Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-929-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cross-scale strain analysis in the Afar rift (East Africa) from automatic fault mapping and geodesy
Alessandro La Rosa
CORRESPONDING AUTHOR
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria, 53, 56126 Pisa, Italy
Pauline Gayrin
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Sascha Brune
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Institute of Geosciences, University of Potsdam, Potsdam, Germany
Carolina Pagli
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria, 53, 56126 Pisa, Italy
Ameha A. Muluneh
MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
GFZ Helmholtz Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Gianmaria Tortelli
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, 50121 Florence, Italy
Derek Keir
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, 50121 Florence, Italy
School of Ocean and Earth Science, University of Southampton, European Way, Southampton, SO16 3ZH, UK
Related authors
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Pauline Gayrin, Thilo Wrona, Sascha Brune, Derek Neuharth, Nicolas Molnar, Alessandro La Rosa, and John Naliboff
EGUsphere, https://doi.org/10.5194/egusphere-2025-3989, https://doi.org/10.5194/egusphere-2025-3989, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
When in extension, the Earth's crust accommodates deformation by breaking. Through time, faults grow into an intricate network that can be detected by changes in topography, or through modelling (numerical or analogue). This study demonstrates how the Python library Fatbox, the fault analysis toolbox, can extract the network pattern automatically from said datasets and characterise the geometry and kinematics of the fault network.
Dylan A. Vasey, Peter M. Scully, John B. Naliboff, and Sascha Brune
EGUsphere, https://doi.org/10.5194/egusphere-2025-3578, https://doi.org/10.5194/egusphere-2025-3578, 2025
Short summary
Short summary
We present an open-access Python package (GDTchron) designed to forward model apatite (U-Th)/He, apatite fission track, and zircon (U-Th)/He ages using temperatures output by geodynamic numerical models. The software can be used in a parallelized workflow to calculate large numbers of ages. We present two examples of potential applications of GDTchron: a simple model of an uplifting box with perfectly efficient erosion and a complex model of continental rifting followed by mountain building.
Ahmed Yaaqoub, Abderrahim Essaifi, Romano Clementucci, Paolo Ballato, Rachid Zayane, Claudio Faccenna, and Carolina Pagli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1746, https://doi.org/10.5194/egusphere-2024-1746, 2024
Preprint archived
Short summary
Short summary
This research examines fluvial dynamics in Central Moroccan valleys using Quaternary lava flows as geomorphic markers. By calculating post-emplacement incision rates, spatial variations in incision were found between the Moroccan Massif Central and Middle Atlas. This discrepancy, likely due to surface uplift from flexural forebulge and mantle dynamics, offers new insights into Quaternary landscape evolution, revealing significant relief predating the lava flows.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Karel Martínek, Kryštof Verner, Tomáš Hroch, Leta A. Megerssa, Veronika Kopačková, David Buriánek, Ameha Muluneh, Radka Kalinová, Miheret Yakob, and Muluken Kassa
Nat. Hazards Earth Syst. Sci., 21, 3465–3487, https://doi.org/10.5194/nhess-21-3465-2021, https://doi.org/10.5194/nhess-21-3465-2021, 2021
Short summary
Short summary
This study combines field geological and geohazard mapping with remote sensing data. Geostatistical analysis evaluated precipitation, land use, vegetation density, rock mass strength, and tectonics. Contrasting tectonic and climatic setting of the Main Ethiopian Rift and uplifted Ethiopian Plateau have major impacts on the distribution of landslides.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Cited articles
Abbate, E., Passerini, P., and Zan, L.: Strike-slip faults in a rift area: a transect in the Afar Triangle, East Africa, Tectonophysics, 241, 67–97, https://doi.org/10.1016/0040-1951(94)00136-W, 1995.
Acocella, V., Abebe, B., Korme, T., and Barberi, F.: Structure of Tendaho Graben and Manda Hararo Rift: Implications for the evolution of the southern Red Sea propagator in Central Afar, Tectonics, 27, 1–17, https://doi.org/10.1029/2007TC002236, 2008.
