Articles | Volume 9, issue 3
https://doi.org/10.5194/se-9-573-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-573-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece
Ernest Chi Fru
CORRESPONDING AUTHOR
Department of Geological Sciences, 10691, Stockholm University,
Stockholm, Sweden
School of Earth and Ocean Sciences, Cardiff University, Park Place,
CF10 3AT Cardiff, UK
Stephanos Kilias
Department of Economic Geology and Geochemistry, Faculty of Geology
and Geoenvironment, National and Kapodistrian University of Athens,
Panepistimiopolis, Zographou, 15784, Athens, Greece
Magnus Ivarsson
Department of Biology, University of Southern Denmark, Campusvej 55,
Odense M, 5230, Denmark
Department of Palaeobiology, Swedish Museum of Natural History, P.O. Box
50007, Stockholm, Sweden
Jayne E. Rattray
Department of Geological Sciences, 10691, Stockholm University,
Stockholm, Sweden
Katerina Gkika
Department of Economic Geology and Geochemistry, Faculty of Geology
and Geoenvironment, National and Kapodistrian University of Athens,
Panepistimiopolis, Zographou, 15784, Athens, Greece
Iain McDonald
School of Earth and Ocean Sciences, Cardiff University, Park Place,
CF10 3AT Cardiff, UK
Qian He
School of Chemistry, Cardiff University, Park Place, CF10 3AT Cardiff, UK
Curt Broman
Department of Geological Sciences, 10691, Stockholm University,
Stockholm, Sweden
Related authors
No articles found.
Svante Björck, Jesper Sjolte, Karl Ljung, Florian Adolphi, Roger Flower, Rienk H. Smittenberg, Malin E. Kylander, Thomas F. Stocker, Sofia Holmgren, Hui Jiang, Raimund Muscheler, Yamoah K. K. Afrifa, Jayne E. Rattray, and Nathalie Van der Putten
Clim. Past, 15, 1939–1958, https://doi.org/10.5194/cp-15-1939-2019, https://doi.org/10.5194/cp-15-1939-2019, 2019
Short summary
Short summary
Southern Hemisphere westerlies play a key role in regulating global climate. A lake sediment record on a mid-South Atlantic island shows changes in the westerlies and hydroclimate 36.4–18.6 ka. Before 31 ka the westerlies shifted in concert with the bipolar seesaw mechanism in a fairly warm climate, followed by southerly westerlies and falling temperatures. After 27.5 ka temperatures dropped 3 °C with drier conditions and with shifting westerlies possibly triggering the variable LGM CO2 levels.
M. D. Jackson, M. T. Gudmundsson, W. Bach, P. Cappelletti, N. J. Coleman, M. Ivarsson, K. Jónasson, S. L. Jørgensen, V. Marteinsson, J. McPhie, J. G. Moore, D. Nielson, J. M. Rhodes, C. Rispoli, P. Schiffman, A. Stefánsson, A. Türke, T. Vanorio, T. B. Weisenberger, J. D. L. White, R. Zierenberg, and B. Zimanowski
Sci. Dril., 20, 51–58, https://doi.org/10.5194/sd-20-51-2015, https://doi.org/10.5194/sd-20-51-2015, 2015
Short summary
Short summary
A new drilling program at Surtsey Volcano, a 50-year-old oceanic island and UNESCO World Heritage site in Iceland, will undertake interdisciplinary investigations of rift zone volcanism, dynamic hydrothermal mineral assemblages in basaltic tephra, and subterrestrial microbial colonization and succession in altered tephra and hydrothermal fluids. Long-term monitoring of evolving hydrothermal and biological processes will occur through installation of a 200m deep Surtsey subsurface observatory.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
What does it take to restore geological models with “natural” boundary conditions?
Impact of stress regime change on the permeability of a naturally fractured carbonate buildup (Latemar, the Dolomites, northern Italy)
The influence of extraction of various solvents on chemical properties on Chang 7 shale, Ordos Basin, China
Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland
Miocene high elevation in the Central Alps
What makes seep carbonates ignore self-sealing and grow vertically: the role of burrowing decapod crustaceans
Dawn and dusk of Late Cretaceous basin inversion in central Europe
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)
Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)
Tectonic processes, variations in sediment flux, and eustatic sea level recorded by the 20 Myr old Burdigalian transgression in the Swiss Molasse basin
Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits
Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?
Precipitation of dolomite from seawater on a Carnian coastal plain (Dolomites, northern Italy): evidence from carbonate petrography and Sr isotopes
The Ogooue Fan (offshore Gabon): a modern example of deep-sea fan on a complex slope profile
Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
Melchior Schuh-Senlis, Guillaume Caumon, and Paul Cupillard
Solid Earth, 15, 945–964, https://doi.org/10.5194/se-15-945-2024, https://doi.org/10.5194/se-15-945-2024, 2024
Short summary
Short summary
This paper presents the application of a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method is applied to a model based on a laboratory experiment. The results show that using force conditions in the computation of the deformation allows us to assess the value of some previously unknown physical parameters of the different materials inside the model.
