Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-947-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-947-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Onshore and offshore seismotectonics of Iberia: an updated review
Antonio Olaiz
CORRESPONDING AUTHOR
Repsol E&P, C/Méndez Álvaro 44, 28045, Madrid, Spain
José A. Álvarez Gómez
GEODESPAL, Faculta de C.C. Geológicas, Universidad Complutense de Madrid, Spain
Gerardo de Vicente
GEODESPAL, Faculta de C.C. Geológicas, Universidad Complutense de Madrid, Spain
Instituto de Geociencias IGEO, CSIC-UCM, Madrid, Spain
Alfonso Muñoz-Martín
GEODESPAL, Faculta de C.C. Geológicas, Universidad Complutense de Madrid, Spain
Instituto de Geociencias IGEO, CSIC-UCM, Madrid, Spain
Juan V. Cantavella
Instituto Geográfico Nacional, C/General Ibáñez Íbero, 3, 28003, Madrid, Spain
Susana Custódio
Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
Dina Vales
Instituto Português do Mar e da Atmosfera, Lisboa, Portugal
Oliver Heidbach
GFZ Helmholtz Centre for Geosciences, 14473 Potsdam, Germany
Institute for Applied Geosciences, TU Berlin, 10587 Berlin, Germany
Related authors
No articles found.
Octavi Gómez-Novell, Francesco Visini, José A. Álvarez-Gómez, Bruno Pace, and Julián García-Mayordomo
EGUsphere, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, https://doi.org/https://doi.org/10.22541/essoar.174973163.39901434/v2, 2025
Short summary
Short summary
Earthquake surface ruptures are a hazard for infrastructure and life that requires proper assessment. We use a physics-based earthquake cycle simulator to derive fault displacement hazard statistics in a test fault system and their dependence to fault geometry. Our results show that more complex fault geometries increase surface rupture probabilities and might improve the agreement with observations. Earthquake cycle simulators are thus a promising tool for fault displacement hazard analyses.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Moritz O. Ziegler, Robin Seithel, Thomas Niederhuber, Oliver Heidbach, Thomas Kohl, Birgit Müller, Mojtaba Rajabi, Karsten Reiter, and Luisa Röckel
Solid Earth, 15, 1047–1063, https://doi.org/10.5194/se-15-1047-2024, https://doi.org/10.5194/se-15-1047-2024, 2024
Short summary
Short summary
The rotation of the principal stress axes in a fault structure because of a rock stiffness contrast has been investigated for the impact of the ratio of principal stresses, the angle between principal stress axes and fault strike, and the ratio of the rock stiffness contrast. A generic 2D geomechanical model is employed for the systematic investigation of the parameter space.
Karsten Reiter, Oliver Heidbach, and Moritz O. Ziegler
Solid Earth, 15, 305–327, https://doi.org/10.5194/se-15-305-2024, https://doi.org/10.5194/se-15-305-2024, 2024
Short summary
Short summary
It is generally assumed that faults have an influence on the stress state of the Earth’s crust. It is questionable whether this influence is still present far away from a fault. Simple numerical models were used to investigate the extent of the influence of faults on the stress state. Several models with different fault representations were investigated. The stress fluctuations further away from the fault (> 1 km) are very small.
Oliver Heidbach, Karsten Reiter, Moritz O. Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 185–185, https://doi.org/10.5194/sand-2-185-2023, https://doi.org/10.5194/sand-2-185-2023, 2023
Short summary
Short summary
When stresses yield a critical value, rock breaks and generate pathways for fluid migration. Thus, the contemporary undisturbed stress state is a key parameter for assessing the stability of deep geological repositories. In this workshop you can ask everything you always wanted to know about stress (but were afraid to ask), and this is divided into three parts. 1) How do we formally describe the stress field? 2) How do we to actually measure stress? 3) How do we go from points to 3D description?
Moritz O. Ziegler, Oliver Heidbach, and Mojtaba Rajabi
Saf. Nucl. Waste Disposal, 2, 79–80, https://doi.org/10.5194/sand-2-79-2023, https://doi.org/10.5194/sand-2-79-2023, 2023
Short summary
Short summary
The subsurface is subject to constant stress. With increasing depth, more rock overlies an area, thereby increasing the stress. There is also constant stress from the sides. Knowledge of this stress is fundamental to build lasting and safe underground structures. Very few data on the stress state are available; thus, computer models are used to predict this parameter. We present a method to improve the quality of the computer models, even if no direct data on the stress state are available.
Karsten Reiter, Oliver Heidbach, Moritz Ziegler, Silvio Giger, Rodney Garrard, and Jean Desroches
Saf. Nucl. Waste Disposal, 2, 71–72, https://doi.org/10.5194/sand-2-71-2023, https://doi.org/10.5194/sand-2-71-2023, 2023
Short summary
Short summary
Numerical methods can be used to estimate the stress state in the Earth’s upper crust. Measured stress data are needed for model calibration. High-quality stress data are available for the calibration of models for possible radioactive waste repositories in Switzerland. A best-fit model predicts the stress state for each point within the model volume. In this study, variable rock properties are used to predict the potential stress variations due to inhomogeneous rock properties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Michal Kruszewski, Alessandro Verdecchia, Oliver Heidbach, Rebecca M. Harrington, and David Healy
EGUsphere, https://doi.org/10.5194/egusphere-2023-1889, https://doi.org/10.5194/egusphere-2023-1889, 2023
Preprint archived
Short summary
Short summary
In this study, we investigate the evolution of fault reactivation potential in the greater Ruhr region (Germany) in respect to a future utilization of deep geothermal resources. We use analytical and numerical approaches to understand the initial stress conditions on faults as well as their evolution in space and time during geothermal fluid production. Using results from our analyses, we can localize areas more favorable for geothermal energy use based on fault reactivation potential.
José A. Álvarez-Gómez, Paula Herrero-Barbero, and José J. Martínez-Díaz
Nat. Hazards Earth Syst. Sci., 23, 2031–2052, https://doi.org/10.5194/nhess-23-2031-2023, https://doi.org/10.5194/nhess-23-2031-2023, 2023
Short summary
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
Michal Kruszewski, Gerd Klee, Thomas Niederhuber, and Oliver Heidbach
Earth Syst. Sci. Data, 14, 5367–5385, https://doi.org/10.5194/essd-14-5367-2022, https://doi.org/10.5194/essd-14-5367-2022, 2022
Short summary
Short summary
The authors assemble an in situ stress magnitude and orientation database based on 429 hydrofracturing tests that were carried out in six coal mines and two coal bed methane boreholes between 1986 and 1995 within the greater Ruhr region (Germany). Our study summarises the results of the extensive in situ stress test campaign and assigns quality to each data record using the established quality ranking schemes of the World Stress Map project.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Moritz Ziegler and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 187–188, https://doi.org/10.5194/sand-1-187-2021, https://doi.org/10.5194/sand-1-187-2021, 2021
Short summary
Short summary
The Earth's crust is subject to constant stress which is manifested by earthquakes at plate boundaries. This stress is not only at plate boundaries but everywhere in the crust. A profound knowledge of the magnitude and orientation of the stress is important to select and build a safe deep geological repository for nuclear waste. We demonstrate how to build computer models of the stress state and show how to deal with the associated uncertainties.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Cited articles
Amadei, B. and Stephansson, O.: Rock Stress and its measurements, 1st edn., Chapman and Hall, New York, ISBN 9401062471, 1997.
Ammar, A., Mauffret, A., Gorini, C., and Jabour, H.: The tectonic structure of the Alboran Margin of Morocco, Rev. Soc. Geo. España, 20, 247–271, 2007.
Angelier, J. and Mechler, P.: Sur une méthode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: La methode des diedres droites, B. Soc. Geol. Fr., 7, 1309–1318, https://doi.org/10.2113/gssgfbull.S7-XIX.6.1309, 1977.
Alasset, P. J. and Meghraoui, M.: Active faulting in the western Pyrénées (France): Paleoseismic evidence for late Holocene ruptures, Tectonophysics, 409, 39–54, https://doi.org/10.1016/j.tecto.2005.08.019, 2005.
Alfaro, P., Delgado, J., de Galdeano, C.S., Galindo - Zaldivar, j., García - Tortosa, F., J., López - Casado, C., Marín-Lechado, C. and Borque, M.J. The Baza Fault: a major active extensional fault in the central Betic Cordillera (south Spain), Int J Earth Sci (Geol Rundsch) 97, 1353–1365, https://doi.org/10.1007/s00531-007-0213-z, 2008.