Ahmed, A., Doubre, C., Leroy, S., Keir, D., Pagli, C., Hammond, J. O. S., Ayele, A., Be de Berc, M., Grunberg, M., Vergne, J., Pestourie, R., Mamo, D., Kibret, B., Cubas, N., Lavayssière, A., Janowski, M., Lengliné, O., La Rosa, A., Chambers, E. L., and Illsley-Kemp, F.: Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis, J. African Earth Sci., 192, 104570, https://doi.org/10.1016/j.jafrearsci.2022.104570, 2022.
Airbus Defence and Space: Copernicus DEM GLO-90, Copernicus Data Space Ecosystem [data set], https://doi.org/10.5270/ESA-c5d3d65, 2020.
Barberi, F. and Varet, J.: Volcanism of Afar: Small-scale plate tectonics implications, GSA Bull., 88, 1251–1266, https://doi.org/10.1130/0016-7606(1977)88<1251:VOASPT>2.0.CO;2, 1977.
Biggs, J., Amelung, F., Gourmelen, N., Dixon, T. H., and Kim, S.: InSAR observations of 2007 Tanzania rifting episode reveal mixed fault and dyke extension in an immature continental rift, Geophys. J. Int., 179, 549–558, https://doi.org/10.1111/j.1365-246X.2009.04262.x, 2009.
Birhanu, Y., Bendick, R., Fisseha, S., Lewi, E., Floyd, M., King, R., and Reilinger, R.: GPS constraints on broad scale extension in the Ethiopian Highlands and Main Ethiopian Rift, Geophys. Res. Lett., 43, 6844–6851, https://doi.org/10.1002/2016GL069890, 2016.
Boone, S. C., Balestrieri, M., and Kohn, B.: Tectono-Thermal Evolution of the Red Sea Rift, Front. Earth Sci., 9, 1–9, https://doi.org/10.3389/feart.2021.713448, 2021.
Bridges, D. L., Mickus, K., Gao, S. S., Abdelsalam, M. G., and Alemu, A.: Magnetic stripes of a transitional continental rift in Afar, Geology, 40, 203–206, https://doi.org/10.1130/G32697.1, 2012.
Brune, S., Kolawole, F., Olive, J., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., and Shillington, D. J.: Geodynamics of continental rift initiation and evolution, Nat. Rev. Earth Environ., 4, 235–253, https://doi.org/10.1038/s43017-023-00391-3, 2023.
Calais, E., D'Oreye, N., Albaric, J., Deschamps, A., Delvaux, D., Déverchère, J., Ebinger, C., Ferdinand, R. W., K., F., Mcheyeki, A. S., Oyen, A., Perrot, J., Saria, E., Smets, B., Stamps, D. S., and Wauthier, C.: Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa, Nature, 456, 783–788, https://doi.org/10.1038/nature07478, 2008.
Canny, J.: A Computational Approach to Edge Detection, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8, 679–698, https://doi.org/10.1109/TPAMI.1986.4767851, 1986.
Corti, G., Cioni, R., Franceschini, Z., Sani, F., Scaillet, S., Molin, P., Isola, I., Mazzarini, F., Brune, S., Keir, D., Erbello, A., Muluneh, A. A., Illsley-Kemp, F., and Glerum, A.: Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift, Nat. Commun., 10, 1309, https://doi.org/10.1038/s41467-019-09335-2, 2019.
Courtillot, V., Achache, J., Landre, F., Bonhommet, N., Montigny, R., and Féraud, G.: Episodic spreading and rift propagation: New paleomagnetic and geochronologic data from the Afar Nascent passive margin, J. Geophys. Res., 89, 3315–3333, https://doi.org/10.1029/JB089iB05p03315, 1984.
Daoud, M. A., Gall, B. Le, Maury, R. C., Rolet, J., and Huchon, P.: Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti, Tectonics, 30, https://doi.org/10.1029/2009TC002614, 2011.