Onyedika Anthony Igbokwe, Jithender J. Timothy, Ashwani Kumar, Xiao Yan, Mathias Mueller, Alessandro Verdecchia, Günther Meschke, and Adrian Immenhauser
Solid Earth, 15, 763–787, https://doi.org/10.5194/se-15-763-2024, https://doi.org/10.5194/se-15-763-2024, 2024
Short summary
Short summary
We present a workflow that models the impact of stress regime change on the permeability of fractured Latemar carbonate buildup using a displacement-based linear elastic finite-element method (FEM) and outcrop data. Stress-dependent heterogeneous apertures and effective permeability were calculated and constrained by the study area's stress directions. Simulated far-field stresses at NW–SE subsidence deformation and N–S Alpine deformation increased the overall fracture aperture and permeability.
Yan Cao, Zhijun Jin, Rukai Zhu, and Kouqi Liu
Solid Earth, 14, 1169–1179, https://doi.org/10.5194/se-14-1169-2023, https://doi.org/10.5194/se-14-1169-2023, 2023
Short summary
Short summary
Fourier transform infrared (FTIR) was performed on shale before and after solvent extraction. The extraction yield from shale with THF is higher than other solvents. The organic-C-normalized yield of a mature sample is higher than other samples. The aromaticity of organic matter increases, and the length of organic matter aliphatic chains does not vary monotonically with increasing maturity. The results will help in the selection of organic solvents for oil-washing experiments of shale.
Zbyszek Remin, Michał Cyglicki, and Mariusz Niechwedowicz
Solid Earth, 13, 681–703, https://doi.org/10.5194/se-13-681-2022, https://doi.org/10.5194/se-13-681-2022, 2022
Short summary
Short summary
Traditionally, the axial part of the Polish Basin, i.e. the Mid-Polish Trough, was interpreted as the deepest and most subsiding part of the basin during the Cretaceous times. We interpret this area conversely, as representing a landmass – the Łysogóry–Dobrogea Land. Inversion-related tectonics, uplift on the one hand and enhanced subsidence on the other, drove the development of the Szozdy Delta within the axial part of the basin. New heavy mineral data suggest different burial histories.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Jean-Philippe Blouet, Patrice Imbert, Sutieng Ho, Andreas Wetzel, and Anneleen Foubert
Solid Earth, 12, 2439–2466, https://doi.org/10.5194/se-12-2439-2021, https://doi.org/10.5194/se-12-2439-2021, 2021
Short summary
Short summary
Biochemical reactions related to hydrocarbon seepage are known to induce carbonates in marine sediments. Seep carbonates may act as seals and force lateral deviations of rising hydrocarbons. However, crustacean burrows may act as efficient vertical fluid channels allowing hydrocarbons to pass through upward, thereby allowing the vertical growth of carbonate stacks over time. This mechanism may explain the origin of carbonate columns in marine sediments throughout hydrocarbon provinces worldwide.
Thomas Voigt, Jonas Kley, and Silke Voigt
Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, https://doi.org/10.5194/se-12-1443-2021, 2021
Short summary
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Georg Schwamborn, Kai Hartmann, Bernd Wünnemann, Wolfgang Rösler, Annette Wefer-Roehl, Jörg Pross, Marlen Schlöffel, Franziska Kobe, Pavel E. Tarasov, Melissa A. Berke, and Bernhard Diekmann
Solid Earth, 11, 1375–1398, https://doi.org/10.5194/se-11-1375-2020, https://doi.org/10.5194/se-11-1375-2020, 2020
Short summary
Short summary
We use a sediment core from the Gobi Desert (Ejina Basin, NW China) to illustrate the landscape history of the area. During 2.5 million years a sediment package of 223 m thickness has been accumulated. Various sediment types document that the area turned from a playa environment (shallow water environment with multiple flooding events) to an alluvial–fluvial environment after the arrival of the Heihe in the area. The river has been diverted due to tectonics.
Philippos Garefalakis and Fritz Schlunegger
Solid Earth, 10, 2045–2072, https://doi.org/10.5194/se-10-2045-2019, https://doi.org/10.5194/se-10-2045-2019, 2019
Short summary
Short summary
The controls on the 20 Myr old Burdigalian transgression in the Swiss Molasse basin have been related to a reduction in sediment flux, a rise in global sea level, or tectonic processes in the adjacent Alps. Here, we readdress this problem and extract stratigraphic signals from the Upper Marine Molasse deposits in Switzerland. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression, which is related to a deepening and widening of the basin.
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary
Short summary
The Aar and Mont Blanc regions in the Alps are large granitoid massifs characterized by high topography. We analyse when these granitoids were first exhumed to the surface. We test this by tracking specific garnet grains, which are exclusively found in the granitoid massifs, in the sediments contained in the alpine foreland basin. This research ties in with ongoing debates on the timing and mechanisms of mountain building.