Alonso-Henar, J., Fernández, C., Martínez-Díaz, J. J.: Application of the analytic model of general triclinic transpression with oblique extrusion to an active deformation zone: the Alhama de Murcia Fault (SE Iberian Peninsula), J. Struct. Geol. 130, 103924 https://doi.org/10.1016/j.jsg.2019.103924, 2019.
Álvarez-Gómez, J. A.: FMC – earthquake focal mechanisms data management, cluster and classification, SoftwareX, 9, 299–307, https://doi.org/10.1016/j.softx.2019.03.008, 2019.
Álvaro, M., Capote, R., and Vegas, R.: Un modelo de evolución geotectónica para la Cadena Celtibérica, Acta Geologica Hispanica, Homenage a LIuis Sole i Sabaris, 14, 172–177, 1979.
Ancochea, E. and Huertas, M. J.: Radiometric ages and time–space distribution of volcanism in the Campo de Calatrava Volcanic Field (Iberian Peninsula), J. Iber. Geol., 47, 209–223, https://doi.org/10.1007/s41513-021-00167-y, 2021.
Arcila, M. and Muñoz-Martín, A.: Integrated perspective of the present-day stress and strain regime in Colombia from analysis of earthquake focal mechanisms and geodetic data, in: The Geology of Colombia, Volume 4 Quaternary, edited by: Gómez, J. and Pinilla-Pachon, A. O., Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 21 pp., Bogotá, https://doi.org/10.32685/pub.esp.38.2019.17, 2020.
Arlegui, L. E., Simón, J. L., Lisle, R. J., and Orife, T.: Late Pliocene-Pleistocene stress field in the Teruel and Jiloca grabens (eastern Spain): contribution of a new method of stress inversion, J. Struct. Geol., 27, 693–705, https://doi.org/10.1016/j.jsg.2004.10.013, 2005.
Asensio, E., Khazaradze, G., Echeverria, A., King, R. W., and Vilajosana, I.: GPS studies of active deformation in the Pyrenees, Geophys. J. Int., 190, 913–921, https://doi.org/10.1111/j.1365-246X.2012.05525.x, 2012.
Bailey, I. W., Alpert, L. A., Becker, T. W., and Miller, M. S.: Co-seismic deformation of deep slabs based on summed CMT data, J. Geophys. Res.-Sol. Ea., 117, https://doi.org/10.1029/2011JB008943, 2012.
Barcos, L., Balanyá, J. C., Díaz-Azpiroz, M., Expósito, I., and Jiménez-Bonilla, A.: Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc, Tectonophysics, 663, 62–77, https://doi.org/10.1016/j.tecto.2015.05.002, 2015.
Bell, J. S., Caillet, G., and Lemarrec, A.: The Present-Day Stress Regime of the Southwestern Part of the Aquitaine Basin, France, as Indicated by Oil-Well Data, J. Struct. Geol., 14, 1019–1032, https://doi.org/10.1016/0191-8141(92)90033-S, 1992.
Boillot, G. and Malod, J.: The North and North-West Spanish continental margin: a review, Rev. Soc. Geol. España, 1, 295–316, 1988.
Borges, J. F., Bezzeghoud, M., Buforn, E., Pro, C., and Fitas, A.: The 1980, 1997 and 1998 Azores earthquakes and some seismo-tectonic implications, Tectonophysics, 435, 37–54, https://doi.org/10.1016/j.tecto.2007.01.008, 2007.
Braunmiller, J., Kradolfer, U., Baer, M., and Giardini, D.: Regional Moment-Tensor inversion in the European-Mediterranean area, Tectonophysics, 356, 5–22, https://doi.org/10.1016/S0040-1951(02)00374-8, 2002.
Briais, A., Armijo, R., Winter, T., Tapponnier, P., and Herbecq, A.: Morphological evidence for Quaternary normal faulting and seismic hazard in the Eastern Pyrenees, Annales Tectonicae, 4, 19–42, 1990.
Buforn, E., Bezzeghoud, M., Udías, A., and Pro, C.: Seismic sources on the Iberia-African plate boundary and their tectonic implications, Pure Appl. Geophys., 161, 623–646, https://doi.org/10.1007/s00024-003-2466-1, 2004.
Busetti, S., Jiao, W., and Reches, Z.: Geomechanics of hydraulic fracturing microseismicity: Part 1. Shear, hybrid and tensile events, AAPG Bull., 98, 2439–2457, 2014.
Cabral, J.: An example of intraplate neotectonic activity, Vilarica Basin, northeast Portugal, Tectonics, 8, 285–303, https://doi.org/10.1029/TC008i002p00285, 1989.
Cabral, J.: Neotectonics of mainland Portugal: state of the art and future perspectives, J. Iber. Geol., 38, 71–84 https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39206, 2012.
Cabral, J., Mendesa, V. B., Figueiredo, P., da Silveira, A. B., Pagarete, J., Ribeiro, A., Dias, R., and Ressurreição, R.: Active tectonics in Southern Portugal (SW Iberia) inferred from GPS data. Implications on the regional geodynamics, J. Geodyn., 112, 1–11, https://doi.org/10.1016/j.jog.2017.10.002, 2017.
Cabral, J., Dias, R., Cunha, P. P., and Cabral, M. C.: Quaternary tectonic activity of the São Marcos–Quarteira fault (Algarve, southern Portugal): a case study for the characterization of the active geodynamic setting of SW Iberia, J. Iber. Geol., https://doi.org/10.1007/s41513-019-00102-2, 2019.
Cabrera, L., Roca, E., and Santanach, P.: Basin formation at the end of a strike-slip fault: the Cerdanya Basin (eastern Pyrenees), J. Geol. Soc. Lond., 145, 261–268, https://doi.org/10.1144/gsjgs.145.2.0261, 1988.
Cannavò, F. and Palano, M.: Defining geodetic reference frame using Matlab®: PlatEMotion 2.0, Pure Appl. Geophys., 173, 937–944, https://doi.org/10.1007/s00024-015-1112-z, 2016.
Carreño, E., Benito, B., Martínez Solares, J. M., Cabañas, L., Giner, J., Murphy, P., López, C., Del Fresno, C., Alcalde, J. M., Gaspar-Escribano, J. M., Antón, R., Martínez-Díaz, J., Cesca, S., Izquierdo, A., Sánchez Caballero, J. G., and Expósito, P.: The 7 June mbLg 4.2 Escopete Earthquake: An Event with Significant Ground Motion in a Stable Zone (Central Iberian Peninsula), Seismol. Res. Lett., 79, 820–829, https://doi.org/10.1785/gssrl.79.6.820, 2008.
Casas-Sáinz, A. M. and de Vicente, G.: On the tectonic origin of the iberian topography, Tectonophysics, 465, https://doi.org/10.1016/j.tecto.2009.01.030, 2009.
Capote, R., de Vicente, G., and González-Casado, J. M.: An application of the slip model of brittle deformation to focal mechanism analysis in three different plate tectonics situations, Tectonophysics, 191, 399–409, https://doi.org/10.1016/0040-1951(91)90070-9, 1991.
Cebriá, J. M., López-Ruiz, J., Doblas, M., Martins, L. T., and Munha, J.: Geochemistry of the Early Jurassic Messejana-Plasencia dyke (Portugal-Spain); Implications on the origin of the Central Atlantic Magmatic Province, J. Petrol., 44, 547–568, 2003.
Cesca, S., Stich, D., Grigoli, F., Vuan, A., López-Comino, J. A., Niemz, P., Blanch, E., Dahm, T., and Ellsworth, W.: Seismicity at the Castor gas reservoir driven by pore pressure diffusion and asperities loading, Nat. Commun., 12, 4783, https://doi.org/10.1038/s41467-021-24949-1, 2021.
Chevrot, S., Sylvander, M., and Delouis, B.: A preliminary catalog of moment tensor for the Pyrenees, Tectonophysics, 510, 239–251, https://doi.org/10.1016/j.tecto.2011.07.011, 2011.
Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P. A. M, García- Castellanos, D., de Vicente, G., and Vegas, R.: Lithospheric folding in Iberia, Tectonics, 21, 1041, https://doi.org/10.1029/2001TC901031, 2002.