Doubre, C. and Peltzer, G.: Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations, Geology, 35, 69–72, https://doi.org/10.1130/G23022A.1, 2007.
Doubre, C., Manighetti, I., Dorbath, L., Dorbath, C., Bertil, D., and Delmond, J. C.: Crustal structure and magmato-tectonic processes in an active rift (Asal-Ghoubbet, Afar, East Africa): 2. Insights from the 23-year recording of seismicity since the last rifting event, J. Geophys. Res., 112, 1–32, https://doi.org/10.1029/2006JB004333, 2007.
Doubre, C., Déprez, A., Masson, F., Socquet, A., Lewi, E., Grandin, R., Nercessian, A., Ulrich, P., De Chabalier, J., Saad, I., Abayazid, A., Peltzer, G., Delorme, A., Calais, E., and Wright, T.: Current deformation in Central Afar and triple junction kinematics deduced from GPS and InSAR measurements, Geophys. J. Int., 208, 936–953, https://doi.org/10.1093/gji/ggw434, 2017.
Douglas, M. M., Geyer, A., Álvarez-valero, A. M., and Martí, J.: Modeling magmatic accumulations in the upper crust: Metamorphic implications for the country rock, J. Volcanol. Geotherm. Res., 319, 78–92, https://doi.org/10.1016/j.jvolgeores.2016.03.008, 2016.
Dumont, S., Socquet, A., Grandin, R., Doubre, C., and Klinger, Y.: Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005-2010 rifting episode at Dabbahu-Manda-Hararo rift (Afar, Ethiopia), Geophys. J. Int., 204, 399–417, https://doi.org/10.1093/gji/ggv449, 2016.
Dumont, S., Klinger, Y., Socquet, A., Doubre, C., and Jacques, E.: Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment, J. Struct. Geol., 95, 48–59, https://doi.org/10.1016/j.jsg.2016.12.008, 2017.
Eagles, G., Gloaguen, R., and Ebinger, C.: Kinematics of the Danakil microplate, Earth Planet. Sc. Lett., 203, 607–620, https://doi.org/10.1016/S0012-821X(02)00916-0, 2002.
Ebinger, C., Ayele, A., Keir, D., Rowland, J., Yirgu, G., Wright, T., Belachew, M., and Hamling, I.: Length and Timescales of Rift Faulting and Magma Intrusion: The Afar Rifting Cycle from 2005 to Present, Annu. Rev. Earth Planet. Sci., 38, 439–466, https://doi.org/10.1146/annurev-earth-040809-152333, 2010.
Ebinger, C. J., van Wijk, J., and Keir, D.: The time scales of continental rifting: Implications for global processes, Geol. Soc. Am., 2500, 1–26, https://doi.org/10.1130/2013.2500(11), 2013.
Ebinger, C., van Wijk, J., Olaka, L., Mériaux C., and Fontijn, K.: All scales must be considered to understand rifts, Nat. Rev. Earth Environ., 4, 209–210, https://doi.org/10.1038/s43017-023-00408-x, 2023.
Feyissa, D. H., Kitagawa, H., Bizuneh, T. D., Tanaka, R., Kabeto, K., and Nakamura, E.: Transition from Plume-driven to Plate-driven Magmatism in the Evolution of the Main Ethiopian Rift, J. Petrol., 60, 1681–1715, https://doi.org/10.1093/petrology/egz043, 2019.
Gayrin, P., Wrona, T., and Brune, S.: Fatbox, the fault analysis toolbox (1.1), GFZ Helmholtz Centre for Geosciences, GitHub [code], https://github.com/PaulineGayrin/Fatbox, 2025a.
Gayrin, P., Wrona, T., Brune, S., Neuharth, D., Molnar, N., La Rosa, A., and Naliboff, J.: Fatbox: the fault analysis toolbox, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-3989, 2025b.