Christian Stranne, Matt O'Regan, Martin Jakobsson, Volker Brüchert, and Marcelo Ketzer
Solid Earth, 10, 1541–1554, https://doi.org/10.5194/se-10-1541-2019, https://doi.org/10.5194/se-10-1541-2019, 2019
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Salomé Mignard, Thierry Mulder, Philippe Martinez, and Thierry Garlan
Solid Earth, 10, 851–869, https://doi.org/10.5194/se-10-851-2019, https://doi.org/10.5194/se-10-851-2019, 2019
Short summary
Short summary
A large quantity a continental material is transported to the oceans by the world rivers. Once in the ocean, these particles can be transported down the continental shelf thanks to underwater avalanches. The repetition of such massive events can form very important sedimentary deposits at the continent–ocean transition. Data obtained during an oceanic cruise in 2010 allowed us to study such a system located offshore of Gabon and to evaluate the importance sediment transport in this area.
Sutieng Ho, Martin Hovland, Jean-Philippe Blouet, Andreas Wetzel, Patrice Imbert, and Daniel Carruthers
Solid Earth, 9, 1437–1468, https://doi.org/10.5194/se-9-1437-2018, https://doi.org/10.5194/se-9-1437-2018, 2018
Short summary
Short summary
A newly discovered type of hydrocarbon leakage structure is investigated following the preliminary works of Ho (2013; et al. 2012, 2013, 2016): blade-shaped gas chimneys instead of classical cylindrical ones. These so-called
Linear Chimneysare hydraulic fractures caused by overpressured hydrocarbon fluids breaching cover sediments along preferential directions. These directions are dictated by anisotropic stresses induced by faulting in sediments and pre-existing salt-diapiric structures.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Cited articles
Alain, K., Holler, T., Musat, F., Elvert, M., Treude, T., and Kruger M.: Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania, Environ. Microbiol., 8, 574–590, 2006.
Alfieris, D.: Geological, geochemical and mineralogical studies of shallow submarine epithermal mineralization in an emergent volcanic edifice, at Milos Island (western side), Greece, PhD thesis, Department of Geosciences at Universität Hamburg, 2006.
Alfieris, D. and Voudouris, P.: Ore mineralogy of transitional submarine magnatic-hydrothermal deposits in W. Milos Island, Greece, Bulg. Acad. Sci., 43, 1–6, 2005.
Alfieris, D., Voudouris, P., and Spry, P.: Shallow submarine epithermal Pb–Zn–Cu–Au–Ag–Te mineralization on western Milos Island, Aegean Volcanic Arc, Greece: Mineralogical, geological and geochemical constraints, Ore Geol. Rev., 53, 159–180, 2013.
Anand, R. R., Paine, M., and Smith, R. E.: Genesis, Classification and Atlas of Ferruginous Materials, Yilgarn Craton, CRC LEME Open File Report, vol. 13, CSIRO Exploration and Mining, Perth, 2002.
Bahlburg, H. and Dobrzinski, N.: A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transition, Geol. Soc. London Mem., 36, 81–92, 2011.
Bau, M. and Dulski, P.: Distribution of yttrium and rare- earth elements in the Penge and Kuruman Iron-Formations, oxidative scavenging of cerium on hydrous Fe oxide, Transvaal Supergroup, South Africa, Precambrian Res., 79, 37–55, 1996.
Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E., and Fuchs, G.: Autotrophic carbon fixation in archaea, Nat. Rev. Microbiol., 8, 447–460, 2010.
Bekker, A., Slack, J. F., Planavsky, N., Krapež B., Hofmann, A., Konhauser, K. O., and Rouxel, O. J.: Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes, Econ. Geol., 105, 467–508, 2010.
Beukes, N. J. and Gutzmer, J.: Origin and Paleoenvironmental significance of major Iron Formations at the Archean-Paleoproterozoic boundary, Econ. Geol. 15, 5–47, 2008.
Beukes, N. J., Swindell, E. P. W., and Wabo, H.: Manganese deposits of Africa, Episodes, 39, 285–317, 2016.
Blumenberg, M., Seifert, R., Reitner, J., Pape, T., and Michaelis, W.: Membrane lipid patterns typify distinct anaerobic methanotrophic consortia, P. Natl. Acad. Sci. USA, 101, 11111–11116, 2004.
Boström, K., Honnorez, J., Joensuu, O., and Rydell, H.: Chemistry of hydrothermal solutions in drill hole GPK-1, Palaea Kameni, Santorini, Greece, Proceedings of the third international congress, Santorini, Greece, 3, 257–260, 1990.
Bouma, A. H.: Sedimentology of Some Flysch Deposits, Amsterdam, Elsevier, 168 pp., 1962.
Bronn, H. G.: Ubersicht der Fossilen Uberreste in den tertiären subappeninischen Gebirgen, Italiens Tertiär-Gebilde und deren organische Einschlüsse, Heidelberg, XII + 176 + 1 pl, 1831.