Comas, M. C., Platt, J. P., Soto, J. I., and Watts, A. B.: The origin and tectonic history of the Alboran Basin: insights from Leg 161 results, in: Proceedings of the ocean drilling program scientific results, Vol. 161, 555–580, 1999.
Custodio, S., Lima, V., Vales, D., Cesca, S., and Carrilho, F.: Imaging active faulting in a region of distributed deformation from the joint clustering of focal mechanisms and hypocentres: Application to the Azores–western Mediterranean region, Tectonophysics, 676, 70–89, https://doi.org/10.1016/j.tecto.2016.03.013, 2016.
d'Acremont, E., Gutscher, M. A., Rabaute, A., Mercier de Lépinay, B., Lafosse, M., Poort, J., Ammar, A., Tahayt, A., Le Royc, P., Smit, J., Do Couto, D., Cancouët, R., Prunier, C., Ercilla, G., and Gorini, C.: High-resolution imagery of active faulting offshore Al Hoceima, Northern Morocco, Tectonophysics, 632, 160–166, https://doi.org/10.1016/j.tecto.2014.06.008, 2014.
De Ruig, M. J.: Extensional diapirism in the Eastern Prebetic Foldbelt, Southeastern Spain, in: Salt tectonics: a global perspective, edited by: Jackson, M. P. A., Roberts, D. G., and Snelson, S., AAPG Memoir, American Association of Petroleum Geologists, 65, 353–367, https://doi.org/10.1306/M65604C17, 1995.
Del Pie Perales, L.: Inversión del momento sísmico para terremotos de la región cantábrica: implicaciones geodinámicas, Master thesis, University of Oviedo, 77 pp., https://digibuo.uniovi.es/dspace/bitstream/10651/39062/6/TFM_ Laura Pie Perales.pdf, 2016.
Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., and San'kov, V.: Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting, Tectonophysics, 282, 1–38, https://doi.org/10.1016/S0040-1951(97)00210-2, 1997.
de Vicente, G.: Análisis poblacional de fallas. El sector de enlace Sistema Central-Cordillera Ibérica, PhD thesis, 317 pp., Univ. Complutense de Madrid, Madrid, https://produccioncientifica.ucm.es/documentos/5d1df65029995204f76682e1, 1988.
de Vicente, G. and Vegas, R.: Large-scale distributed deformation-controlled topography along the western Africa–Eurasia limit: Tectonic constraints, Tectonophysics, 474, 124–143, https://doi.org/10.1016/j.tecto.2008.11.026, 2009.
de Vicente, G., Vegas, R., Muñoz-Martín, A., Silva, P. G., Andriessen, P., Cloetingh, S., González-Casado, J. M., Van Wees, J. D., Álvarez, J., Carbó, A., and Olaiz, A.: Cenozoic thick-skinned deformation and topography evolution of the Spanish Central System, Global Planet. Change, 58, 335–381, https://doi.org/10.1016/j.gloplacha.2006.11.042, 2007.
de Vicente, G., Cloetingh, S., Muñoz-Martín, A., Olaiz, A., Stich, D., Vegas, R., Galindo-Zaldívar, J., and Fernández-Lozano, J.: Inversion of moment tensor focal mechanisms for active stresses around the microcontinent Iberia: Tectonic implications, Tectonics, 27, TC1009, https://doi.org/10.1029/2006TC002093, 2008.
de Vicente, G., Cloetingh, S., Van Wees, J. D., and Cunha, P. P.: Tectonic classification of Cenozoic Iberian foreland basins, Tectonophysics, 502, 38–61, https://doi.org/10.1016/j.tecto.2011.02.007, 2011.
de Vicente, G., Cunha, P. P., Muñoz-Martín, A., Cloetingh, S., Olaiz, A., and Vegas, R.: The Spanish-Portuguese Central System: An example of intense intraplate deformation and strain partitioning, Tectonics, 37, https://doi.org/10.1029/2018TC005204, 2018.
de Vicente, G., Olaiz, A., Muñoz-Martín, A., and Cunha, P. P.: Longest and still longer: The Messejana-Plasencia dyke and its links with later Alpine deformation belt in Iberia, Tectonophysics, 815, 229009, https://doi.org/10.1016/j.tecto.2021.229009, 2021.
de Vicente, G., Díez Fernández, R., Cunha, P. P., and Olaiz, A.: Active tectonics (Plio-Quaternary) in the western sector of the Madrid Cenozoic Basin, Iberfault, ISBN 978-84-18321-58-0, 2022a.
de Vicente, G., Terrinha, P., Carbonell, R., Muñoz-Martín, A., and Olaiz, A.: The Trans-Iberia Central Orogen and aborted subduction, in: Proceeding of the X Simposio sobre el margen Ibérico Atlántico, Bilbao, Spain, 7–9 July 2022, 14–16, 2022b.
Diaz, J., Gallar, J., and Carbonell, R.: Moho topography beneath the Iberian-Western Mediterranean region mapped from controlled-source and natural seismicity surveys, Tectonophysics, 692A, 74–85, https://doi.org/10.1016/j.tecto.2016.08.023, 2016.
Domingues, A., Custódio, S., and Cesca, S.: Waveform inversion of small-to-moderate earthquakes offshore southwest Iberia, Geophys. J. Int., 192, 248–259, https://doi.org/10.1093/gji/ggs010, 2013.
Dziewonski, A. M., Chou, T. A., and Woodhouse, J. H.: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981.
Echeverria, A., Khazaradze, G., Asensio, E., Masana, E.: Geodetic evidence for continuing tectonic activity of the Carboneras fault (SE Spain), Tectonophysics 663, 302–309, https://doi.org/10.1016/j.tecto.2015.08.009, 2015.
Ekström, G., Nettles, M., and Dziewonski, A. M.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. In., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012.
Ercilla, G., Galindo-Zaldívar, J., Estrada, F., Valencia, J., Juan, C., Casas, D., Alonso, B., MaComas, M. C., Tendero-Salmerón, V., Casalbore, D., Azpiroz-Zabala, M., Bárcenas, P., Ceramicola, S., Chiocci, F. L., Idárraga-García, J., López-González, N., Mata, P., Palomino, D., Rodríguez-García, J. A., Teixeira, M., Nespereira, J., Vázquez, J. T., and Yenes, M.: Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: The case of the Gulf of Vera (Western Mediterranean), Geomorphology, 402, 108126, https://doi.org/10.1016/j.geomorph.2022.108126, 2022.
Etchecopar, A., Vasseur, G., and Daignieres, M.: An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis, J. Struct. Geol., 3, 51–65, https://doi.org/10.1016/0191-8141(81)90056-0, 1981.
Etheve, N., Mohn, G., Frizon de Lamotte, D., Roca, E., Tugend, J., and Gómez-Romeu, J.: Extreme Mesozoic crustal thinning in the eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough), Tectonics, 37, https://doi.org/10.1002/2017TC004613, 2018.
Faccenna, C., Speranza, F., Caracciolo, F. D., Mattei, M., and Oggiano, G.: Extensional tectonics on Sardinia (Italy): insights into the arc–back-arc transitional regime, Tectonophysics, 356, 213–232, 2002.
Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F.: Lateral slab deformation and the origin of the western Mediterranean arcs, Tectonics, 23, TC1012, https://doi.org/10.1029/2002TC001488, 2004.
Fernández-Viejo, G., Álvarez Pulgar, J., Gallastegui, J., and Quintana, L.: The fossil accretionary wedge of the Bay of Biscay: Critical wedge analysis on depth-migrated seismic sections and geodynamical implications, J. Geol., 120, 315–331, https://doi.org/10.1086/664789, 2012.
Ferranti, L., Passaro, S., and de Alteriis, G.: Morphotectonics of the Gorringe Bank summit, eastern Atlantic Ocean, based on high-resolution multibeam bathymetry, Quaternary Int., 9–114, https://doi.org/10.1016/j.quaint.2013.11.011, 2014.
Flinn, D.: On tests of significance of preferred orientation in three-dimensional fabric diagrams, J. Geol., 66, 526–539, https://doi.org/10.1086/626533, 1958.
Fonseca, J. F. B. D. and Vilanova, S. P.: The 23 April 23 1909 Benavente (Portugal) M 6.3 Earthquake, Seismol. Res. Lett., 81, 3, https://doi.org/10.1785/gssrl.81.3.534, 2010.