Geoffroy, L., Le Gall, B., Daoud, M. A., Jalludin, M.: Flip-flop detachment tectonics at nascent passive margins in SE Afar, Journal of the Geological Society, 171, 689–694, https://doi.org/10.1144/jgs2013-135, 2014.
Gerya, T.: Introduction to Numerical Geodynamic Modelling, 2nd edn., Cambridge University Press, https://doi.org/10.1017/9781316534243, 2019.
Gianpietro, T., Dominguez, S., and Malavieielle, J.: Automatic Fault Mapping in Remote Optical Images and Topographic Data With Deep Learning, J. Geophys. Res.-Sol. Ea., 126, 1–38, https://doi.org/10.1029/2020JB021269, 2021.
Grandin, R., Socquet, A., Jacques, E., Mazzoni, N., de Chabalier, J., and King, G. C. P.: Sequence of rifting in Afar, Manda-Hararo rift, Ethiopia, 2005–2009: Time-space evolution and interactions between dikes from interferometric synthetic aperture radar and static stress change modeling, J. Geophys. Res.-Sol. Ea., 115, 2156–2202, https://doi.org/10.1029/2009JB000815, 2010.
Hamling, I. J., Wright, T. J., Calais, E., Bennati, L., and Lewi, E.: Stress transfer between thirteen successive dyke intrusions in Ethiopia, Nat. Geosci., 3, 713–717, https://doi.org/10.1038/ngeo967, 2010.
Hammond, J. O. S., Kendall, J. M., Stuart, G. W., Keir, D., Ebinger, C., Ayele, A., and Belachew, M.: The nature of the crust beneath the Afar triple junction: Evidence from receiver functions, Geochem. Geophy. Geosy., 12, https://doi.org/10.1029/2011GC003738, 2011.
Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal, J.: A 30 m global map of elevation with forests and buildings removed, Environmental Res. Lett., 17, https://doi.org/10.1088/1748-9326/ac4d4f, 2022.
Hayward, N. J. and Ebinger, C. J.: Variations in the along-axis segmentation of the Afar Rift system, Tectonics, 15, 244–257, 1996.
Hofmann, B., Magee, C., Wright, T.: Throw distribution across the Dabbahu–Manda Hararo dike-induced fault array: Implications for rifting and faulting, Geology, 53, 161–165, https://doi.org/10.1130/G52665.1, 2024.
Keir, D., Hamling, I. J., Ayele, A., Calais, E., Ebinger, C., Wright, T. J., Jacques, E., Mohamed, K., Hammond, J. O. S., Belachew, M., Baker, E., Rowland, J. V, Lewi, E., and Bennati, L.: Evidence for focused magmatic accretion at segment centers from lateral dike injections captured beneath the Red Sea rift in Afar, Geology, 37, 59–62, https://doi.org/10.1130/G25147A.1, 2009.
Keir, D., Pagli, C., Bastow, I. D., and Ayele, A.: The magma – assisted removal of Arabia in Afar: Evidence from dike injection in the Ethiopian rift captured using InSAR and seismicity, Tectonics, 30, 1–13, https://doi.org/10.1029/2010TC002785, 2011.
Kidane, T., Courtillot, V., Manighetti, I., Audin, L., Lahitte, P., Quidelleur, X., Gillot, P., Gallet, Y., and Carlut, J.: New paleomagnetic and geochronologic results from Ethiopian Afar: Block rotations linked to rift overlap and propagation and determination of a ∼ 2 Ma reference pole for stable Africa, J. Geophys. Res., 108, https://doi.org/10.1029/2001JB000645, 2003.
La Rosa, A., Pagli, C., Keir, D., Sani, F., Corti, G., Wang, H., and Possee, D.: Observing oblique slip during rift linkage in northern Afar, Geophysical Research Letters, 46, 10782–10790, https://doi.org/10.1029/2019GL084801, 2019.
La Rosa, A., Keir, D., Pagli, C., and Wang, H.: Simultaneous rift-scale inflation of a deep crustal sill network in Afar, East Africa, Nat. Commun., 15, 1–8, https://doi.org/10.1038/s41467-024-47136-4, 2024.
