, 7–18, https://doi.org/10.1046/j.1365-2117.1998.00054.x, 1998. a
Lefeuvre, N., Truche, L., Donzé, F.-V., Gal, F., Tremosa, J., Fakoury, R.-A., Calassou, S., and Gaucher, E. C.: Natural hydrogen migration along thrust faults in foothill basins: The North Pyrenean Frontal Thrust case study, Appl. Geochem., 145, 105396, https://doi.org/10.1016/j.apgeochem.2022.105396, 2022. a
Leifsson, Á.: Industrial use of the high-temperature geothermal field at Theistareykir, Iceland, Geothermics, 21, 631–640, https://doi.org/10.1016/0375-6505(92)90016-3, 1992. a
Levell, B. and Bowman, M.: The Petroleum Geology of NW Europe: 50 years of learning – a platform for present value and future success. An overview, Geological Society, London, Petroleum Geology Conference Series, 8, 1–8, https://doi.org/10.1144/PGC8.41, 2018. a
Leynaud, D., Mienert, J., and Vanneste, M.: Submarine mass movements on glaciated and non-glaciated European continental margins: A review of triggering mechanisms and preconditions to failure, Mar. Petrol. Geol., 26, 618–632, https://doi.org/10.1016/j.marpetgeo.2008.02.008, 2009. a, b
Li, Q., Xing, H., Liu, J., and Liu, X.: A review on hydraulic fracturing of unconventional reservoir, Petroleum, 1, 8–15, https://doi.org/10.1016/j.petlm.2015.03.008, 2015. a
Limberger, J., Boxem, T., Pluymaekers, M., Bruhn, D., Manzella, A., Calcagno, P., Beekman, F., Cloetingh, S., and van Wees, J.-D.: Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization, Renew. Sust. Energ. Rev., 82, 961–975, https://doi.org/10.1016/j.rser.2017.09.084, 2018. a
Lithgow-Bertelloni, C. and Silver, P. G.: Dynamic topography, plate driving forces and the African superswell, Nature, 395, 269–272, https://doi.org/10.1038/26212, 1998. a
Littke, R., Bayer, U., Dirk, G., and Nelskamp, S. (Eds.): Dynamics of Complex Intracontinental Basins, Springer Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-85085-4, 2008. a
Liu, M. and Furlong, K. P.: Intrusion and underplating of mafic magmas: thermal-rheological effects and implications for Tertiary tectonomagmatism in the North American Cordillera, Tectonophysics, 237, 175–187, https://doi.org/10.1016/0040-1951(94)90253-4, 1994. a
Liu, M., Yang, Y., Shen, Z., Wang, S., Wang, M., and Wan, Y.: Active tectonics and intracontinental earthquakes in China: The kinematics and geodynamics, in: Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues, vol. 425, edited by: Stein, S. and Mazzotti, S., Geological Society of America, https://doi.org/10.1130/2007.2425(19), 2007. a, b, c
Liu, Z., Perez-Gussinye, M., García-Pintado, J., Mezri, L., and Bach, W.: Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins, Geology, 51, 284–289, https://doi.org/10.1130/G50722.1, 2023. a, b, c
Løvholt, F., Schulten, I., Mosher, D., Harbitz, C., and Krastel, S.: Modelling the 1929 Grand Banks slump and landslide tsunami, Geological Society, London, Special Publications, 477, 315–331, https://doi.org/10.1144/SP477.28, 2019. a
Ludden, J.: Where is geoscience going?, Geological Society, London, Special Publications, 499, 69–77, https://doi.org/10.1144/SP499-2019-212, 2020. a
Macdonald, K. C.: Mid-Ocean Ridge Tectonics, Volcanism, and Geomorphology, in: Encyclopedia of Ocean Sciences, 3rd edn., edited by: Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L., Academic Press, Oxford, 405–419, https://doi.org/10.1016/B978-0-12-409548-9.11065-6, 2019. a, b, c, d
Mackay, A. W.: The paleoclimatology of Lake Baikal: A diatom synthesis and prospectus, Earth-Sci. Rev., 82, 181–215, https://doi.org/10.1016/j.earscirev.2007.03.002, 2007. a
Maestrelli, D., Montanari, D., Corti, G., Del Ventisette, C., Moratti, G., and Bonini, M.: Exploring the interactions between rift propagation and inherited crustal fabrics through experimental modeling, Tectonics, 39, e2020TC006211, https://doi.org/10.1029/2020tc006211, 2020. a, b, c, d
Maestrelli, D., Brune, S., Corti, G., Keir, D., Muluneh, A. A., and Sani, F.: Analog and numerical modeling of rift-rift-rift triple junctions, Tectonics, 41, e2022TC007491, https://doi.org/10.1029/2022tc007491, 2022. a
Magnall, J. M., Gleeson, S. A., and Paradis, S.: A new Subseafloor Replacement Model for the Macmillan Pass Clastic-Dominant Zn-Pb ± Ba Deposits (Yukon, Canada), Econ. Geol. Bull. Soc., 115, 953–959, https://doi.org/10.5382/econgeo.4719, 2020. a
Magoon, L. B. and Dow, W. G.: The Petroleum System – From Source to Trap, American Association of Petroleum Geologists, https://doi.org/10.1306/M60585, 1994. a
Manatschal, G., Chenin, P., Ulrich, M., Petri, B., Morin, M., and Ballay, M.: Tectono-magmatic evolution during the extensional phase of a Wilson Cycle: a review of the Alpine Tethys case and implications for Atlantic-type margins, Ital. J. Geosci., 142, 5–27, https://doi.org/10.3301/IJG.2023.01, 2023. a
Mancini, S., Segou, M., Werner, M. J., Parsons, T., Beroza, G., and Chiaraluce, L.: On the Use of High-Resolution and Deep-Learning Seismic Catalogs for Short-Term Earthquake Forecasts: Potential Benefits and Current Limitations, J. Geophys. Res.-Sol. Ea., 127, e2022JB025202, https://doi.org/10.1029/2022JB025202, 2022. a
Martin-Jones, C., Lane, C., Daele, M., Meeren, T. V. D., Wolff, C., Moorhouse, H., Tomlinson, E., and Verschuren, D.: History of scoria-cone eruptions on the eastern shoulder of the Kenya–Tanzania Rift revealed in the 250 ka sediment record of Lake Chala near Mount Kilimanjaro, J. Quaternary Sci., 35, 245–255, https://doi.org/10.1002/jqs.3140, 2020. a, b