Frohlich, C. and Apperson, K. D.: Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries, Tectonics, 11, 279–296, https://doi.org/10.1029/91TC02888, 1992.
Galindo-Zaldivar, J., Jabaloy, J., Serrano, I., Morales, J., González-Lodeiro, F., and Torcal, F.: Recent and present-day stresses in the Granada Basin (Betic Cordilleras): Example of a late Miocene-present-day extensional basin in a convergent plateboundary, Tectonics, 18, 686–702, https://doi.org/10.1029/1999tc900016, 1999.
Galindo-Zaldivar, J., Gil, A. J., Tendero-Salmerón, V., Borque, M. J., Ercilla, G., González-Castillo, L., Sánchez-Alzola, A., Lacy, M. C., Estrada, F., Avilés, M., Alfaro, P., Madarieta-Txurruka, A., and Chacón, F.: The Campo de Dalias GNSS Network Unveils the Interaction between Roll-Back and Indentation Tectonics in the Gibraltar Arc, Sensors, 22, 2128, https://doi.org/10.3390/s22062128, 2022.
Gallastegui, J. and Pulgar, J. A.: Initiation of an active margin at the North Iberian continent-ocean transition, Tectonics, 21, https://doi.org/10.1029/2001TC901046, 2002.
Gamboa, D., Omira, R., Piedade, A., Terrinha, P., Roque, C., and Zitellini, N.: Destructive episodes and morphological rejuvenation during the lifecycles of tectonically active seamounts: Insights from the Gorringe Bank in the NE Atlantic, Earth Planet Sc. Lett., 116772, https://doi.org/10.1016/j.epsl.2021.116772, 2021.
García-Navarro, E., Fernández, C., and Camacho, M. A.: Mesozoic tectonic evolution of the southwest continental Iberian Margin, Geodin. Acta, 18, 131–144, 2005.
Gea, P. J., Negredo, A. M., and Mancilla, F. d. L.: The Gibraltar slab dynamics and its influence on past and present-day Alboran domain deformation: Insights from thermo-mechanical numerical modelling, Front. Earth Sci., 11, 995041, https://doi.org/10.3389/feart.2023.995041, 2023.
Gephart, J. W. and Forsyth, D. W.: An improved method for determining the regional stress tensor using earthqueakes focal mechanism data: application to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305–9320, https://doi.org/10.1029/JB089iB11p09305, 1984.
GFZ-Postdam: GEOFON Moment Tensor Solutions, GFZ-Postdam [data set] https://geofon.gfz-potsdam.de/old/eqinfo/list.php?mode=mt (last access: 31 July 2023), 2025.
Giner-Robles, J. L., Gumiel, P., Pérez-López, R., Rodríguez-Pascua, M. A., García-Mayordomo, J., Paredes, C., and González-Casado, J. M.: Importancia en la elección de la orientación del plano de falla en el análisis de mecanismos focales de terremotos, 5th Asamblea Hispano Portuguesa de Geodesia y Geofísica, Com. Española de Geod. Y Geofís, Sevilla, Spain, Sevilla, Spain, 30 January–3 February 2006, 2006.
Global Centroid Moment Tensor (former Harvard Centroid Moment Tensor): Global CMT Web Page, Global Centroid Moment Tensor [data set], https://www.globalcmt.org/ (last access: 31 July 2023) 2025.
Gómez de la Peña, L.: The origin and tectono-sidimentary structure of the Alboran Basin, PhD Thesis, Universidad de Barcelona, 319 pp., https://www.tesisenred.net/handle/10803/435682#page=1, 2017.
Gómez-Novell, O., Ortuño, M., García-Mayordomo, J., Insua-Arévalo, J. M., Rockwell, T. K., Baize, S., Martínez-Díaz, J. J., Pallàs, R., and Massana, E.: Improved geological slip rate estimations in the complex Alhama de Murcia Fault zone (SE Iberia) and its implications for fault behaviour, Tectonics, 41, e2022TC007465, https://doi.org/10.1029/2022TC007465, 2022.
Goula, X., Olivera, C., Fleta, J., Grellet, B., Lindo, R., Rivera, L., Cisternas, A., and Carbon, D.: Present and recent stress regime in the eastern part of the Pyrenees, Tectonophysics, 308, 487–502, https://doi.org/10.1016/S0040-1951(99)00120-1, 1999.
Grácia, E., Pallàs, R., Soto, J. I., Comas, M., Moreno, X., Masana, E., Santanach, P., Diez, S., García, M., and Dañobeitia, J.: Active faulting offshore SE Spain (Alboran Sea): Implications for earthquake hazard assessment in the Southern Iberian Margin, Earth Planet. Sc. Lett., 241, 734–749, https://doi.org/10.1016/j.epsl.2005.11.009, 2006.
Gràcia, E., Grevemeyer, I., Bartolomé, R., Perea, H., Martínez-Loriente, S., Gómez de la Peña, L., Villaseñor, A., Klinger, Y., Lo Iacono, C., Diez, S., Calahorrano, A., Camafort, M., Costa, S., d'Acremont, E., Rabaute, A., and Ranero, C. R.: Earthquake crisis unveils the growth of an incipient continental fault system, Nat. Commun., 10, 3482, https://doi.org/10.1038/s41467-019-11064-5, 2019.
Granja Bruña, J. L., Vegas, R., Sentre, M. A., Muñoz-Martín, A., and Sainz-Maza, S.: Gravity modeling of the lithosphere in the Calatrava Volcanic Province (Spain): geodynamic implications, J. Iber. Geol., 41, 233–252, https://doi.org/10.5209/rev_JIGE.2015.v41.n2.47617, 2015.
Grevemeyer, I., Lange, D., Villinger, H., Custódio, S., and Matias, L.: Seismotectonics of the HorseshoeAbyssal Plain and Gorringe Bank,eastern Atlantic Ocean: Constraintsfrom ocean bottom seismometer data, J. Geophys. Res.-Sol. Ea., 122, 63–78, https://doi.org/10.1002/2016JB013586, 2017.
Gutiérrez, F., Sevil, J., Silva, P. G., Roca, E., and Escosa, F.: Geomorphic and stratigraphic evidence of Quaternary diapiric activity enhanced by fluvial incision. Navarrés salt wall and graben system, SE Spain, Geomorphology, 342, 176–195, https://doi.org/10.1016/j.geomorph.2019.06.002, 2019.
Gutscher, M. A., Dominguez, S., Westbrook, G. K., Le Roy, P., Rosas, F., Duarte, J. C., Terrinha, P., Miranda, J. M., Graindorge, D., Gailler, A., Sallares, V., and Bartolome, R.: The Gibraltar subduction: A decade of new geophysical data, Tectonophysics, 574–575, 72–91, https://doi.org/10.1016/j.tecto.2012.08.038, 2012.
Heidbach, O. and Höhne, J.: CASMI – a tool for the visualization of the World Stress Map data base, Comput. Geosci., 34, 783–791, https://doi.org/10.1016/j.cageo.2007.06.004, 2008.
Heidbach, O., Barth, A., Connolly, P., Fuchs, F., Müller, B., Reinecker, J., Sperner, B., Tingay, M., and Wenzel, F.: Stress Maps in a Minute: The 2004 World Stress Map Release, EOS T., 85, 521–529, https://doi.org/10.1029/2004EO490001, 2004.
Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., and Wenzel, F.: Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database, Tectonics, 26, TC6014, https://doi.org/10.1029/2007TC002133, 2007.
Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D., and Müller, B.: Global crustal stress pattern based on the World Stress Map database release 2008, Tectonophys., 482, 3–15, https://doi.org/10.1016/j.tecto.2009.07.023, 2010.
Heidbach, O., Barth, A., Müller, B., Reinecker, J., Stephansson, O., Tingay, M., and Zang, A.: WSM quality ranking scheme, database description and analysis guidelines for stress indicator, World Stress Map Technical Report 16-01, GFZ German Research Centre for Geosciences, https://doi.org/10.2312/wsm.2016.001, 2016a.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M. O., and WSM Team: World Stress Map Database Release 2016, GFZ German Research Centre for Geosciences, https://doi.org/10.5880/WSM.2016.001, 2016b.