La Rosa, A., Gayrin, P., Brune, S.: Automatic fault maps of the Afar rift and Python workflows for strain calculation, Open Science Framework repository [data set], https://doi.org/10.17605/OSF.IO/AV5WD, 2025.
Lahitte, P., Gillot, P.-Y., Kidane, T., Courtillot, V., and Bekele, A.: New age constraints on the timing of volcanism in central Afar, in the presence of propagating rifts, J. Geophys. Res., 108, https://doi.org/10.1029/2001jb001689, 2003.
Leroy, S., Gente, P., Fournier, M., Acremont, E., Patriat, P., Beslier, M., Bellahsen, N., Maia, M., Blais, A., Perrot, J., Al-kathiri, A., Merkouriev, S., Fleury, J., Ruellan, P., Lepvrier, C., and Huchon, P.: From rifting to spreading in the eastern Gulf of Aden: a geophysical survey of a young oceanic basin from margin to margin, Terra Nov., 16, 185–192, https://doi.org/10.1111/j.1365-3121.2004.00550.x, 2004.
Maestrelli, D., Brune, S., Corti, G., Keir, D., Muluneh, A. A., and Sani, F.: Analog and Numerical Modeling of Rift-Rift-Rift Triple Junctions, Tectonics, 41, 1–27, https://doi.org/10.1029/2022TC007491, 2022.
Maestrelli, D., Sani, F., Keir, D., Pagli, C., La Rosa, A., Muluneh, A. A., Brune, S., and Corti, G.: Reconciling plate motion and faulting at a rift-rift-rift triple junction, Geology, 1–5, https://doi.org/10.1130/G51909.1, 2024.
Manighetti, I., Tapponnier, P., Gillot, P. Y., Jacques, E., Courtillot, V., Armijo, R., Ruegg, J. C., and King, G.: Propagation of rifting along the Arabia-Somalia plate boundary: Into Afar, J. Geophys. Res., 103, 4947–4974, https://doi.org/10.1029/97JB02758, 1998.
Manighetti, I., Tapponnier, P., Courtillot, V., Gallet, Y., Jacques, E., and Gillot, P.-Y.: Strain transfer between disconnected, propagating rifts in Afar, J. Geophys. Res., 106, 13613–13665, https://doi.org/10.1029/2000JB900454, 2001.
Mattéo, L., Manighetti, I., Tarabalka, Y., Gaucel, J., van den Ende, M., Mercier, A., Tasar, O., Girard, N., Leclerc, F., McClusky, S., Reilinger, R., Ogubazghi, G., Amleson, A., Healeb, B., Vernant, P., Sholan, J., Fisseha, S., Asfaw, L., Bendick, R., and Kogan, L.: Kinematics of the southern Red Sea – Afar Triple Junction and implications for plate dynamics, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2009GL041127, 2021.
McClusky, S., Reilinger, R., Ogubazghi, G., Amleson, A., Healeb, B., Vernant, P., Sholan, J., Fisseha, S., Asfaw, L., Bendick, R., Kogan L.: Kinematics of the southern Red Sea–Afar Triple Junction and implications for plate dynamics, Geophys. Res. Lett., 37, L05301, https://doi.org/10.1029/2009GL041127, 2010.
Medynski, S., Pik, R., Burnard, P., France, L., Whaler, K., Johnson, N., Benedetti, L., Ayelew, D., Medynski, S., Pik, R., Burnard, P., and France, L.: Stability of rift axis magma reservoirs: Spatial and temporal evolution of magma supply in the Dabbahu rift segment (Afar, Ethiopia) over the past 30 kyr, Earth Planet. Sc. Lett., 409, 278–289, https://doi.org/10.1016/j.epsl.2014.11.002, 2015.
Metzger, S. and Jónsson, S.: Tectonophysics Plate boundary deformation in North Iceland during 1992–2009 revealed by InSAR time-series analysis and GPS, Tectonophysics, 634, 127–138, https://doi.org/10.1016/j.tecto.2014.07.027, 2014.