Martínek, K., Verner, K., Hroch, T., Megerssa, L. A., Kopačková, V., Buriánek, D., Muluneh, A., Kalinová, R., Yakob, M., and Kassa, M.: Main Ethiopian Rift landslides formed in contrasting geological settings and climatic conditions, Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, 2021. a, b
Martins-Neto, M. A. and Catuneanu, O.: Rift sequence stratigraphy, Mar. Petrol. Geol., 27, 247–253, https://doi.org/10.1016/j.marpetgeo.2009.08.001, 2010. a
Masini, E., Manatschal, G., and Mohn, G.: The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins, Sedimentology, 60, 174–196, https://doi.org/10.1111/sed.12017, 2013. a
Matter, J. M. and Kelemen, P. B.: Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation, Nat. Geosci., 2, 837–841, https://doi.org/10.1038/ngeo683, 2009. a, b, c
Maystrenko, Y. P., Brönner, M., Olesen, O., Saloranta, T. M., and Slagstad, T.: Atmospheric precipitation and anomalous upper mantle in relation to intraplate seismicity in Norway, Tectonics, 39, e2020TC006070, https://doi.org/10.1029/2020tc006070, 2020. a
Mazzini, I., Cronin, T. M., Gawthorpe, R. L., Ll Collier, R. E., de Gelder, G., Golub, A. R., Toomey, M. R., Poirier, R. K., May Huang, H.-H., Phillips, M. P., McNeill, L. C., and Shillington, D. J.: A new deglacial climate and sea-level record from 20 to 8 ka from IODP381 site M0080, Alkyonides Gulf, eastern Mediterranean, Quaternary Sci. Rev., 313, 108192, https://doi.org/10.1016/j.quascirev.2023.108192, 2023. a
McFall, B. C. and Fritz, H. M.: Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes, P. Roy. Soc. A-Math. Phy., 472, 20160052, https://doi.org/10.1098/rspa.2016.0052, 2016. a
McKenzie, D.: Some remarks on the development of sedimentary basins, Earth Planet. Sc. Lett., 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7, 1978. a
McNeill, L. C., Shillington, D. J., Carter, G. D. O., Everest, J. D., Gawthorpe, R. L., Miller, C., Phillips, M. P., Collier, R. E. L., Cvetkoska, A., De Gelder, G., Diz, P., Doan, M.-L., Ford, M., Geraga, M., Gillespie, J., Hemelsdaël, R., Herrero-Bervera, E., Ismaiel, M., Janikian, L., Kouli, K., Le Ber, E., Li, S., Maffione, M., Mahoney, C., Machlus, M. L., Michas, G., Nixon, C. W., Oflaz, S. A., Omale, A. P., Panagiotopoulos, K., Pechlivanidou, S., Sauer, S., Seguin, J., Sergiou, S., Zakharova, N. V., and Green, S.: High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift, Sci. Rep.-UK, 9, 3116, https://doi.org/10.1038/s41598-019-40022-w, 2019. a
Meghraoui, M., Delouis, B., Ferry, M., Giardini, D., Huggenberger, P., Spottke, I., and Granet, M.: Active normal faulting in the upper Rhine graben and paleoseismic identification of the 1356 Basel earthquake, Science, 293, 2070–2073, https://doi.org/10.1126/science.1010618, 2001. a
Melcher, F., Grum, W., Simon, G., Thalhammer, T. V., and Stumpfl, E. F.: Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan: a Study of Solid and Fluid Inclusions in Chromite, J. Petrol., 38, 1419–1458, https://doi.org/10.1093/petroj/38.10.1419, 1997. a
Merle, O.: A simple continental rift classification, Tectonophysics, 513, 88–95, https://doi.org/10.1016/j.tecto.2011.10.004, 2011. a
Merle, O., Boivin, P., Langlois, E., de Larouzière, F.-D., Michelin, Y., and Olive, C.: The UNESCO World Heritage Site of the Chaîne des Puys–Limagne Fault Tectonic Arena (Auvergne, France), Geosci. J., 13, 198, https://doi.org/10.3390/geosciences13070198, 2023. a, b
Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B. J., Martin-Nagle, R., Michael, H. A., Müller, T., Schmidt, M., Schwalenberg, K., Trembath-Reichert, E., Weymer, B., Zhang, Y., and Thomas, A. T.: Offshore Freshened Groundwater in Continental Margins, Rev. Geophys., 59, e2020RG000706, https://doi.org/10.1029/2020RG000706, 2021. a, b
Midzi, V., Hlatywayo, D. J., Chapola, L. S., Kebede, F., Atakan, K., Lombe, D. K., Turyomurugyendo, G., and Tugume, F. A.: Seismic hazard assessment in Eastern and Southern Africa, Ann. Geophys., 42, 1067–1083, https://doi.org/10.4401/ag-3770, 1999. a, b
Miller, A. R., Densmore, C. D., Degens, E. T., Hathaway, J. C., Manheim, F. T., McFarlin, P. F., Pocklington, R., and Jokela, A.: Hot brines and recent iron deposits in deeps of the Red Sea, Geochim. Cosmochim. Ac., 30, 341–359, https://doi.org/10.1016/0016-7037(66)90007-X, 1966. a
Mitali, J., Dhinakaran, S., and Mohamad, A. A.: Energy storage systems: a review, Energy Storage and Saving, 1, 166–216, https://doi.org/10.1016/j.enss.2022.07.002, 2022. a
Mohamed, G.-E. A. and Abd El-Aal, A. K.: Present Kinematic Regime and Recent Seismicity of Gulf Suez, Egypt, Geotectonics/Geotektonika, 52, 134–150, https://doi.org/10.1134/S0016852118010119, 2018. a
Mohr, P.: Ethiopian flood basalt province, Nature, 303, 577–584, https://doi.org/10.1038/303577a0, 1983. a
Mohriak, W., Nemčok, M., and Enciso, G.: South Atlantic divergent margin evolution: rift-border uplift and salt tectonics in the basins of SE Brazil, Geological Society, London, Special Publications, 294, 365–398, https://doi.org/10.1144/SP294.19, 2008. a
Mondal, S. K. and Mathez, E. A.: Origin of the UG2 chromitite layer, Bushveld Complex, J. Petrol., 48, 495–510, https://doi.org/10.1093/petrology/egl069, 2007. a