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M. O., Zoback, M. L., and Zoback, M.: The World Stress Map database release 2016: Crustal stress pattern across scales, Tectonophys., 744, 484–498, https://doi.org/10.1016/j.tecto.2018.07.007, 2018.
Heidbach, O., Rajabi, M., Di Giacomo, D., Harris, J., Lammers, S., Morawietz, S., Pierdominici, S., Reiter, K., von Specht, S., Storchak, D., and Ziegler, M. O.: World Stress Map 2025, GFZ Data Services [data set], https://doi.org/10.5880/WSM.2025.002, 2025.
Herrero-Barbero, P., Álvarez-Gómez, J.A., Martínez-Díaz, J. J., and Klimowitz, J.: Neogene basin inversion and recent slip rate distribution of the northern termination of the Alhama de Murcia Fault (Eastern Betic Shear Zone, SE Spain), Tectonics, 39, e2019TC005750, https://doi.org/10.1029/2019TC005750, 2020.
Instituto Andaluz de Geofísica: Información general sobre la investigación desarrollada en el instituto, [data set], https://iagpds.ugr.es/investigacion/informacion-general (last access: 31 July 2023) 2025.
Instituto Geográfico Nacional de España: Moment Tensor Catalogue, Instituto Geográfico Nacional de España [data set], https://www.ign.es/web/ign/portal/tensor-momento-sismico/-/tensor-momento-sismico/getExplotacion (last access: 31 July 2023), 2025.
IPMA Portuguese Institute for Sea and Atmosphere: Dynamic Map – Earthquakes with moment tensor, IPMA Portuguese Institute for Sea and Atmosphere [data set] https://www.ipma.pt/en/geofisica/tensor (last access: 31 July 2023), 2025.
Jackson, M. P. A. and Hudec, M. R.: Salt tectonics, Principles and Practice. Part III – Salt-Tectonic Systems. Chapter 12 – Strike-Slip Salt-Tectonic Systems, Cambridge University Press, https://doi.org/10.1017/9781139003988.016, 2017.
Jost, M. L., Büßelberg, T., Jost, Ö., and Harjes, H. P.: Source parameters of injection-induced microearthquakes at 9 km depth at the KTB deep drilling site, Germany, B. Seismol. Soc. Am., 88, 815–832, 1998.
Kagan, Y. Y.: 3-D rotation of double-couple earthquake sources, Geophys. J. Int., 106, 709–716, https://doi.org/10.1111/j.1365-246X.1991.tb06343.x, 1991.
Khazaradze, G., Pena-Castellnou, S., Santamaría-Gómez, A., and Vernant, P.: 3D GPS velocity field of the Iberian Peninsula, Geophys. Res. Abstr., EGU2019-9710, EGU General Assembly 2019, Vienna, Austria, 2019.
Kiratzi, A. and Papazachos, C.: Active crustal deformation from the Azores triple junction to Middle East, Tectonophysics, 243, 1–24, https://doi.org/10.1016/0040-1951(94)00188-F, 1995.
Lacan, P.: Activité Sismotectonique Plio-Quaternaire del'Ouest des Pyrénées, PhD Thesis, Université de Pau et des Pays de l'Adour, 284 pp., https://theses.hal.science/tel-01783939v1, 2008.
Lacan, P. and Ortuño, M.: Active Tectonics of the Pyrenees: A review, J. Iber. Geol., 38, 9–30, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39203, 2012.
Ljunggren, C., Chang, Y., Janson, T., and Christiansson, R.: An overview of rock stress measurement methods, Int. J. Rock Mech. Min., 40, 975–989, https://doi.org/10.1016/j.ijrmms.2003.07.003, 2003.
López-Fernández, C., Fernández-Viejo, G., Olona, J., and Llana-Fúnez, S.: Intraplate Seismicity in Northwest Iberia along the Trace of the Ventaniella Fault: A Case for Fault Intersection at Depth, B. Seismol. Soc. Am., 108, 604–618, https://doi.org/10.1785/0120170215, 2018.
Lundstern, J.-E. and Zoback, M. D.: Multiscale variations of the crustal stress field throughout North America, Nat. Commun., 11, 1951, https://doi.org/10.1038/s41467-020-15841-5, 2020.
Madarieta-Txurruka, A., González-Castillo, L., Peláez, J. A., Catalán, M., Henares, J., Gil, A. J., Lamas-Fernández, F., and Galindo-Zaldivar, J.: The role of faults as barriers in confined seismic sequences: 2021 seismicity in the Granada Basin (Betic Cordillera), Tectonics, 41, e2022TC007481, https://doi.org/10.1029/2022TC007481, 2022.
Maillard, A. and Mauffret, A.: Crustal structure and riftogenesis of the Valencia Trough (north-western Mediterranean Sea), Basin Res., 11, 357–379, 1999.
Maouche, S., Meghraoui, M., Morhange, C., Belabbes, S., Bouhadad, Y., and Haddoum, H.: Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria), Tectonophysics, 509, 69–80, https://doi.org/10.1016/j.tecto.2011.06.003, 2011.
Maouche, S., Bouhadad, Y., Harbi, A., Rouchiche, Y., Ousadou, F., and Ayadi, A.: Active Tectonics and Seismic Hazard in the Tell Atlas (Northern Algeria): A Review, in: The Geology of the Arab World – An Overview, edited by: Bendaoud, A., Hamimi, Z., Hamoudi, M., Djemai, S., and Zoheir, B., Springer Geology, Springer, Cham., https://doi.org/10.1007/978-3-319-96794-3_10, 2019.
Martín, R., Stich, D., Morales, J., and Mancilla, F.: Moment tensor solutions for the Iberain-Maghreb region during the IberArray deployment (2009–2013), Tectonophysics, 663, 261–274, https://doi.org/10.1016/j.tecto.2015.08.012, 2015.
Martín-González, F. and Heredia, N.: Geometry, structures and evolution of the western termination of the Alpine-Pyrenean Orogen reliefs (NW Iberian Peninsula), J. Iber. Geol., 37, https://doi.org/10.5209/rev_JIGE.2011.v37.n2.1103, 2011.
Martínez-Díaz, J. J.: Neotectonica y Tectonica Activa del Oeste de Murcia y sur de Almeria (Cordillera Betica), PhD Thesis, Universidad Complutense Madrid, 470 pp., https://hdl.handle.net/20.500.14352/62894, 1998.
Martínez-Díaz, J. J., Masana, E., and Ortuño, M.: Active tectonics of the Alhama de Murcia fault, Betic Cordillera, Spain, J. Iber. Geol., 38, 253–270, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39218, 2012.
Martínez-García, P.: Recent tectonic evolution of the Alboran Ridge and Yusuf regions, PhD Thesis, Instituto andaluz de Ciencias de la Tierra (CSIC-UGR), 276 pp., 2012.
Martínez-Loriente, S., Gracia, E., Bartolome, R., Sallarès, V., Connors, C., Perea, H., Lo Iacono, C., Klaeschen, D., Terrinha, P., Dañobeitia, J. J., and Zitellini, N.: Active deformation in old oceanic lithosphere and significance for earthquake hazard: Seismic imaging of the Coral Patch Ridge area and neighboring abyssal plains (SW Iberian Margin). Geochem. Geophy. Geosy., 14, https://doi.org/10.1002/ggge.20173, 2013.
Martín-Banda, R., García-Mayordomo, J., Insua-Arévalo, J. M., Salazar, Á. E., Rodríguez-Escudero, E., Álvarez-Gómez, J. A., Medialdea, A. and Herrero, M. J.: New insights on the seismogenic potential of the Eastern Betic ShearZone (SE Iberia): Quaternary activity and paleoseismicity of the SW segment of the Carrascoy Fault Zone, Tectonics, 35, 55–75, https://doi.org/10.1002/2015TC003997, 2016.
Masana, E.: Neotectonic features of the Catalan Coastal Ranges, Northeastern Spain, Acta Geológica Hispánica, 29, 107–121, 1996.
Masana, E., Moreno, X., Gràcia, E., Pallàs, R., Ortuño, M., López, R., Gómez-Novell, O., Ruano, P., Perea, H., Stepancikova, P., and Khazaradze, G.: First evidence of paleoearthquakes along the Carboneras Fault Zone (SE Iberian Peninsula): Los Trances site, Geol. Acta, 16, 461–476, https://doi.org/10.1344/GeologicaActa2018.16.4.8, 2018.