Breitkreuz, C.: Spherulites and lithophysae – 200 years of investigation on hightemperature crystallization domains in silica-rich volcanic rocks, Bull. Volcanol., 75, 1–16, 2013.
Bühring, S. I., Elvert, M., and Witte, U.: The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization, Environ. Microbiol., 7, 281–293, 2005.
Callac, N., Posth, N. R., Rattray, J. E., Yamoah, K. K. Y., Wiech, A., Ivarsson, M., Hemmingsson, C., Kilias, S. P., Argyraki, A., Broman, C., Skogby, H., Smittenberg, R. H., and Chi Fru, E.: Modes of carbon fixation in an arsenic and CO2-rich shallow hydrothermal ecosystem, Sci. Rep.-UK, 7, 14708, https://doi.org/10.1038/s41598-017-13910-2, 2017.
Camilli, R., Noumikou P., Escartin, J., Ridao, P., Mallios, A., Kilias, S. P., Argyraki, A., and the Caldera Science Team: The Kallisti Limnes, carbon dioxide accumulating subsea pools, Sci. Rep.-UK, 5, 12152, https://doi.org/10.1038/srep12152, 2015.
Canet, C., Prol-Ledesma, R. M., Torres-Alvarado, I., Gilg, H. A., Villanueva, R. E., and Cruz, R. L. S.: Silica-carbonate stromatolites related to coastal hydrothennal venting in Bahia Concepcion, Baja California Sur, Mexico, Sed. Geol., 174, 97–113, 2005.
Canuel, E. A. and Marten, C. S.: Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface, Geochim. Cosmochim. Ac., 60, 1793–1806, 1996.
Cattaneo, A. and Steel, R. J.: Transgressive deposits: a review of their variability, Earth Sci. Rev., 62, 187–228, 2003.
Chi Fru, E., Piccinelli, P., and Fortin, D.: Insights into the global microbial community structure associated with iron oxyhydroxide minerals deposited in the aerobic biogeosphere, Geomicrobiol. J., 29, 587–610, 2012.
Chi Fru, E., Ivarsson, M., Kilias, S. P., Bengtson, S., Belivanova, V., Marone, F., Fortin, D., Broman, C., and Stampanoni, M.: Fossilized iron bacteria reveal a pathway to the origin banded iron formations, Nat. Commun., 4, 2050, https://doi.org/10.1038/ncomms3050, 2013.
Chi Fru, E., Ivarsson, M., Kilias, S. P., Frings, P. J., Hemmingsson, C., Broman, C., Bengtson, S. and Chatzitheodoridis, E.: Biogenicity of an Early Quaternary iron formation, Milos Island, Greece, Geobiology, 13, 225–44, 2015.
Dando, P. R., Hughes, J. A., Leahy, Y., Niven, S. J., Taylor, L. J., and Smith, C.: Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc, Cont. Shelf Res., 15, 913–925, 1995.
Dieke, P.: Concentration of Mn and separation from Fe in sediments – I, Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C, Geochim. Cosmochim. Ac., 49, 1023–1033, 1985.
Dorr, J. V. N.: Supergene iron ores of Minas Gerais, Brazil, Econ. Geol., 59, 1203–1240, 1964.
Dowling, N. J. E., Widdel, F., and White, D. C.: Phospholipid ester-linked fatty-acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria, J. Gen. Microbiol., 132, 1815–1825, 1986.
Druitt, T. H. L., Edwards, R. M., Mellors, D. M., Pyle, R. S. J., Sparks, M., Lanphere, M. D., and Barreirio, B.: Santorini Volcano, Geological Society Memoir, Geological Society of London, 19, 165 pp., 1999.
Fischer, W. W. and Knoll, A. H.: An iron shuttle for deepwater silica in Late Archean and early Paleoproterozoic iron formation, Geol. Soc. Am. Bull., 121, 222–235, 2009.
Franco, A. C.,Hernández-Ayón, J. M., Beier, E., Garçon, V., Maske, H., Paulmier, A., Färber-Lorda, J., Castro, R., and Sosa-Ávalos, R.: Air-sea CO2 fluxes above the stratified oxygen minimum zone in the coastal region off Mexico, J. Geophy. Res., 119, 2923–2937, 2014.
Friedrich, W. L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T., and Talamo, S.: Santorini eruption radiocarbon dated to 1627–1600 BC, Science, 312, 548–548, 2006.
Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., Mazzuoli, R., Poli, G., Rita, F., and Villari, L.: Volcanology and petrology of volcanic products from the island of Milos and Neighbouring islets, J. Vol. Geotherm. Res., 28, 297–317, 1986.
Galan, L. D. P., Doval, M., La Iglesia, A., Soriano, J., and Chavez, L.: Occurrence of silica polymorphs nanocrystals in tuffaceous rocks, Province of the Mesa Central, Mexico, and their formation from subcritical Si-rich fluids, Am. Mineral., 98, 977–985, 2013.