Moore, T. A.: Coalbed methane: A review, Int. J. Coal Geol., 101, 36–81, https://doi.org/10.1016/j.coal.2012.05.011, 2012. a
Morley, C. K.: Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development, J. Asian Earth Sci., 120, 62–86, https://doi.org/10.1016/j.jseaes.2016.01.013, 2016. a
Mudd, G. M., Jowitt, S. M., and Werner, T. T.: The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities, Ore Geol. Rev., 80, 1160–1190, https://doi.org/10.1016/j.oregeorev.2016.08.010, 2017. a
Mukuhira, Y., Asanuma, H., Niitsuma, H., Schanz, U., and Häring, M.: Characterization of microseismic events with larger magnitude collected at Basel, Switzerland in 2006, Transactions – Geothermal Resources Council, 32, 74–80, 2008. a
Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., and Gurnis, M.: A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic, Tectonics, 38, 1884–1907, https://doi.org/10.1029/2018TC005462, 2019. a
Muther, T., Qureshi, H. A., Syed, F. I., Aziz, H., Siyal, A., Dahaghi, A. K., and Negahban, S.: Unconventional hydrocarbon resources: geological statistics, petrophysical characterization, and field development strategies, Journal of Petroleum Exploration and Production Technology, 12, 1463–1488, https://doi.org/10.1007/s13202-021-01404-x, 2022. a, b
Naliboff, J. and Buiter, S. J. H.: Rift reactivation and migration during multiphase extension, Earth Planet. Sc. Lett., 421, 58–67, https://doi.org/10.1016/j.epsl.2015.03.050, 2015. a
National Research Council: Selling the Nation's Helium Reserve, Tech. rep., National Research Council, Division on Engineering and Physical Sciences, National Materials Advisory Board, Board on Physics and Astronomy, Committee on Understanding the Impact of Selling the Helium Reserve, https://doi.org/10.17226/12844, 2010. a
Neely, J. S. and Stein, S.: Why do continental normal fault earthquakes have smaller maximum magnitudes?, Tectonophysics, 809, 228854, https://doi.org/10.1016/j.tecto.2021.228854, 2021. a, b
Nemčok, M.: Rifts and Passive Margins: Structural Architecture, Thermal Regimes, and Petroleum Systems, Cambridge University Press, https://doi.org/10.1017/CBO9781139198844, 2016. a, b, c, d
Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.: Evolution of rift systems and their fault networks in response to surface processes, Tectonics, 41, e2021TC007166, https://doi.org/10.1029/2021tc007166, 2022. a, b
Novikova, T., Papadopoulos, G. A., and McCoy, F. W.: Modelling of tsunami generated by the giant Late Bronze Age eruption of Thera, South Aegean Sea, Greece, Geophys. J. Int., 186, 665–680, https://doi.org/10.1111/j.1365-246X.2011.05062.x, 2011. a
Nowell, D. A. G., Jones, M. C., and Pyle, D. M.: Episodic Quaternary volcanism in France and Germany, J. Quaternary Sci., 21, 645–675, https://doi.org/10.1002/jqs.1005, 2006. a, b
NPD: Faktasider – OD, https://factpages.npd.no/en (last access: 15 March 2024), 2024a. a
NPD: The Diskos National Data Repository (NDR), https://www.npd.no/en/diskos/ (last access: 15 March 2024), 2024b. a
Nyland, A. J., Walker, J., and Warren, G.: Evidence of the Storegga tsunami 8200 BP? An archaeological review of impact after a large-scale marine event in Mesolithic northern Europe, Front. Earth Sci., 9, 767460, https://doi.org/10.3389/feart.2021.767460, 2021. a
Okoko, G. O. and Olaka, L. A.: Can East African rift basalts sequester CO2? Case study of the Kenya rift, Scientific African, 13, e00924, https://doi.org/10.1016/j.sciaf.2021.e00924, 2021. a
Olajire, A. A.: A review of mineral carbonation technology in sequestration of CO2, J. Petrol. Sci. Eng., 109, 364–392, https://doi.org/10.1016/j.petrol.2013.03.013, 2013. a
Olierook, H. K. H., Fougerouse, D., Doucet, L. S., Liu, Y., Rayner, M. J., Danišík, M., Condon, D. J., McInnes, B. I. A., Jaques, A. L., Evans, N. J., McDonald, B. J., Li, Z.-X., Kirkland, C. L., Mayers, C., and Wingate, M. T. D.: Emplacement of the Argyle diamond deposit into an ancient rift zone triggered by supercontinent breakup, Nat. Commun., 14, 5274, https://doi.org/10.1038/s41467-023-40904-8, 2023. a
Olive, J.-A., Behn, M. D., and Malatesta, L. C.: Modes of extensional faulting controlled by surface processes, Geophys. Res. Lett., 41, 6725–6733, https://doi.org/10.1002/2014gl061507, 2014. a
Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., and Rooney, D. W.: Hydrogen production, storage, utilisation and environmental impacts: a review, Environ. Chem. Lett., 20, 153–188, https://doi.org/10.1007/s10311-021-01322-8, 2022. a
Osselin, F., Soulaine, C., Fauguerolles, C., Gaucher, E. C., Scaillet, B., and Pichavant, M.: Orange hydrogen is the new green, Nat. Geosci., 15, 765–769, https://doi.org/10.1038/s41561-022-01043-9, 2022. a
Oth, A., Barrière, J., d'Oreye, N., Mavonga, G., Subira, J., Mashagiro, N., Kafundu, B., Fiama, S., Celli, G., de Dieu Birigande, J., Ntenge, A. J., and Kervyn, F.: Kivu Seismological Network (KivuSnet), https://doi.org/10.14470/XI058335, 2013. a
Pacini, N. and Harper, D. M.: Hydrological characteristics and water resources management in the Nile Basin, Ecohydrology & Hydrobiology, 16, 242–254, https://doi.org/10.1016/j.ecohyd.2016.09.001, 2016. a
Pagli, C., Wright, T. J., Ebinger, C. J., Yun, S.-H., Cann, J. R., Barnie, T., and Ayele, A.: Shallow axial magma chamber at the slow-spreading Erta Ale Ridge, Nat. Geosci., 5, 284–288, https://doi.org/10.1038/ngeo1414, 2012. a