Matías, H., Kress, P., Terrinha, P., Mohriak, W., Paulo, T., Menezes, L., Matias, L., Santos, F., and Sandnes, F.: Salt tectonics in the western Gulf of Cádiz, southwest Iberia, Am. Assoc. Petr. Geol. B., 95, 1667–1698, 2011.
Matos, C., Custódio, S., Batlló, J., Zahradník, J., Arroucau, P., Silveira, G., and Heimann, S.: An active seismic zone in intraplate west Iberia inferred from high-resolution geophysical data, J. Geophy. Res.-Sol. Ea., 123, 2885–2907, https://doi.org/10.1002/2017JB015114, 2018.
McKenzie, D. P.: The relation between fault plane solutions for earthquakes and the direction of the principal stresses, B. Seismol. Soc. Am., 59, 591–601, https://doi.org/10.1785/BSSA0590020591, 1969.
Meghraoui, M. and Pondrelli, S.: Active faulting and transpression tectonics along the plate boundary in North Africa, Ann. Geophys.-Ital., 55, 5, https://doi.org/10.4401/ag-4970, 2012.
Meghraoui, M., Cisternas, A., and Philip, H.: Seismotectonics of the Lower Cheliff Basin: Structural background of the El Asnam (Algeria) earthquake, Tectonics, 5, 809–836, https://doi.org/10.1029/TC005i006p00809, 1986.
Michael, A.: Use of Focal Mechanisms to Determine Stress: A Control Study, J. Geophys. Res.-Sol. Ea., 92, 357–368, https://doi.org/10.1029/JB092iB01p00357, 1987.
Montadert, L., Damotte, B., Fail, J. P., Delteil, J. R., and Valéry, P.: Structure géologique de la plaine abyssale du Golfe de Gascogne, in: Histoire Structurale du Golfe de Gascogne, edited by: Debysier, J., Le Pichon, X., and Montadert, M., VI.14.1–VI.14.42, Technip, París, 1971.
Montenat, C. and d'Estevou, P. O.: The diversity of late Neogene sedimentary basins generated by wrench faulting in the Eastern Betic Cordillera, SE Spain, J. Petrol. Geol., 22, 61–80, https://doi.org/10.1111/j.1747-5457.1999.tb00459.x, 1999.
Morales, J., Azañón, J. M., Stich, D., Roldán, F. J., Pérez-Peña, J. V., Martín, R., Cantavella, J. V., Martín, J. B., Mancilla, F., and González-Ramón, A.: The 2012–2013 earthquake swarm in the eastern Gualdalquivir Basin (South Spain): A case of heterogenous faulting due to oroclinal bending, Gondwana Res., 28, 1566–1578, https://doi.org/10.1016/j.gr.2014.10.017, 2015.
Morawietz, S., Heidbach, O., Reiter, K., Ziegler, M. O., Rajabi, M., Zimmerman, G., Müller, B., and Tingay, M.: An open access stress magnitude database for Germany and adjacent regions, Geothermal Energy, https://doi.org/10.1186/s40517-020-00178-5, 2020.
Moreno, X., Masana, E., Pallàs, R., Gràcia, E., Rodés, A., Bordonau, J.: Quaternary tectonic activity of the Carboneras Fault in the La Serrata range (SE Iberia): geomorphological and chronological constraints, Tectonophysics 663, 78–94, https://doi.org/10.1016/j.tecto.2015.08.016, 2015.
Neres, M., Neves, M. C., Custódio, S., Palano, M., Fernandes, R., and Matias, L.: Gravitational potential energy in Iberia: A driver of active deformation in high-topography regions, J. Geophys. Res.-Sol. Ea., 123, https://doi.org/10.1029/2017JB015002, 2018a.
Neres, M., Terrinha, P., Custodio, S. M., Silva, J., and Miranda, J. M.: Geophysical evidence for a magmatic intrusion in the ocean-continent transition of the SW Iberia margin, Tectonophysics, 744, 118–133, https://doi.org/10.1016/j.tecto.2018.06.014, 2018b.
Neres, M., Carafa, M. M. C., Fernandes, R. M. S., Matias, L., Duarte, J. C., Barba, S., and Terrinha, P.: Lithospheric deformation in the Africa-Iberia plate boundary: Improved neotectonic modeling testing a basal-driven Alboran plate, J. Ggeophys. Res.-Sol. Ea., https://doi.org/10.1002/2016JB013012, 2019.
Neves, M. C., Terrinha, P., Afilhado, A., Moulin, M., Matias, L., and Rosas, F.: Response of a multi-domain continental margin to compression: Study from seismic reflection–refraction and numerical modelling in the Tagus Abyssal Plain, Tectonophysics, 468, 113–130, https://doi.org/10.1016/j.tecto.2008.05.008, 2009.
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., and Sauter, D.: Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems, Tectonics, https://doi.org/10.1002/2017TC004495, 2018.
Olaiz, A. J., Muñoz-Martín, A., de Vicente, G., Vegas, R., and Cloetingh, S.: European continuous active tectonic strain–stress map, Tectonophysics, 474, 33–40, https://doi.org/10.1016/j.tecto.2008.06.023, 2009.
Olaiz, A. J., Álvarez Gómez, J. A., de Vicente, G., Muñoz-Martín, A., Cantavella, J. V., Custódio, S., Vales, D., and Heidbach, O.: Seismo-tectonics of Greater Iberia: An updated review, Zenodo [data set], https://doi.org/10.5281/zenodo.14326528, 2024.
Olivera, C., Redondo, E., Lambert, J., Riera Melis, A., and Roca, A.: Els terratrèmols dels segles XIV i XV a Catalunya, Institut Cartogràfic de Catalunya, Monografies 30, 407 pp., ISBN 84-393-6961-1, 2006.
Pedrera, A., Ruiz-Constán, A., Marín-Lechado, C., Galindo-Zaldivar, J., González, A., and Peláez, J. A.: Seismic transpressive basement faults and monocline development in a foreland basin (eastern Guadalquivir, SE Spain), Tectonics, 32, 1571–1586, https://doi.org/10.1002/2013TC003397, 2013.
Perea, H., Masana, E., and Santanach, P.: An active zone characterized by slow normal faults, the northwestern margin of the València trough (NE Iberia): a review, J. Iber. Geol., 38, 31–52, https://doi.org/10.5209/rev_jige.2012.v38.n1.39204, 2012.
Perea, H., Masana, E., and Simón, J. L.: Slow active faults along the extensional northeastern margin of the Iberian Peninsula, in: The Geology of Iberia: A Geodynamic Approach Volume 5: Active Processes: Seismicity, Active Faulting and Relief, Springer Nature, https://doi.org/10.1007/978-3-030-10931-8_4, 2020.
Pereira, R., Rosas, F., Mata, J., Represas, P., Escada, C., and Silva, B.: Interplay of tectonics and magmatism during post-rift inversion on the central West Iberian Margin (Estremadura Spur), Basin Res., 33, 1497–1519, https://doi.org/10.1111/bre.12524, 2021.
Pierdominici, S. and Heidbach, O.: Stress field of Italy – Mean stress orientation at different depths and wave-length of the stress pattern, Tectonophys, 532–535, 301–311, https://doi.org/10.1016/j.tecto.2012.02.018, 2012.
Pla-Pueyo, S., Gierlowski-Kordesch, E. H., Viseras, C., and Soria, J. M.: Major controls on sedimentation during the evolution of a continental basin: Pliocene–Pleistocene of the Guadix Basin (Betic Cordillera, southern Spain), Sediment. Geol., 219, 97–114, https://doi.org/10.1016/j.sedgeo.2009.05.001, 2009.
Pondrelli, S., Morelli, A., Ekström, G. Mazza, S., Boschi, E., and Dziewonski, M.: European- Mediterranean regional centroid-moment tensors: 1997–2000, Phys. Earth Planet. In., 130, 71–101, https://doi.org/10.1016/S0031-9201(01)00312-0, 2002.
Pondrelli, S., Morelli, A., and Ekström, G.: European-Mediterranean Regional Centroid MomentTensor catalog: solutions for years 2001 and 2002, Phys. Earth Planet. In., 145, 127–147, https://doi.org/10.1016/j.pepi.2004.03.008, 2004.