Moore, C., Wright, T. J., and Hooper, A.: Rift Focusing and Magmatism During Late-Stage Rifting in Afar, J. Geophys. Res.-Sol. Ea., 126, 1–18, https://doi.org/10.1029/2020JB021542, 2021.
Muluneh, A., Brune, S., Pagli, C., La Rosa, A., Keir, D., Neuharth, D., and Corti, G.: To Rotate or to Link? The Connection Between the Red Sea and Gulf of Aden Rifts in Central Afar, Geophys. Res. Lett., 51, e2024GL108732, https://doi.org/10.1029/2024GL108732, 2024.
Neal, J. and Hawker, L.: FABDEM V1-2, University of Bristol [data set], https://doi.org/10.5523/bris.s5hqmjcdj8yo2ibzi9b4ew3sn, 2023.
Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.: Evolution of Rift Systems and Their Fault Networks in Response to Surface Processes, Tectonics, 41, e2021TC007166, https://doi.org/10.1029/2021TC007166, 2022.
Nobile, A., Pagli, C., Keir, D., Wright, T. J., Ayele, A., Ruch, J., and Acocella, V.: Dike-fault interaction during the 2004 Dallol intrusion at the northern edge of the Erta Ale Ridge (Afar, Ethiopia), Geophys. Res. Lett., 39, 2–7, https://doi.org/10.1029/2012GL053152, 2012.
Pagli, C., Wright, T. J., Ebinger, C. J., Yun, S., Cann, J. R., and Barnie, T.: Shallow axial magma chamber at the slow-spreading Erta Ale Ridge, Nat. Geosci., 5, 1–5, https://doi.org/10.1038/ngeo1414, 2012.
Pagli, C., Wang, H., Wright, T. J., Calais, E., and Lewi, E.: Current plate boundary deformation of the Afar rift from a 3-D velocity field inversion of InSAR and GPS, J. Geophys. Res.-Sol. Ea., 119, 8562–8575, https://doi.org/10.1002/2014JB011391, 2014.
Polun, S. G., Gomez, F., and Tesfaye, S.: Scaling properties of normal faults in the central Afar, Ethiopia and Djibouti: Implications for strain partitioning during the final stages of continental breakup, J. Struct. Geol., 115, 178–189, https://doi.org/10.1016/j.jsg.2018.07.018, 2018.
Rees, R., Gernon, T. M., Keir, D., Taylor, R. N., and Pagli, C.: The spatial and volcanic evolution of Ayelu, Abida and Yangudi volcanoes in the Northern Main Ethiopian Rift – Southern Afar, Ethiopia, J. Volcanol. Geoth. Res., 440, 107846, https://doi.org/10.1016/j.jvolgeores.2023.107846, 2023.
Regenauer-lieb, K., Rosenbaum, G., and Weinberg, R. F.: Strain localisation and weakening of the lithosphere during extension, Tectonophysics, 458, 96–104, https://doi.org/10.1016/j.tecto.2008.02.014, 2008.
Reilinger, R., McClusky, S.: Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics, Geophys. J. Int., 186, 971–979, https://doi.org/10.1111/j.1365-246X.2011.05133.x, 2011.
Riedl, S., Melnick, D., Njue, L., Sudo, M., and Strecker, M. R.: Mid-Pleistocene to Recent Crustal Extension in the Inner Graben of the Northern Kenya Rift, Geochem. Geophy. Geosyst., 23, e2021GC010123, https://doi.org/10.1029/2021GC010123, 2022.
Rime, V., Foubert, A., Ruch, J., and Kidane, T.: Tectonostratigraphic evolution and significance of the Afar Depression, Earth-Sci. Rev., 244, 104519, https://doi.org/10.1016/j.earscirev.2023.104519, 2023.