Georgalas, G. and Liatsikas, N.: Die Historische entwickelung des Dafni-Ausbruches 1925–1926, in: Santorin, Der Werdegand eines Inselvulkans und sein Ausbruch 1925–1928, edited by: Reck, H., Verlag von Dietrich Reimer, Berlin, 2, 1–96, 1936.
Glasby, G. P. and Schulz, H. D.: Eh, pH diagrams for Mn, Fe, Co, Ni, Cu and As under seawater conditions: application of two new types of the Eh, pH diagrams to the study of specific problems in marine geochemistry, Aquatic Geochem., 5, 227–248, 1999.
Glasby, G. P., Papavassiliou, C. T., Mitsis, J., and Valsami-Jones, E.: The Vani manganese deposit, Milos island, Greece: A fossil stratabound Mn−Ba−Pb−Zn−As−Sb−W-rich hydrothermal deposit, Develop. Volcanol., 7, 255–291, 2005.
Gross, G. A.: A classification of iron-formation based on depositional Environments, Can. Min., 18, 215–222, 1980.
Guilbaud, R., Poulton, S. W., Butterfield, N. J., Zhu, M., and Shields-Zou, G. A.: A global transition to ferruginous conditions during the early Neoproterozoic, Nat. Geosci., 8, 466–470, 2015.
Handley, K. M., Boothman, C., Mills, R. A., Pancost, R. D., and Lloyd, J. R.: Functional diversity of bacteria in a ferruginous hydrothermal sediment, ISME J., 4, 1193–1205, 2010.
Hanert, H. H.: Bacterial and chemical iron oxide deposition in a shallow bay on Palaea Kameni, Santorini, Greece: microscopy, electron probe microanalysis, and photometry of in situ experiments, Geomicrobiol. J., 19, 317–342, 2002.
Hein, J. R., Stamatakis, M. G., and Dowling, J. S.: Trace metal-rich Quaternary hydrothermal manganese oxide and barite deposit, Milos Island, Greece, Applied Earth Science, Institute of Mining and Metallurgy, 109, 67–76, 2000.
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P.: A Neoproterozoic Snowball Earth, Science, 281, 1342–1346, 1998.
Horwell, C. J., le Blond, S., Michnowicz, S. A. K., and Cressey, G.: Cristobalite in a rhyolitic lava dome: evolution of ash hazard, Bull. Volcanol., 72, 249–253, 2010.
Ichihara, K. and Fukubayashi, Y.: Preparation of fatty acid methyl esters for gas-liquid chromatography, J. Lipid Res., 51, 635–40, 2010.
James, H. L.: Sedimentary facies of iron-formation, Econ. Geol., 49, 235–293, 1954.
Johnson, C. M., Beard, B. L., and Roden, E. E.: The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth, Annu. Rev. Earth Pl. Sc., 36, 457–493, 2008.
Kappler, A., Pasquero, C., and Newman, D. K.: Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria, Geology, 33, 865–868, 2005.
Kilias, S. P.: Microbial mat-related structures in the Quaternary Cape Vani manganese-oxide (-barite) deposit, NW Milos island, Greece, SEPM Special Publication, 101, 97–110, 2011.
Kilias, S. P., Detsi, K., Godelitsas, A., Typas, M., Naden, J., and Marantos, Y.: Evidence of Mn-oxide biomineralization, Vani Mn deposit, Milos, Greece, in: Proceedings of the ninth biennial Meeting of the Society for Geology Applied to Mineral Deposits, Dublin, Ireland, Irish Assoc. Econ. Geol. 1069–1072, 2007.
Kilias, S. P., Chatzitheodoridis, E., and Lyon, I.: Molecular, chemical and morphological evidence for hematite biogenicity at the Quaternary Cape Vani Mn-(Ba-Fe) deposit, Milos, Greece, Bull. Geol. Soc., 47, 834–842, 2013a.
Kilias, P. S., Nomikou, P., Papanikolaou, D., Polymenakou, P. N., Godelitsas, A., Argyraki, A., Carey, S., Gamaletsos, P., Mertzimekis, T. J., Stathopoulou, E., Goettlicher, J., Steininger, R., Betzelou, K., Livanos, I., Christakis, C., Bell, K. C., and Scoullos, M.: New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece, Sci. Rep.-UK, 3, 2421, https://doi.org/10.1038/srep02421, 2013b.
Klein, C.: Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins, Am. Min., 90, 1473–1499, 2005.
Klein, C. and Beukes, N. J.: Time distribution, stratigraphy and sedimentologic setting, and geochemistry of Precambrian Iron Formation, in: The Proterozoic Biosphere: A multidisciplinary study, edited by: Schopf, J. W. and Klein, C., Cambridge University Press, New York, 139–146, 1992.
Kling, G. W., Evans, W. C., Tanyileke, G., Kusakabe, M., Ohba, T., Yoshida, Y., and Hell, J. V.: Degassing Lakes Nyos and Monoun: Defusing certain disaster, P. Natl. Acad. Sci. USA, 102, 14185–14190, 2005.