Pagneux, E., Gudmundsson, M., Karlsdóttir, S., and Roberts, M.: Volcanogenic floods in Iceland: An assessment of hazards and risks at Öræfajökull and on the Markarfljót outwash plain, IMO, IES-UI, NCIP-DCPEM, ISBN 9789979997573, 2015. a
Papanastassiou, D., Gaki-Papanastassiou, K., and Maroukian, H.: Recognition of past earthquakes along the Sparta fault (Peloponnesus, southern Greece) during the Holocene, by combining results of different dating techniques, J. Geodyn., 40, 189–199, https://doi.org/10.1016/j.jog.2005.07.015, 2005. a
Pasquet, G., Houssein Hassan, R., Sissmann, O., Varet, J., and Moretti, I.: An Attempt to Study Natural H2 Resources across an Oceanic Ridge Penetrating a Continent: The Asal–Ghoubbet Rift (Republic of Djibouti), Geosci. J., 12, 16, https://doi.org/10.3390/geosciences12010016, 2021. a
Peace, A. L., Phethean, J. J. J., Franke, D., Foulger, G. R., Schiffer, C., Welford, J. K., McHone, G., Rocchi, S., Schnabel, M., and Doré, A. G.: A review of Pangaea dispersal and Large Igneous Provinces – In search of a causative mechanism, Earth-Sci. Rev., 206, 102902, https://doi.org/10.1016/j.earscirev.2019.102902, 2020. a, b
Peel, F. J.: How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration, Tectonophysics, 630, 222–235, https://doi.org/10.1016/j.tecto.2014.05.027, 2014. a
Pérez-Gussinyé, M., Collier, J. S., Armitage, J. J., Hopper, J. R., Sun, Z., and Ranero, C. R.: Towards a process-based understanding of rifted continental margins, Nature Reviews Earth & Environment, 4, 166–184, https://doi.org/10.1038/s43017-022-00380-y, 2023. a
Peron-Pinvidic, G.: Rifting and Rifted Margins: Definitions, in: Continental Rifted Margins, edited by: Peron-Pinvidic, G., Wiley, 1–176, https://doi.org/10.1002/9781119986928.part1, 2022. a, b
Péron-Pinvidic, G. and Manatschal, G.: The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view, Int. J. Earth Sci., 98, 1581–1597, https://doi.org/10.1007/s00531-008-0337-9, 2009. a, b
Peron-Pinvidic, G., Manatschal, G., and The “imagining Rifting” Workshop Participants: Rifted Margins: State of the Art and Future Challenges, Front. Earth Sci., 7, 218, https://doi.org/10.3389/feart.2019.00218, 2019. a, b
Petit, C., Déverchère, J., Houdry, F., Sankov, V. A., Melnikova, V. I., and Delvaux, D.: Present-day stress field changes along the Baikal rift and tectonic implications, Tectonics, 15, 1171–1191, https://doi.org/10.1029/96tc00624, 1996. a
Phethean, J. J. J., Papadopoulou, M., and Peace, A. L.: Dense melt residues drive mid-ocean-ridge “hotspots”, in: In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science, Geological Society of America, https://doi.org/10.1130/2021.2553(30), 2022. a
Pirajno, F., Uysal, I., and Naumov, E. A.: Oceanic lithosphere and ophiolites: Birth, life and final resting place of related ore deposits, Gondwana Res., 88, 333–352, https://doi.org/10.1016/j.gr.2020.08.004, 2020. a, b
Poppe, S., Gilchrist, J. T., Breard, E. C. P., Graettinger, A., and Pansino, S.: Analog experiments in volcanology: towards multimethod, upscaled, and integrated models, B. Volcanol., 84, 52, https://doi.org/10.1007/s00445-022-01543-x, 2022. a
Pouclet, A. and Bram, K.: Nyiragongo and Nyamuragira: a review of volcanic activity in the Kivu rift, western branch of the East African Rift System, B. Volcanol., 83, 10, https://doi.org/10.1007/s00445-021-01435-6, 2021. a
Pudasainee, D., Kurian, V., and Gupta, R.: 2 – Coal: Past, Present, and Future Sustainable Use, in: Future Energy, 3rd edn., edited by: Letcher, T. M., Elsevier, 21–48, https://doi.org/10.1016/B978-0-08-102886-5.00002-5, 2020. a
Radhakrishna, T., Mohamed, A. R., Venkateshwarlu, M., Soumya, G. S., and Prachiti, P. K.: Mechanism of rift flank uplift and escarpment formation evidenced by Western Ghats, India, Sci. Rep.-UK, 9, 10511, https://doi.org/10.1038/s41598-019-46564-3, 2019. a
Regorda, A., Thieulot, C., van Zelst, I., Erdős, Z., Maia, J., and Buiter, S.: Rifting Venus: Insights from numerical modeling, J. Geophys. Res.-Planet., 128, e2022JE007588, https://doi.org/10.1029/2022je007588, 2023. a
Rime, V., Foubert, A., Ruch, J., and Kidane, T.: Tectonostratigraphic evolution and significance of the Afar Depression, Earth-Sci. Rev., 244, 104519, https://doi.org/10.1016/j.earscirev.2023.104519, 2023. a, b, c
Robb, L.: Introduction to Ore-Forming Processes, Wiley, 496, pp., https://www.wiley.com/en-ca/Introduc4on+to+Ore-Forming+Processes'+2nd+Edi4on-p-9781119967507#evalua4on-copy-sec4on (last access: 11 July 2024), 2004. a
Roberts, D. G. and Bally, A. W. (Eds.): Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, Elsevier, https://doi.org/10.1016/C2010-0-67672-3, 2012. a
Rodríguez, A., Weis, P., Magnall, J. M., and Gleeson, S. A.: Hydrodynamic constraints on ore formation by basin-scale fluid flow at continental margins: Modelling Zn metallogenesis in the Devonian Selwyn Basin, Geochem. Geophy. Geosy., 22, e2020GC009453, https://doi.org/10.1029/2020gc009453, 2021. a
Romm, J.: A new forerunner for continental drift, Nature, 367, 407–408, https://doi.org/10.1038/367407a0, 1994. a, b
Rossello, E. A., Heit, B., and Bianchi, M.: Shallow intraplate seismicity in the Buenos Aires province (Argentina) and surrounding areas: is it related to the Quilmes Trough?, Boletín de Geología, 42, 31–48, https://doi.org/10.18273/revbol.v42n2-2020002, 2020. a