Rime, V., Keir, D., Phethean, J., Kidane, T., and Foubert, A.: Central Afar: An analogue for oceanic plateau development, Geology, 52, 819–824, https://doi.org/10.1130/G52330.1, 2024.
Ruch, J., Keir, D., Passarelli, L., Di Giacomo, D., Ogubazghi, G., and Jonsson, S.: Revealing 60 years of Earthquake Swarms in the Southern Red Sea, Afar and the Gulf of Aden, Front. Earth Sci., 9, 1–20, https://doi.org/10.3389/feart.2021.664673, 2021.
Ruegg, J. C., Lèpin, J. C., and Tarantola, A.: Geodetic measurements of rifting associated with a seismo-volcanic crisis in Afar, Geophys. Res. Lett., 6, 817–820, https://doi.org/10.1029/GL006i011p00817, 1979.
Ruegg, J. C., Kasser, M., and Lépine, J. C.: Strain accumulation across the Asal-Ghoubbet Rift, Djibouti, East Africa, J. Geophys. Res., 89, 6237–6246, https://doi.org/10.1029/jb089ib07p06237, 1984.
Scott, C., Giampietro, T., Brigham, C., Leclerc, F., Manighetti, I., Arrowsmith, J. R., Laó-Dávila, D., and Mattéo, L.: Semiautomatic Algorithm to Map Tectonic Faults and Measure Scarp Height from Topography Applied to the Volcanic Tablelands and the Hurricane Fault, Western US, Lithosphere, 2021, 9031662, https://doi.org/10.2113/2021/9031662, 2021.
Smittarello, D., Grandin, R., Chabalier, J. De, Doubre, C., Deprez, A., Masson, F., Socquet, A., and Saad, I. A.: Transient Deformation in the Asal-Ghoubbet Rift (Djibouti) Since the 1978 Dyking Event: Is Deformation Controlled by Magma Supply Rates?, J. Geophys. Res.-Sol. Ea., 121, 6030–6052, https://doi.org/10.1002/2016JB013069, 2016.
Stab, M., Bellahsen, N., Pik, R., Quidelleur, X., Ayalew, D., and Leroy, S.: Modes of rifting in magma-rich settings: Tectono-magmatic evolution of Central Afar, Tectonics, 35, 2–38, https://doi.org/10.1002/2015TC003893, 2016.
Stamps, D. S., Kreemer, C., Fernandes, R., Rajaonarison, T. A., and Rambolamanana, G.: Redefining East African Rift System kinematics, Geology, 49, 150–155, https://doi.org/10.1130/G47985.1, 2020.
Stewart, N., Gaudemer, Y., Manighetti, I., Serreau, L., Vincendeau, A., Dominguez, S., Mattéo, L., and Malavieille, J.: “3D_Fault_Offsets,” a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults, J. Geophys. Res.-Sol. Ea., 123, 815–835, https://doi.org/10.1002/2017JB014863, 2018.
Tarantola, A., Ruegg, J. C., and Lépine, J. C.: Geodetic evidence for rifting in Afar a brittle-elastic model of the behaviour of the lithosphere, Earth Planet. Sc. Lett., 45, 435–444, https://doi.org/10.1016/0012-821X(79)90142-0, 1979.
Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E. F., and Keir, D.: Constraints on the Magma Source and Rift Evolution From Geochemistry of the Stratoid Flood Basalts (Afar, Ethiopia), Geochem. Geophy. Geosyst., 23, 1–21, https://doi.org/10.1029/2022GC010434, 2022.
Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E. F., and Keir, D.: From melt- to crystal-rich magmatic systems during rift localization: Insights from mineral chemistry in Central Afar (Ethiopia), Mineral. Petrol., 7, 179–187, https://doi.org/10.1007/s00410-024-02164-7, 2024.
Tortelli, G., Gioncada, A., Pagli, C., Barford, D. N., Corti, G., Sani, F., Mark, D. F., Dymock, R. C., Gebru, E. F., and Keir, D.: Volcanism records plate thinning driven rift localization in Afar (Ethiopia) since 2–2.5 million years ago, Commun. Earth Environ., 6, 395, https://doi.org/10.1038/s43247-025-02356-4, 2025.