Konhauser, K. O., Planavsky, N. J., Hardisty, D. S., Robbins, L. J., Warchola, T. J., Haugaard, R., Lalonde, S. V., Partin, C. A., Oonk, P. B. H., Tsikos, H., and Lyons, T. W.: Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history, Earth Sci. Rev., 172, 140–177, 2017.
Kool, D. M., Zhu, B., Rijpstra, W. I., Jetten, M. S., Ettwig, K. F., and Sinninghe Damsté, J. S.: Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer “Candidatus Methylomirabilis oxyfera”, Appl. Environ. Microbiol., 78, 8650–8656, 2012.
Krapež, B., Barley, M. E., and Pickard, A. L.: Hydrothermal and resedimented origins of the precursor sediments to banded iron formations: Sedimentological evidence from the early Palaeoproterozoic Brockman Supersequence of Western Australia, Sedimentology, 50, 979–1011, 2003.
Lalonde, K., Mucci, A., Quellet, A., and Gélinas, Y.: Preservation of organic matter in sediments promoted by iron, Nature, 483, 198–200, 2012.
Levett, A., Gagen, E., Shuster, J., Rintoul, L., Tobin, M., Vongsvivut, J., Bambery, K., Vasconcelos, P., and Southam, G.: Evidence of biogeochemical processes in iron duricrust formation, J. South. Am. Earth Sci., 71, 131–142, 2016.
Li, W., Czaja, A. D., Van Kranendonk, M. J., Beard, B. L., Roden, E. E., and Johnson, C. M.: An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago, Geochim. Cosmochim. Ac., 120, 65–79, 2013.
Liakopoulos, A., Glasby, G. P., Papavassiliou, C. T., and Boulegue, J.: Nature and origin of the Vani manganese deposit, Milos, Greece: an overview, Ore Geol. Rev., 18, 181–209, 2001.
Lü, D., Song, Q., and Wang, X.: Decomposition of algal lipids in clay-enriched marine sediment under oxic and anoxic conditions, Chin. J. Oceanogr. Limnol., 28, 131–143, 2010.
Marschik, R., Bauer, T., Hensler, A.-S., Skarpelis, N., and Hölzl, S.: Isotope Geochemistry of the Pb-Zn-Ba(-Ag-Au) Mineralization at Triades-Galana, Milos Island, Greece, Res. Geol., 60, 335–347, 2010.
Maynard, J. B.: Chemistry of modern soils as a guide to interpreting Precambrian Paleosols, J. Geol., 100, 279–289, 1993.
Maynard, J. B.: The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments, Econ. Geol., 105, 535–552, 2010.
McLennan, S. B.: Rare earth elements in sedimentary rocks. Influence of provenance and sedimentary processes, in: Geochemistry and Mineralogyof the Rare Earth Elements, edited by: Lipin, B. R. and McKay, G. A., Mineralogical Society of America, Washington, 169–200, 1989.
Miall, A. D.: Lithofacies types and vertical profile models in braided river deposits, Can. Soc. Pet. Geol. Mem., 5, 597–604, 1978.
Miall, A. D.: Architectural element analysis: a new method of facies analysis applied to fluvial deposits, Earth Sci. Rev., 22, 261–308, 1985.
Morris, R. V., Vaniman, D. T., Blake, D. F., Gellert, R., Chipera, S. J., Rampe, E. B., Ming, D. W., Morrison, S. M., Downs, R. T., Treiman, A. H., Yen, A. S., Grotzinger, J. P., Achilles, C. N., Bristow, T. F., Crisp, J. A., Des Marais, D. J., Farmer, J. D., Fendrich, K. V., Frydenvang, J., Gradd, T. G., Morookian, J.-M., Stolper, E. M., and Schwenzer, S. P.: Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater, P. Natl. Acad. Sci. USA, 113, 7071–7076, 2016.
Mutti, E.: Turbidite Sandstones, Agip Spe. Pub., 275 pp., 1992.
Nesbitt, H. W. and Young, G. M.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 199, 715–717, 1982.
Nomikou, P., Papanikolaou, D., Alexandri, M., Sakellariou, D., and Rousakis, G.: Submarine volcanoes along the Aegean volcanic arc, Tectonophysics, 597–598, 123–146, 2013.
Nomikou, P., Parks, M. M., Papanikolaou, D., Pyle, D. M., Mather, T. A., Carey, S., Watts, A. B., Paulatto, M., Kalnins, M. L., Livanos, I., and Bejelou, K.: The emergence and growth of a submarine volcano: The Kameni islands, Santorini (Greece), Geo. Res. J., 1, 8–18, 2014.
Oulas, A., Polymenakou, P. N., Seshadri, R., Tripp, H. J., Mandalakis, M., Paez-Espino, A. D., Pati, A., Chain, P., Nomikou, P., Carey, S., Kilias, S., Christakis, C., Kotoulas, G., Magoulas, A., Ivanova, N. N., and Kyrpides, N. C.: Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology, Environ. Microbiol., 18, 1122–1136, 2016.