Rotevatn, A., Jackson, C. A., Tvedt, A. B. M., Bell, R. E., and Blækkan, I.: How do normal faults grow?, J. Struct. Geol., 125, 174–184, https://doi.org/10.1016/j.jsg.2018.08.005, 2019. a
Rowan, M. G.: Passive-margin salt basins: hyperextension, evaporite deposition, and salt tectonics, Basin Res., 26, 154–182, https://doi.org/10.1111/bre.12043, 2014. a, b
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and methane hydrates, Rev. Geophys., 55, 126–168, https://doi.org/10.1002/2016RG000534, 2017. a, b
Russell, M. J., Hall, A. J., and Martin, W.: Serpentinization as a source of energy at the origin of life, Geobiology, 8, 355–371, https://doi.org/10.1111/j.1472-4669.2010.00249.x, 2010. a
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., and Zemsky, R.: Global multi-resolution topography synthesis, Geochem. Geophy. Geosy., 10, Q03014, https://doi.org/10.1029/2008gc002332, 2009. a, b
Salgado, A. A. R., de Andrade Rezende, E., Bourlès, D., Braucher, R., da Silva, J. R., and Garcia, R. A.: Relief evolution of the Continental Rift of Southeast Brazil revealed by in situ-produced 10Be concentrations in river-borne sediments, J. S. Am. Earth Sci., 67, 89–99, https://doi.org/10.1016/j.jsames.2016.02.002, 2016. a
Samsu, A., Micklethwaite, S., Williams, J., Fagereng, A., and Cruden, A. R.: A review of structural inheritance in rift basin formation, https://eartharxiv.org/repository/view/4665/ (last access: 11 July 2024), 2022. a
Sanner, B.: Baden-Baden – A Famous Thermal Spa with a Long History, GHC Bulletin, 16–22, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a3b86e6cf62727d67c723e4e2b471c762211f26e (last access: 11 July 2024), 2000. a
Sapin, F., Ringenbach, J.-C., and Clerc, C.: Rifted margins classification and forcing parameters, Sci. Rep.-UK, 11, 8199, https://doi.org/10.1038/s41598-021-87648-3, 2021. a, b, c
Sawamura, P., Vernier, J. P., Barnes, J. E., Berkoff, T. A., Welton, E. J., Alados-Arboledas, L., Navas-Guzmán, F., Pappalardo, G., Mona, L., Madonna, F., Lange, D., Sicard, M., Godin-Beekmann, S., Payen, G., Wang, Z., Hu, S., Tripathi, S. N., Cordoba-Jabonero, C., and Hoff, R. M.: Stratospheric AOD after the 2011 eruption of Nabro volcano measured by lidars over the Northern Hemisphere, Environ. Res. Lett., 7, 034013, https://doi.org/10.1088/1748-9326/7/3/034013, 2012. a
Sawyer, G. M., Oppenheimer, C., Tsanev, V. I., and Yirgu, G.: Magmatic degassing at Erta 'Ale volcano, Ethiopia, J. Volcanol. Geoth. Res., 178, 837–846, https://doi.org/10.1016/j.jvolgeores.2008.09.017, 2008. a
Schiffer, C., Doré, A. G., Foulger, G. R., Franke, D., Geoffroy, L., Gernigon, L., Holdsworth, B., Kusznir, N., Lundin, E., McCaffrey, K., Peace, A. L., Petersen, K. D., Phillips, T. B., Stephenson, R., Stoker, M. S., and Welford, J. K.: Structural inheritance in the North Atlantic, Earth-Sci. Rev., 206, 102975, https://doi.org/10.1016/j.earscirev.2019.102975, 2020. a
Schmid, M., Tietze, K., Halabwachs, M., Lorke, A., McGinnis, D., and Wüest, A.: How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002, Acta Vulcanologica, 14, 115–122, 2002. a
Schneider, G. I. C.: Marine diamond mining in the Benguela Current Large Marine Ecosystem: The case of Namibia, Environmental Development, 36, 100579, https://doi.org/10.1016/j.envdev.2020.100579, 2020. a
Schulte, S. M. and Mooney, W. D.: An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts, Geophys. J. Int., 161, 707–721, https://doi.org/10.1111/j.1365-246X.2005.02554.x, 2005. a
Schulz, H.-M., Horsfield, B., and Sachsenhofer, R. F.: Shale gas in Europe: a regional overview and current research activities, Geological Society, London, Petroleum Geology Conference Series, 7, 1079–1085, https://doi.org/10.1144/0071079, 2010. a
Sekajugo, J., Kagoro-Rugunda, G., Mutyebere, R., Kabaseke, C., Namara, E., Dewitte, O., Kervyn, M., and Jacobs, L.: Can citizen scientists provide a reliable geo-hydrological hazard inventory? An analysis of biases, sensitivity and precision for the Rwenzori Mountains, Uganda, Environ. Res. Lett., 17, 045011, https://doi.org/10.1088/1748-9326/ac5bb5, 2022. a
Şengör, A. M. C.: Continental Rifts, in: Encyclopedia of Solid Earth Geophysics, edited by: Gupta, H. K., Springer International Publishing, Cham, 1–15, https://doi.org/10.1007/978-3-030-10475-7_31-2, 2020. a, b, c
Şengör, A. M. C. and Natal'in, B. A.: Rifts of the world, in: Mantle plumes: their identification through time, vol. 352, edited by: Ernst, R. E. and Buchan, K. L., Geological Society of America, https://doi.org/10.1130/0-8137-2352-3.389, 2001. a
Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N. M., Cannon, J., Whittaker, J. M., Matthews, K. J., and McGirr, R.: A Global Data Set of Present-Day Oceanic Crustal Age and Seafloor Spreading Parameters, Geochem. Geophy. Geosy., 21, e2020GC009214, https://doi.org/10.1029/2020GC009214, 2020. a
Shanks III, W. C. P., Koski, R. A., Mosier, D. L., Schulz, K. J., Morgan, L. A., Slack, J. F., Ridley, W. I., Dusel-Bacon, C., Seal II, R. R., and Piatak, N. M.: Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment, Tech. Rep. 2010-5070C, U. S. Geological Survey, Reston, VA, https://doi.org/10.3133/sir20105070C, 2012. a