Trippanera, D., J. Ruch, Acocella V., Rivalta E.: Experiments of dike-induced deformation: Insights on the long-term evolution of divergent plate boundaries, J. Geophys. Res.-Sol. Ea., 120, 6913–6942, https://doi.org/10.1002/2014JB011850, 2015.
Varet, J.: Geology of Afar (East Africa), Springer Cham, https://doi.org/10.1007/978-3-319-60865-5, 2018.
Viltres, R., Jonsson, S., Ruch, J., Doubre, C., Reilinger, R., Floyd, M., and Ogubazghi, G.: Kinematics and deformation of the southern Red Sea region from GPS observations, Geophys. J. Int., 221, 2143–2154, https://doi.org/10.1093/gji/ggaa109, 2020.
Viltres, R., Jónsson, S., Alothman, A. O., and Liu, S.: Present-Day Motion of the Arabian Plate, Tectonics, 41, 1–18, https://doi.org/10.1029/2021TC007013, 2022.
Wolfenden, E., Ebinger, C., Yirgu, G., Deino, A., and Ayalew, D.: Evolution of the northern Main Ethiopian rift: birth of a triple junction, Earth Planet. Sc. Lett., 224, 213–228, https://doi.org/10.1016/j.epsl.2004.04.022, 2004.
Wolfenden, E., Ebinger, C., Yirgu, G., Renne, P. R., and Kelley, S. P.: Evolution of a volcanic rifted margin: Southern Red Sea, Ethiopia, GSA Bull., 117, 846–864, https://doi.org/10.1130/B25516.1, 2005.
Wood, A.: Continental Rift Jumps, Tectonophysics, 94, 529–540, https://doi.org/10.1016/B978-0-444-42198-2.50035-3, 1983.
Wright, T. J., Sigmundsson, F., Pagli, C., Belachew, M., Hamling, I. J., Brandsdóttir, B., Keir, D., Pedersen, R., Ayele, A., Ebinger, C., Einarsson, P., Lewi, E., and Calais, E.: Geophysical constraints on the dynamics of spreading centres from rifting episodes on land, Nat. Geosci., 5, 242–250, https://doi.org/10.1038/ngeo1428, 2012.
Wrona, T., Pan, I., Bell, R. E., Jackson, C. A.-L., Gawthorpe, R. L., Fossen, H., Osagiede, E. E., and Brune, S.: Complex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysis, Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, 2023.
Yirgu, G., Ayele, A., and Ayelew, D.: Recent Seismovolcanic Crisis in Northern Afar, Ethiopia, Eos T. Am. Geophys. Un., 87, 325–329, https://doi.org/10.1029/2006EO330001, 2006.
Zielke, O., Arrowsmith, J. R., Ludwing, L. G., and Akçiz, S. O.: Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault, Science, 327, 1119–1122, https://doi.org/10.1126/science.1182781, 2010.
Zunic, J. and Rosin, P. L.: Measuring Linearity of Open Planar Curve Segments, Image Vis. Comput., 29, 873–879, https://doi.org/10.1016/j.imavis.2011.10.002, 2011.
Zunic, J., Pantovi, J., and Rosin, P. L.: Measuring Linearity of Curves, Pattern Recognit., 49, 65–78, https://doi.org/10.1016/j.patcog.2015.07.011, 2016.
Short summary
We propose a new method to map faults automatically in digital elevation models (DEMs) and measure long-term crustal deformation in rift contexts. By combining our data with rock ages, we reconstruct rift evolution in Afar during the last 4.5 Myr. We show that the rift axis is most active, with rifting propagating north-west over time. Here magma promotes crustal deformation and faulting caused by dike opening. In the southern sector Afar, two fault systems respond to different motions of diverging tectonic plates.
We propose a new method to map faults automatically in digital elevation models (DEMs) and...