Ozawa, A., Ueda, A., Fantong, W. Y., Anazawa, K., Yoshida, Y., Kusakabe, M., Ohba, T., Tanyileke, G., and Hell, J. V.: Rate of siderite precipitation in Lake Nyos, Cameroon, Geol. Soc. London Sp. Pub., 437, 22 June 2016, https://doi.org/10.1144/SP437.13, 2016.
Papanikolaou, D., Lekkas, E., and Syskakis, D.: Tectonic analysis of the geothermal field of Milos Island, Bull. Geol. Soc. Greece, 24, 27–46, 1990.
Papavassiliou, K., Voudouris, P., Kanellopoulos, C., Glasby, G., Alfieris, D., and Mitsis, I.: New geochemical and mineralogical constraints on the genesis of the Vani hydrothermal manganese deposit at NW Milos island, Greece: Comparison with the Aspro Gialoudi deposit and implications for the formation of the Milos manganese mineralization, Ore Geol., 80, 594–611, 2017.
Paulmier, A., Ruíz-Pino, D., and Garçon, V.: The oxygen minimum zone (OMZ) off Chile as intense source of CO2 and N2O, Cont. Shelf. Res., 28, 2746–2756, 2008.
Paulmier, A., Ruiz-Pino, D., and Garçon, V.: CO2 maximum in the oxygen minimum zone (OMZ), Biogeosciences, 8, 239–252, https://doi.org/10.5194/bg-8-239-2011, 2011.
Percoits, E., Gingras, M. K., Barley, M. E., Kapper, A., Posth, N. R., and Konhauser, K. O.: Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry, Pre. Res., 172, 163–187, 2009.
Pichler, T. and Dix, G. R.: Hydrothermal venting within a coral reef ecosystem, Ambitle Island, Papua New Guinea, Geology, 50, 435–438, 1996.
Pichler, T. and Veizer, J.: Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea, Chem. Geol., 162, 15–31, 1999.
Pichler, T. and Veizer, J.: The precipitation of aragonite from shallow-water hydrothermal fluids in a coral reef, Tutum Bay, Ambitle Island, Papua New Guinea, Chem. Geol., 207, 317–45, 2004.
Planavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., and Knudsen, A.: Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans, Earth Planet. Sc. Lett., 286, 2307–242, 2009.
Planavsky, N. J., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., and Lyons, T. W.: Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochim. Cosmochim. Ac., 74, 6387–6405, 2010.
Plimer, I.: Milos Geologic History, Koan Publishing House, Athens, Greece, 261 pp., 2000.
Poulton, S. W. and Canfield, D. E.: Development of a sequential iron extraction procedure for iron: implications for iron partitioning in continentally derived particles, Chem. Geol., 2014, 209–221, 2005.
Poulton, S. W. and Canfield, D. E.: Ferruginous conditions: A dominant feature of the ocean through Earth's history, Elements, 7, 107–112, 2011.
Preuß, A., Schauder, R., Fuchs, G., and Stichler W.: Carbon isotope fractionation by autototrophic bacteria with three different CO2 fixation pathways, Zeitschrift für Naturforschung C., 44, 397–402, 1989.
Rancourt, D. G., Fortin, D., Pichler, T., and Lamarche, G.: Mineralogical characterization of a natural very As-rich hydrous ferric oxide coprecipitate formed by mixing of hydrothermal fluid and sea water, Am. Min., 86, 834–851, 2001.
Rasmussen, B., Meier, D. B., Krapež, B., and Muhling, J. R.: Iron silicate microgranules as precursor sediments to 2.5-billion-year-old banded iron formations, Geology, 41, 435–438, 2013.
Rasmussen, B., Krapež, B., and Meier, D. B. Replacement origin for hematite in 2.5 Ga banded iron formation: Evidence for postdepositional oxidation of iron-bearing minerals, Geol. Soc. Am. Bull., 126, 438–446, 2014.
Riedel, T., Zak, D., Biester, H., and Dittmar, T.: Iron traps terrestrially derived dissolved organic matter at redox interfaces, P. Nat. Acad. Sci. USA, 110, 10101–10105, 2013.
Robbins, E. I., Kourtidou-Papadeli, C., Iberall, A. S., Nord Jr., G. L., and Sato, M.: From Precambrian Iron-Formation to Terraforming Mars: The JIMES Expedition to Santorini, Geomicrobiol. J., 33, 630–645, 2016.
Roy, S.: Manganese Mineralization: Geochemistry and mineralogy of terrestrial and marine deposits, Geol. Soc. Special Publucation, 119, 5–27, 1997.
Roy, S.: Sedimentary manganese metallogenesis in response to the evolution of the Earth system, Earth-Sci. Rev., 77, 273–305, 2006.
Rudnick, R. and Gao, S.: Composition of the continental crust, in: Treatise on Geochemistry, Elsevier–Pergamon, Oxford, 3, 1–64, 2003.
Schwertmann, U. and Murad, E.: Effect of pH on the formation of goethite and hematite from ferrihydrite, Clay. Clay Min., 31, 277–284, 1983.