Sharma, U., Ray, Y., and Pandey, M.: Topography and rainfall coupled landscape evolution of the passive margin of Sahyadri (Western Ghats), India, Geosystems and Geoenvironment, 1, 100100, https://doi.org/10.1016/j.geogeo.2022.100100, 2022. a
Sheldon, H. A., Schaubs, P. M., Blaikie, T. N., Kunzmann, M., Schmid, S., and Spinks, S.: An integrated study of the McArthur River mineral system: From geochemistry, geophysics and sequence stratigraphy to basin-scale models of fluid flow, in: Annual Geoscience Exploration Seminar (AGES) Proceedings, Northern Territory Geological Survey, 81, https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/88379 (last access: 11 July 2024), 2019. a
Skopljak, N.: History written offshore Denmark: First CO2 storage in the North Sea, https://www.offshore-energy.biz/history-written-offshore-denmark-first-co2-storage-in-the-north-sea/, (last access: 23 October 2023), 2023. a
Smith, M. P., Campbell, L. S., and Kynicky, J.: A review of the genesis of the world class Bayan Obo Fe–REE–Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions, Ore Geol. Rev., 64, 459–476, https://doi.org/10.1016/j.oregeorev.2014.03.007, 2015. a
Smith, N. J. P., Shepherd, T. J., Styles, M. T., and Williams, G. M.: Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe, Geological Society, London, Petroleum Geology Conference Series, 6, 349–358, https://doi.org/10.1144/0060349, 2005. a
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through mineral carbonation, Nature Reviews Earth & Environment, 1, 90–102, https://doi.org/10.1038/s43017-019-0011-8, 2020. a, b
Snedden, J. W. and Galloway, W. E.: The Gulf of Mexico Sedimentary Basin: Depositional Evolution and Petroleum Applications, Cambridge University Press, https://doi.org/10.1017/9781108292795, 2019. a
Sobolik, S. R., Hart, D., Chojnicki, K., and Park, B.: 2019 Annual Report of Available Drawdowns for Each Oil Storage Cavern in the Strategic Petroleum Reserve, Tech. Rep. SAND-2019-3673, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States), https://doi.org/10.2172/1762083, 2019. a
Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A., and Rambolamanana, G.: Redefining East African Rift System kinematics, Geology, 49, 150–155, https://doi.org/10.1130/G47985.1, 2021. a, b
Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide susceptibility mapping, Nat. Hazards, 87, 145–164, https://doi.org/10.1007/s11069-017-2757-y, 2017. a
Steiner, B. M.: W and Li-Cs-Ta geochemical signatures in I-type granites – A case study from the Vosges Mountains, NE France, J. Geochem. Explor., 197, 238–250, https://doi.org/10.1016/j.gexplo.2018.12.009, 2019. a
Stober, I. and Bucher, K.: Geothermal Energy, Springer International Publishing, https://doi.org/10.1007/978-3-030-71685-1, 2021. a
Stockman, S., Lawson, D. J., and Werner, M. J.: Forecasting the 2016–2017 Central Apennines earthquake sequence with a neural point process, Earth's Future, 11, e2023EF003777, https://doi.org/10.1029/2023ef003777, 2023. a
Styron, R. and Pagani, M.: The GEM Global Active Faults Database, Earthq. Spectra, 36, 160–180, https://doi.org/10.1177/8755293020944182, 2020. a, b
Suhr, B. and Six, K.: Simple particle shapes for DEM simulations of railway ballast: influence of shape descriptors on packing behaviour, Granul. Matter, 22, 43, https://doi.org/10.1007/s10035-020-1009-0, 2020. a
Tarkowski, R.: Underground hydrogen storage: Characteristics and prospects, Renew. Sust. Energ. Rev., 105, 86–94, https://doi.org/10.1016/j.rser.2019.01.051, 2019. a
Tarkowski, R., Uliasz-Misiak, B., and Tarkowski, P.: Storage of hydrogen, natural gas, and carbon dioxide – Geological and legal conditions, Int. J. Hydrogen Energ., 46, 20010–20022, https://doi.org/10.1016/j.ijhydene.2021.03.131, 2021. a, b
Tassi, F. and Rouwet, D.: An overview of the structure, hazards, and methods of investigation of Nyos-type lakes from the geochemical perspective, J. Limnol., 73, 55–70, https://doi.org/10.4081/jlimnol.2014.836, 2014. a
Taylor, B., Goodliffe, A. M., and Martinez, F.: How continents break up: Insights from Papua New Guinea, J. Geophys. Res., 104, 7497–7512, https://doi.org/10.1029/1998jb900115, 1999. a
Taylor, C. D., Schulz, K. J., Doebrich, J. L., Orris, G., Denning, P., and Kirschbaum, M. J.: Geology and Nonfuel Mineral Deposits of Africa and the Middle East, Tech. Rep. 2005-1294-E, U. S. Geological Survey, https://doi.org/10.3133/ofr20051294E, 2009. a
Thingbaijam, K. K. S., Martin Mai, P., and Goda, K.: New empirical earthquake source-scaling laws, B. Seismol. Soc. Am., 107, 2225–2246, https://doi.org/10.1785/0120170017, 2017. a
Thran, M. C., Brune, S., Webster, J. M., Dominey-Howes, D., and Harris, D.: Examining the impact of the Great Barrier Reef on tsunami propagation using numerical simulations, Nat. Hazards, 108, 347–388, https://doi.org/10.1007/s11069-021-04686-w, 2021. a
TNO: BROloket, https://www.broloket.nl/ondergrondgegevens (last access: 15 March 2024), 2024a. a
TNO: DINOloket, https://www.dinoloket.nl/en (last access: 15 March 2024), 2024b. a
Tucker, O. D.: Carbon Capture and Storage, IOP Publishing Limited, https://doi.org/10.1088/978-0-7503-1581-4, 2018. a, b, c
Tugend, J., Manatschal, G., Kusznir, N. J., and Masini, E.: Characterizing and identifying structural domains at rifed continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants, Geol. Soc. Lond. Spec. Publ., 413, 171–203, https://doi.org/10.1144/SP413.3, 2015. a