Posadas, A. M., Vidal, F., De Miguel, F., Alguacil, G., Peña, J., Ibañez, J. M., and Morales, J.: Spatial-Temporal Analysis of a Seismic Series Using the Principal Components Method: The Antequera Series, Spain, 1989, J. Geophys. Res., 98, 1923–1932, 1993.
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R., and Reynolds, S.: The present-day stress field of Australia, Earth Sci. Rev., 168, 165–189, https://doi.org/10.1016/j.earscirev.2017.04.003, 2017a.
Rajabi, M., Tingay, M., King, R., and Heidbach, O.: Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: A new high density dataset reveals local stress rotations, Basin Res., 29, 622–640, https://doi.org/10.1111/bre.12175, 2017b.
Rajabi, M., Ziegler, M. O., Heidbach, O., Mukherjee, S., and Esterle, J.: Contribution of mine borehole data toward high-resolution stress mapping: An example from northern Bowen Basin, Australia, Int. J. Rock Mech. Min., 173, https://doi.org/10.1016/j.ijrmms.2023.105630, 2024.
Ramos, A., Fernández, O., Terrinha, P., and Muñoz, J. A.: Extension and inversion structures in the Tethys–Atlantic linkage zone, Algarve Basin, Portugal, Int. J. Earth Sci. (Geol. Rundsch.), 1–17, https://doi.org/10.1007/s00531-015-1280-1, 2015.
Ramsay, J. G.: Folding and fracturing rocks, McGraw-Hill, New York, 560 pp., ISBN 978-0070511705, 1967.
Reches, Z.: Faulting of rocks in three-dimensional strain fields. II. Theoretical analysis, Tectonophysics, 47, 109–129, https://doi.org/10.1016/0040-1951(83)90264-0, 1983.
Reches, Z.: Determination of the tectonic stress tensor from slip along faults that obey the Coulomb yield condition, Tectonics, 6, 849–861, https://doi.org/10.1029/TC006i006p00849, 1987.
Reches, Z., Baer, G., and Hatzor, Y.: Constraints on the strength of the Upper Crust from stress inversion of fault slip data, J. Geophys. Res., 97, 12481–12493, https://doi.org/10.1029/90JB02258, 1992.
Reicherter, K. R. and Peters, G.: Neotectonic evolution of the Central Betic Cordilleras (Southern Spain), Tectonophysics, 405, 191–212, https://doi.org/10.1016/j.tecto.2005.05.022, 2005.
Reicherter, K. R. and Pletsch, T. K.: Evidence for a synchronous Circum-Iberian subsidence event and its relation to the African-Iberian plate convergence in the Late Cretaceous, Terra Nova, 12, 141–147, https://doi.org/10.1046/j.1365-3121.2000.123276.x, 2002.
Reinecker, J., Tingay, M., Muller, B., and Heidbach, O.: Present-day stress orientation in the Molasse Basin, Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021, 2010.
Reiter, K., Heidbach, O., Schmitt, D. R., Moeck, I., Ziegler, M. O., and Hauck, C.: Crustal stress field pattern of Canada, Tectonophys, 636, 111–124, https://doi.org/10.1016/j.tecto.2014.08.006, 2014.
Roca, E. and Guimerà, J.: The Neogene structure of the eastern Iberian margin: Structural constraints on the crustal evolution of the Valencia trough (western Mediterranean), Tectonophysics, 203, 203–218, https://doi.org/10.1016/0040-1951(92)90224-t, 1992.
Roca, E. and Muñoz, J. A.: The Pyrenean orogen: pre-, syn- and post-collisional evolution, in: Peri-Tethys Memoir 2: Structure and Prospects of Alpine Basins and Forelands, Mémoires du Muséum national d'Histoire naturelle, edited by: Ziegler, P. A. and Horvath, F., Muséum national d'Histoire naturelle, Paris, 170, 203–219, 1996.
Rueda, J. and Mezcua, J.: Near-real-time seismic moment-tensor determination in Spain, Seismol. Res. Lett., 76, 455–465, https://doi.org/10.1785/gssrl.76.4.455, 2005.
Ruiz, M., Gallart, J., Díaz, J., Olivera, C., Pedreira, D., López, C., González-Cortina, J. M., and Pulgar, J. A.: Seismic activity at the western Pyrenean Edge, Tectonophysics, 412, 217–235, https://doi.org/10.1016/j.tecto.2005.10.034, 2006.
Ruiz, M., Diaz, J., Canari, A., Ortuño, M., and Vergés, J.: Seismic Activity at the Eastern Pyrenean Termination, SSRN, https://doi.org/10.2139/ssrn.4341777, 2023.
Ruiz Constán, A.: Lithospheric structure of the western Betic Cordillera and its foreland implications in the recent tectonic evolution, PhD Thesis, Universidad de Granada, 162 pp., 2009.
Ruiz-Constán, A., Galindo-Zaldívar, J., Pedrera, A., Célérier, B., and Marín-Lechado, C.: Stress distribution at the transition from subduction to continental collision (northwestern and central Betic Cordillera), Geochem. Geophy. Geosys., 12, Q12002, https://doi.org/10.1029/2011GC003824, 2011.
Rutter, E. H., Faulkner, D. R., and Burgess, R.: Structure and geological history of the Carboneras Fault Zone, SE Spain: Part of a stretching transform fault system, J. Struct. Geol., 45, 68–86, https://doi.org/10.1016/j.jsg.2012.08.009, 2012.
Sanz de Galdeano, C.: Geologic evolution of the Betic Cordilleras in the Western Mediterranean, Miocene to the present, Tectonophysics, 172, 107–119, https://doi.org/10.1016/0040-1951(90)90062-D, 1990.
Sanz de Galdeano, C., García-Tortosa, F. J., Peláez, J. A., Alfaro, P., Azañón, J. M., Galindo-Zaldívar, J., López Casado, C., López Garrido, A. C., Rodríguez-Fernández, J., and Ruano, P.: Main active faults in the Granada and Guadix-Baza Basins (Betic Cordillera), J. Iber. Geol., 38, 209–223, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39215, 2012.
Sibuet, J. C., Srivastava, S. P., and Spakman, W.: Pyrenean orogeny and plate kinematics, J. Geophys. Res., 109, B08104, https://doi.org/10.1029/2003JB002514, 2004.
Simón, J. L.: Late Cenozoic stress field and fracturing in the Iberian Chain and Ebro Basin (Spain), J. Struct. Geol., 11, 285–294, https://doi.org/10.1016/0191-8141(89)90068-0, 1989.
Simón, J. L.: Active faults in the Iberian Chain, in: The Geology of Iberia: A Geodynamic Approach Volume 5: Active Processes: Seismicity, Active Faulting and Relief, Springer Nature, https://doi.org/10.1007/978-3-030-10931-8_4, 2020.
Soumaya, A., Ben Ayed, N., Rajabi, M. Meghraoui, M., Delvaux, D., Kadri,A. Ziegler, M., Maouche,S. and Braham, A.: Active faulting geometry and stress pattern near complex strike-slip systems along the Maghreb region: Constraints on active convergence in the western Mediterranean, Tectonics, 37, 3148–3173, https://doi.org/10.1029/2018TC004983, 2018.
Souriau, A. and Pauchet, H.: A new synthesis of Pyrenean seismicity and its tectonic implications, Tectonophysics, 290, 221–244, https://doi.org/10.1016/S0040-1951(98)00017-1, 1998.
Sperner, B., Müller, B., Heidbach, O., Delvaux, D., Reinecker, J., and Fuchs, K.: Tectonic stress in the Earth's crust: advances in the World Stress Map project, in: New insights in structural interpretation and modelling, edited by: Nieuwland, D. A., 101–116, Geological Society, London, https://doi.org/10.1144/gsl.sp.2003.212.01.07, 2003.
Srivastava, S. P., Roest, W. R., Kovacs, L. C., Oakey, G., Levesque, S., Verhoef, J., and Macnab, R.: Motion of Iberia since the Late Jurassic: Results from detailed aeromagnetic measurements in the Newfoundland Basin, Tectonophysics, 184, 229–260, https://doi.org/10.1016/0040-1951(90)90442-B, 1990.
Stich, D., Ammon, C. J., and Morales, J.: Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region, J. Geophys. Res., 108, 02JB002057, https://doi.org/10.1029/2002JB002057, 2003.