Shanmugam, G.: Submarine fans: a critical retrospective (1950–2015), J. Palaeogeogr., 5, 110–184, 2016.
Shuster, D. L., Farley, K. A., Vasconcelos, P. M., Balco, G., Monteiro, H. S., Waltenberg, K., and Stone, J. O.: Cosmogenic 3 He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces, Earth Planet. Sc. Lett., 329, 41–50, 2012.
Sigurdsson, H., Carey, S., Alexandri, M., Vougioukalakis, G., Croff, K., Roman, C., Sakellariou, D., Anagnostou, C., Rousakis, G., Loakim, C., Goguo, A., Ballas, D., Misaridis, T., and Nomikou, P.: Marine investigations of Greece's Santorini volcanic field, EOS T. Am. Geophy. Un., 87, 337–342, 2006.
Simonson, B. M.: Sedimentological constraints on the origins of Precambrian iron-formations, Geol. Soc. Am. Bull., 96, 244–252, 1985.
Simonson, B. M. and Hassler, S. W.: Was the deposition of large Precambrian iron formations linked to major marine transgressions?, J. Geol., 104, 665–676, 1996.
Skarpelis, N. and Koutles, T.: Geology of epithermal mineralization of the NW part of Milos Island, Greece, in:Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, edited by: Chatzipetros, A. and Pavlides S., School of Geology, Aristotelian University of Thessaloniki, Thessaloniki, Greece, 1449–1452, 2004.
Smith, A. J. B., Beukes, N. J., and Gutzmer, J.: The Composition and depositional environments of Mesoarchean Iron Formations of the West Rand Group of the Witwatersrand Supergroup, South Africa, Econ. Geol., 108, 111–134, 2013.
Sperling, E. A., Wolock, C. J., Gill, B. C., Kunzmann, M., Halverson, G. P., Macdonald, F. A., Knoll, A. H., and Johnston D. T.: Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation, Nature, 523, 451–454, 2015.
Stewart, A. L. and Mcphie, J.: Facies architecture and Late Ploicene – Pleistocene evolution of a felsic volcanic island, Milo, Greece, Bull. Volcanol., 68, 703–726, 2006.
Stüben, D. and Glasby, G. P.: Geochemistry of shallow submarine hydrothermal fluids from Paleohori Bay, Milos, Aegean Sea, Exp. Min. Geol., 8, 273–287, 1999.
Sun, S., Konhauser, K. O., Kappler, A., and Li, Y.-L.: Primary hematite in Neoarchean to Paleoproterozoic oceans, GSA Bull., 127, 850–861, 2015.
Swamy, V., Saxena, S. K., Sundman, B., and Zhang, J.: A thermodynamic assessment of silica phase diagram, J. Geophys. Res.-Sol. Ea., 99, 11787–11794, 1994.
Taylor, J. and Parkes, R. J.: The cellular fatty-acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans, J. Gen. Microbiol., 129, 3303–3309, 1983.
Tice, M. M. and Lowe, D. R.: The origin of carbonaceous matter in pre-3.0 Ga greenstone terrains: A review and new evidence from the 3.42 Ga Buck Reef Chert, Earth Sci. Rev., 76, 259–300, 2006.
Tiodjio, R. M., Sakatoku, A., Nakamura, A., Tanaka, A., Fantong, W. Y., Tchakam, K. B., Tanyileke, G., Ohba, T., Hell, V. J., Kusakabe, M., Nakamura, S., and Ueda, A.: Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa), Sci. Rep.-UK, 4, 6151, https://doi.org/10.1038/srep06151, 2014.
Trendall, A. F.: The significance of iron-formation in the Precambrian stratigraphic record, Int. Assoc. Sed. Spe. Pub., 33, 33–66, 2002.
Tsikos, H., Mathews, A., Erel, Y., and Moore, J. M.: Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin, Earth Planet. Sc. Lett., 298, 125–134, 2010.
van Hinsbergen, D. J. J., Snel, E., Garstman, S. A., Mărunţeanu, M., Langereis, C. G., Wortel, M. J. R., and Meulenkamp, J. E.: Vertical motions in the Aegean volcanic arc: evidence for rapid subsidence preceding volcanic activity on Milos and Aegina, Mar. Geol., 209, 329–345, 2004.
Varnavas, S. P. and Cronan, D. S.: Submarine hydrothermal activity off Santorini and Milos in the Central Hellenic Volcanic Arc: A synthesis, Chem. Geol., 224, 40–54, 2005.
Weber, K. A., Achenbach, L. A., and Coates, J. D.: Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction, Nat. Rev. Microbiol., 4, 752–64, 2006.
Short summary
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record ca. 600 million years ago. Here, we report on the formation mechanisms of a modern BIF analog in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, demonstrating that rare environmental redox conditions, coupled to submarine hydrothermal activity and microbial processes, are required for these types of rocks to form in the modern marine biosphere.
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record...