Turner, J. P., Berry, T. W., Bowman, M. J., and Chapman, N. A.: Role of the geosphere in deep nuclear waste disposal – An England and Wales perspective, Earth-Sci. Rev., 242, 104445, https://doi.org/10.1016/j.earscirev.2023.104445, 2023. a
UNEP: Annual Report 2022, Tech. rep., UN Environment Programme, https://www.unep.org/resources/annual-report-2022 (last access: 11 July 2024), 2023. a
USDC: A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals, Tech. rep., U.S. Department of Commerce, https://www.commerce.gov/data-and-reports/reports/2019/06/federal-strategy-ensure-secure-and-reliable-supplies-critical-minerals (last access: 11 July 2024), 2019. a
van der Elst, N. J., Savage, H. M., Keranen, K. M., and Abers, G. A.: Enhanced remote earthquake triggering at fluid-injection sites in the midwestern United States, Science, 341, 164–167, https://doi.org/10.1126/science.1238948, 2013. a, b
van Wijk, J. W. and Cloetingh, S. A. P. L.: Basin migration caused by slow lithospheric extension, Earth Planet. Sc. Lett., 198, 275–288, https://doi.org/10.1016/S0012-821X(02)00560-5, 2002. a
Venzke, E.: Volcanoes of the World, https://doi.org/10.5479/si.GVP.VOTW5-2023.5.1, 2023. a
Vereb, V., van Wyk de Vries, B., Guilbaud, M.-N., and Karátson, D.: The Urban Geoheritage of Clermont-Ferrand: From Inventory to Management, Quaestiones Geographicae, 39, 5–31, https://doi.org/10.2478/quageo-2020-0020, 2020. a
Walle, H., Zewde, S., and Heldal, T.: Building stone of central and southern Ethiopia: deposits and resource potential, NGU-BULL, 436, 175–182, https://www.ngu.no/upload/Publikasjoner/Bulletin/Bulletin436_175-182.pdf (last access: 11 July 2024), 2000. a
Walsh, J. J., Torremans, K., Güven, J., Kyne, R., Conneally, J., and Bonson, C.: Fault-Controlled Fluid Flow Within Extensional Basins and Its Implications for Sedimentary Rock-Hosted Mineral Deposits, in: Metals, Minerals, and Society, vol. 21, edited by: Arribas R., A. M. and Mauk, J. L., Society of Economic Geologists (SEG), https://doi.org/10.5382/SP.21.11, 2018. a
Wang, L., Maestrelli, D., Corti, G., Zou, Y., and Shen, C.: Normal fault reactivation during multiphase extension: Analogue models and application to the Turkana depression, East Africa, Tectonophysics, 811, 228870, https://doi.org/10.1016/j.tecto.2021.228870, 2021. a
Wangen, M.: The blanketing effect in sedimentary basins, Basin Res., 7, 283–298, https://doi.org/10.1111/j.1365-2117.1995.tb00118.x, 1995. a
Warsitzka, M., Závada, P., Jähne-Klingberg, F., and Krzywiec, P.: Contribution of gravity gliding in salt-bearing rift basins – a new experimental setup for simulating salt tectonics under the influence of sub-salt extension and tilting, Solid Earth, 12, 1987–2020, https://doi.org/10.5194/se-12-1987-2021, 2021. a, b
Washburn, T. W., Turner, P. J., Durden, J. M., Jones, D. O. B., Weaver, P., and Van Dover, C. L.: Ecological risk assessment for deep-sea mining, Ocean Coast. Manage., 176, 24–39, https://doi.org/10.1016/j.ocecoaman.2019.04.014, 2019. a
Watters, T. R., Montési, L. G. J., Oberst, J., and Preusker, F.: Fault-bound valley associated with the Rembrandt basin on Mercury, Geophys. Res. Lett., 43, 11536–11544, https://doi.org/10.1002/2016gl070205, 2016. a
Weert, A., Ogata, K., Vinci, F., Leo, C., Bertotti, G., Amory, J., and Tavani, S.: Multiple phase rifting and subsequent inversion in the West Netherlands Basin: implications for geothermal reservoir characterization, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1126, 2023. a
Wenz, J.: The danger lurking in an African lake, Knowable magazine, https://doi.org/10.1146/knowable-100720-1, 2020. a
Wernicke, B.: Uniform-sense normal simple shear of the continental lithosphere, Can. J. Earth Sci., 22, 108–125, https://doi.org/10.1139/e85-009, 1985. a
White, R. S., Hardman, R. F. P., Watts, A. B., Whitmarsh, R. B., Lambiase, J. J., and Morley, C. K.: Hydrocarbons in rift basins: the role of stratigraphy, Philos. T. Roy. Soc. A, 357, 877–900, https://doi.org/10.1098/rsta.1999.0356, 1999. a
Whittaker, S., Rostron, B., Hawkes, C., Gardner, C., White, D., Johnson, J., Chalaturnyk, R., and Seeburger, D.: A decade of CO2 injection into depleting oil fields: Monitoring and research activities of the IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project, Enrgy. Proced., 4, 6069–6076, https://doi.org/10.1016/j.egypro.2011.02.612, 2011. a
Wichman, B. G. H. M., Knoeff, J. G., and de Vries, G.: Geotechnical aspects of reinforcement alternatives of the Afsluitdijk, in: Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, vols. 1, 2, 3 and 4, IOS Press, Amsterdam, NY, 1514–1517, https://doi.org/10.3233/978-1-60750-031-5-1514, 2009. a
Wiener, R. W., Mann, M. G., Angelich, M. T., and Molyneux, J. B.: Mobile Shale in the Niger Delta: Characteristics, Structure, and Evolution, in: Shale Tectonics, vol. 93, edited by: Wood, L. J., American Association of Petroleum Geologists, https://doi.org/10.1306/13231313M933423, 2011. a
Wilkinson, J. J.: 13.9 – Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives, in: Treatise on Geochemistry, 2nd edn., edited by: Holland, H. D. and Turekian, K. K., Elsevier, Oxford, 219–249, https://doi.org/10.1016/B978-0-08-095975-7.01109-8, 2014. a, b, c