Stich, D., Batlló, J., Maciá, R., Teves-Costa, P., and Morales, J.: Moment tensor inversion with single-component historical seimograms: The 1909 Benavente (Portugal) and Lambesc (France) earthquakes, Geophys. J. Int., 162, 850–858, https://doi.org/10.1111/j.1365-246X.2005.02680.x, 2005.
Stich, D., Serpelloni, E., Mancilla, F. L., and Morales, J.: Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations, Tectonophysics, 426, 295–317, https://doi.org/10.1016/j.tecto.2006.08.004, 2006.
Stich, D., Martín, R., and Morales, J.: Moment tensor inversion for Iberia-Maghreb earthquakes 2005–2008, Tecthonophysics, 483, 390–398, https://doi.org/10.1016/j.tecto.2009.11.006, 2010.
Stich, D., Martín, R., Morales, J., López-Comino, J. A., and Mancilla, F. d. L..: Slip partitioning in the 2016 Alboran Sea Earthquake Sequence (Western Mediterranean), Front. Earth Sci., 8, 587356, https://doi.org/10.3389/feart.2020.587356, 2020.
Tendero-Salmerón, V.: Recent and active deformation structures in the centra-eastern sector of the Betic Cordillera and the Alboran Sea: indentation processes and roll-back, PhD Thesis, Universidad de Granada, 238 pp., ISBN 9788411173520, 2022.
Tendero-Salmerón, V., Galindo-Zaldivar, J., Peláez, J. A., Martínez-Martos, M., Henares, J., and Marín-Lechado, C.: Seismicity in strike-slip foreland faults (central Betic cordillera front): Evidence of indentation tectonics, Tectonics, 39, e2020TC006143, https://doi.org/10.1029/2020TC006143, 2020.
Tendero-Salmerón, V., Lafosse, M., d'Acremont, E., Rabaute, A., Azzouz, O., Ercilla, G., Makkaoui, M., and Galindo-Zaldivar, J.: Application of Automated Throw Backstripping Method to Characterize Recent Faulting Activity Migration in the Al Hoceima Bay (Northeast Morocco): Geodynamic Implications, Front. Earth Sci., 9, 645942, https://doi.org/10.3389/feart.2021.645942, 2021.
Tendero-Salmerón, V., Galindo-Zaldivar, J., d'Acremont, E., Catalán, M., Martos, Y. M., Ammar, A., and Ercilla, G.: New insights on the Alboran Sea basin extension and continental collision from magnetic anomalies related to magmatism (western Mediterranean), Mar. Geol., 443, 106696, https://doi.org/10.1016/j.margeo.2021.106696, 2022.
Terrinha, P.: Structural Geology and Tectonic Evolution of the Algarve Basin, South Portugal, PhD Thesis, Imperial College, London, 430 pp., http://hdl.handle.net/10044/1/7544, 1998.
Terrinha, P., Matias, L., Vicente, J., Duarte, J., Pinheiro, J. L., Lourenço, N., Diez, S., Rosas, F., Magalhães, V., Valadares, V., Zitellini, N., Roque, C., Mendes Víctor, L., and MATESPRO Team: Morphotectonics and strain partitioning at the Iberia–Africa plate boundary from multibeam and seismic reflection data, Mar. Geol., 267, 156–174, https://doi.org/10.1016/j.margeo.2009.09.012, 2009.
Tingay, M., Müller, B., Reinecker, J., Heidbach, O., Wenzel, F., and Fleckenstein, P.: Understanding tectonic stress in the oil patch: The World Stress Map Project, Leading Edge, 24, 1276–1282, https://doi.org/10.1190/1.2149653, 2005.
Tingay, M., Müller, B., Reinecker, J., and Heidbach, O.: State and Origin of the Present-day Stress Field in Sedimentary Basins: New Results from the World Stress Map Project, 41st U.S. Symposium on Rock Mechanics (USRMS): 50 years of Rock Mechanics – Landmarks and Future Challenges, 17–21 June 2006, Golden, Colorado, https://gfzpublic.gfz-potsdam.de/rest/items/item_1529122_3/component/file_1529121/content?download=true, 2006.
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and Wessel, P.: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+, Earth Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019ea000658, 2019.
Vadillo Muñoz, O.: Análisis de la serie sísmica de Palenciana (Córdoba), Junio de 1989 y sus implicaciones sismotectónicas, PhD Thesis, Universidad Complutense de Madrid, 364 pp., https://www.fundaciongarciasineriz.es/2012/02/13/199909/, 1999.
Van der Woerd, J., Dorbath, C., Ousadou, F., Dorbath, L., Delouis, B., Jacques, E., Tapponnier, P., Hahou, Y., Menzhi, M., Frogneux, M., and Haessler, H.: The Al Hoceima Mw 6.4 earthquake of 24 February 2004 and its aftershocks sequence, J. Geodyn., 77, 89–109, https://doi.org/10.1016/j.jog.2013.12.004, 2014.
Van Hinsbergen, D., Vissers, J. J., Reinoud, L. M., and Spakman, W.: Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation, Tectonics, 33, 393–419, https://doi.org/10.1002/2013TC003349, 2014.
Vázquez, J. T., Alonso, B., Fernández-Puga, M. C., Gómez-Ballesteros, M., Iglesias, J., Palomino, D., Roque, C., Ercilla, G., and Díaz-del-Río, V.: Seamounts along the Iberian Continental Margins, Boletín Geológico y Minero, 126, 483–514, 2015.
Vegas, R. and Rincón-Calero, P. J.: Campos de esfuerzos, deformación alpina y volcanismo Neógeno-cuaternario asociado en el antepaís bético de la provincia de Ciudad Real (España Central), Geogaceta, 19, 31–34, 1996.
Vergés, J.: Evolución de los sistemas de rampas oblicuas de los Pirineos meridionales: fallas del Segre y Pamplona, Boletín Geológico y Minero, 114, 87–101, 2003.
Villamor, M. P.: Cinemática terciaria y cuaternaria de la falla de Alentejo-Plasencia y su influencia en la peligrosidad sísmica del interior de la península ibérica, PhD Thesis, Universidad Complutense de Madrid, 343 pp., https://hdl.handle.net/20.500.14352/56144, 2002.
Villaseñor, A., Herrmann, R. B., Gaite, B., and Ugalde, A.: Fault reactivation by gas injection at an underground gas storage off the east coast of Spain, Solid Earth, 11, 63–74, https://doi.org/10.5194/se-11-63-2020, 2020.
Wessel, P. and Smith, W. H. F.: New version of the Generic Mapping Tools released, EOS T. Am. Geophys. Un., 76, 329, https://doi.org/10.1029/95EO00198, 1995.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, EOS, 94, 409–420, 2013.
Wetzler, N., Sagy, A., Marco, S., and Reches, Z.: Asymmetry of faults and stress patterns within the Dead Sea basin as displayed by seismological analysis, Tectonophysics, 819, 229069, https://doi.org/10.1016/j.tecto.2021.229069, 2021.
Ziegler, M. O. and Heidbach O.: Manual of the Matlab script Stress2Grid v1.1Rep., 33 pp., GFZ German Research Centre for Geosciences, Potsdam, https://doi.org/10.5880/wsm.2019.002, 2019.
Zitellini, N., Gràcia, E., Matias, L., Terrinha, P., Abreu, M. A., DeAlteriis, G., Henriet, J. P., Dañobeitia, J. J., Masson, D. G., Mulder, T., Ramella, R., Somoza, L., and Diez, S.: The quest for the Africa–Eurasia plate boundary west of the Strait of Gibraltar, Earth Planet. Sc. Lett., 280, 13–50, https://doi.org/10.1016/j.epsl.2008.12.005, 2009.
Zoback, M.-L.: First- and Second- Order Patterns of Stress in the Lithosphere: The World Stress Map Project, J. Geophys. Res., 97, https://doi.org/10.1029/92JB00132, 1992.
Short summary
Understanding the stress and strain conditions in the Earth's crust is crucial for various activities, such as oil and gas exploration and assessing seismic hazards. In this article, we have updated the database of moment tensor focal mechanisms for Greater Iberia. We conducted kinematic and dynamic analyses on the selected populations, determining the average focal mechanism, strain and stress orientations, and tectonic regime. The orientation for horizontal compression is primarily N154° E.
Understanding the stress and strain conditions in the Earth's crust is crucial for various...