Williams, J. N., Wedmore, L. N. J., Fagereng, Å., Werner, M. J., Mdala, H., Shillington, D. J., Scholz, C. A., Kolawole, F., Wright, L. J. M., Biggs, J., Dulanya, Z., Mphepo, F., and Chindandali, P.: Geologic and geodetic constraints on the magnitude and frequency of earthquakes along Malawi's active faults: the Malawi Seismogenic Source Model (MSSM), Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, 2022. a, b
Williams Jr., R. S. and Moore, J. G.: Man against volcano: The eruption on Heimaey, Vestmann Islands, Iceland, USGS, https://doi.org/10.3133/70039211, 1976. a
Wilson, C. J. N., Blake, S., Charlier, B. L. A., and Sutton, A. N.: The 26·5 ka oruanui eruption, taupo volcano, New Zealand: Development, characteristics and evacuation of a large rhyolitic magma body, J. Petrol., 47, 35–69, https://doi.org/10.1093/petrology/egi066, 2006. a
Wilson, R. W., Houseman, G. A., Buiter, S. J. H., McCaffrey, K. J. W., and Doré, A. G.: Fifty years of the Wilson Cycle concept in plate tectonics: an overview, Geol. Soc. Lond. Spec. Publ., 470, 1–17, https://doi.org/10.1144/SP470-2019-58, 2019. a, b
Wilson, T. J.: Did the Atlantic Close and then Re-Open?, Nature, 211, 676–681, https://doi.org/10.1038/211676a0, 1966. a, b
Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R., and Kelley, S. P.: Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia, GSA Bulletin, 117, 846–864, https://doi.org/10.1130/B25516.1, 2005. a
Wölfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C. W., Dorschel, B., Ferrini, V., Huvenne, V. A. I., Jakobsson, M., Jencks, J., Johnston, G., Lamarche, G., Mayer, L., Millar, D., Pedersen, T. H., Picard, K., Reitz, A., Schmitt, T., Visbeck, M., Weatherall, P., and Wigley, R.: Seafloor mapping – the challenge of a truly global ocean bathymetry, Frontiers in Marine Science, 6, 283, https://doi.org/10.3389/fmars.2019.00283, 2019. a
Worldometer: Population of eastern Africa (2023) – Worldometer, https://www.worldometers.info/world-population/eastern-africa-population/ (last access: 23 October 2023), 2023. a
Xu, Y., He, H., Deng, Q., Allen, M. B., Sun, H., and Bi, L.: The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes, J. Geophys. Res.-Sol. Ea., 123, 3098–3121, https://doi.org/10.1002/2017JB014928, 2018. a
Yamamoto, K., Boswell, R., Collett, T. S., Dallimore, S. R., and Lu, H.: Review of Past Gas Production Attempts from Subsurface Gas Hydrate Deposits and Necessity of Long-Term Production Testing, Energ. Fuel., 36, 5047–5062, https://doi.org/10.1021/acs.energyfuels.1c04119, 2022. a
Yang, Z. and Chen, W.-P.: Earthquakes along the East African Rift System: A multiscale, system-wide perspective, J. Geophys. Res., 115, B12309, https://doi.org/10.1029/2009jb006779, 2010. a, b
Yaxley, G. M., Anenburg, M., Tappe, S., Decree, S., and Guzmics, T.: Carbonatites: Classification, Sources, Evolution, and Emplacement, Annu. Rev. Earth Pl. Sc., 50, 261–293, https://doi.org/10.1146/annurev-earth-032320-104243, 2022. a
Zappettini, E. O., Rubinstein, N., Crosta, S., and Segal, S. J.: Intracontinental rift-related deposits: A review of key models, Ore Geol. Rev., 89, 594–608, https://doi.org/10.1016/j.oregeorev.2017.06.019, 2017. a, b
Zhang, J., Li, Z., Wang, D., Xu, L., Li, Z., Niu, J., Chen, L., Sun, Y., Li, Q., Yang, Z., Zhao, X., Wu, X., and Lang, Y.: Shale gas accumulation patterns in China, Natural Gas Industry B, 10, 14–31, https://doi.org/10.1016/j.ngib.2023.01.004, 2023. a
Zhong, R., Brugger, J., Chen, Y., and Li, W.: Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids, Chem. Geol., 395, 154–164, https://doi.org/10.1016/j.chemgeo.2014.12.008, 2015. a
Zhou, F., Dyment, J., Tao, C., and Wu, T.: Magmatism at oceanic core complexes on the ultraslow Southwest Indian Ridge: Insights from near-seafloor magnetics, Geology, 50, 726–730, https://doi.org/10.1130/G49771.1, 2022. a
Zielke, O. and Strecker, M. R.: Recurrence of Large Earthquakes in Magmatic Continental Rifts: Insights from a Paleoseismic Study along the Laikipia–Marmanet Fault, Subukia Valley, Kenya Rift, B. Seismol. Soc. Am., 99, 61–70, https://doi.org/10.1785/0120080015, 2009. a
Zlydenko, O., Elidan, G., Hassidim, A., Kukliansky, D., Matias, Y., Meade, B., Molchanov, A., Nevo, S., and Bar-Sinai, Y.: A neural encoder for earthquake rate forecasting, Sci. Rep.-UK, 13, 12350, https://doi.org/10.1038/s41598-023-38033-9, 2023. a
Zwaan, F. and Schreurs, G.: The link between Somalian Plate rotation and the East African Rift System: an analogue modelling study, Solid Earth, 14, 823–845, https://doi.org/10.5194/se-14-823-2023, 2023. a
Zwaan, F., Corti, G., Sani, F., Keir, D., Muluneh, A. A., Illsley-Kemp, F., and Papini, M.: Structural analysis of the western afar margin, east Africa: Evidence for multiphase rotational rifting, Tectonics, 39, e2019TC006043, https://doi.org/10.1029/2019tc006043, 2020. a
Zwaan, F., Chenin, P., Erratt, D., Manatschal, G., and Schreurs, G.: Competition between 3D structural inheritance and kinematics during rifting: Insights from analogue models, Basin Res., 34, 824–854, https://doi.org/10.1111/bre.12642, 2022. a, b, c, d
Zwaan, F., Brune, S., Glerum, A., Vasey, D. A., Naliboff, J. B., Manatschal, G., and Gaucher, E. C.: Rift-inversion orogens are potential hotspots for natural H2 generation, ResearchSquare, https://doi.org/10.21203/rs.3.rs-3367317/v1, 2023. a, b
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A...