Azambre, B., Rossy, M., and Lago, M.: Caractéristiques
pétrologiques des dolérites tholéiitiques d ' âge
triasique ( ophites ) du domaine pyrénéen, B.
Minéral., 110, 379–396, 1987. a
Barnett-Moore, N., Hosseinpour, M., and Maus, S.: Assessing discrepancies
between previous plate kinematic models of Mesozoic Iberia and their
constraints, Tectonics, 35, 1843–1862,
https://doi.org/10.1002/2015TC004019, 2016.
a,
b,
c,
d,
e,
f,
g,
h,
i
Bestani, L., Espurt, N., Lamarche, J., Bellier, O., and Hollender, F.:
Reconstruction of the Provence Chain evolution, southeastern France,
Tectonics, 35, 1506–1525,
https://doi.org/10.1002/2016TC004115, 2016.
a
Bill, M., O'Dogherty, L., Guex, J., Baumgartner, P. O., and Masson, H.:
Radiolarite ages in Alpine-Mediterranean ophiolites: Constraints on the
oceanic spreading and the Tethys-Atlantic connection, B.
Geol. Soc. Am., 113, 129–143,
https://doi.org/10.1130/0016-7606(2001)113<0129:RAIAMO>2.0.CO;2, 2001.
a
Biteau, J. J., Le Marrec, A., Le Vot, M., and Masset, J. M.: The Aquitaine Basin, Petroleum Geoscience, 12, 247–273,
https://doi.org/10.1144/1354-079305-674, 2006.
a
Bronner, A., Sauter, D., Manatschal, G., Péron-pinvidic, G., and Munschy,
M.: Magmatic breakup as an explanation for magnetic anomalies at magma-poor
rifted margins, Nat. Geosci., 4, 549–553,
https://doi.org/10.1038/nphys1201,
2011.
a
Cámara, P.: Salt and Strike-Slip Tectonics as Main Drivers in the Structural Evolution of the Basque-Cantabrian Basin, Spain, in: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F., and Gabor, B., Elsevier, 371–393, https://doi.org/10.1016/B978-0-12-809417-4.00018-5, 2017.
Cámara, P. and Flinch, J.: The southern Pyrenees: a salt-based fold-and-thrust belt, in: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins, edited by: Soto, J. I., Flinch, J. F., and Gabor, B., Elsevier, 395–415,
https://doi.org/10.1016/B978-0-12-809417-4.00019-7, 2017.
a,
b,
c,
d
Canérot, J.: The Iberian plate: Myth or reality?, Boletin Geologico y
Minero, 127, 563–574, 2016.
a,
b
Cerbiá, J. M., López-Ruiz, J., Doblas, M., Martins, L. T., and
Munha, J.: Geochemistry of the Early Jurassic Messejana-Plasencia dyke
(Portugal-Spain); Implications on the Origin of the Central Atlantic Magmatic
Province, J. Petrol., 44, 547–568,
https://doi.org/10.1093/petrology/44.3.547,
2003.
a
Channell, J. E. and Kozur, H. W.: How many oceans? Meliata, Vardar, Pindos
oceans in Mesozoic Alpine paleogeography, Geology, 25, 183–186,
https://doi.org/10.1130/0091-7613(1997)025<0183:HMOMVA>2.3.CO;2, 1997.
a,
b
Chevrot, S., Sylvander, M., Diaz, J., Martin, R., Mouthereau, F., Manatschal,
G., Masini, E., Calassou, S., Grimaud, F., Pauchet, H., and Ruiz, M.: The
non-cylindrical crustal architecture of the Pyrenees, Sci. Rep.-UK, 8,
1–8,
https://doi.org/10.1038/s41598-018-27889-x, 2018.
a
Choukroune, P. and Mattauer, M.: Tectonique des plaques et Pyrenees; sur le
fonctionnement de la faille transformante nord-pyreneenne; comparaisons avec
des modeles actuels, B. Soc. Géol.
Fr., 7, 689–700, 1978. a
Coltice, N., Bertrand, H., Rey, P., Jourdan, F., Phillips, B. R., and Ricard,
Y.: Global warming of the mantle beneath continents back to the Archaean,
Gondwana Res., 15, 254–266,
https://doi.org/10.1016/j.gr.2008.10.001,
2009.
a
Curnelle, R.: Evolution structuro-sedimentaire du Trias et de l'Infra-Lias d'Aquitaine., Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 7, 69–99, 1983. a
Debroas, E. J.: Modèle de bassin triangulaire à l'intersection de
décrochements divergents pour le fossé albo-cénomanien de
la Ballongue (Zone Nord-Pyrénéenne, France), B.
Soc. Géol. Fr., 8, 887–898, 1987. a
Debroas, E. J.: Le Flysch noir albo-cénomanien témoin de la
structuration albienne à sénonienne de la Zone
nord-pyrénéenne en Bigorre (Hautes-Pyrénées,
France), B. Soc. Géol. Fr., 8, 273–285, 1990. a
Denèle, Y., Paquette, J. L., Olivier, P., and Barbey, P.: Permian
granites in the Pyrenees: The Aya pluton (Basque Country), Terra Nova, 24,
105–113,
https://doi.org/10.1111/j.1365-3121.2011.01043.x, 2012.
a
Denèle, Y., Laumonier, B., Paquette, J. L., Olivier, P., Gleizes, G., and
Barbey, P.: Timing of granite emplacement, crustal flow and gneiss dome
formation in the Variscan segment of the Pyrenees, Geol. Soc.
Spec. Publ., 405, 265–287,
https://doi.org/10.1144/SP405.5, 2014.
a
Deptuck, M. E. and Kendell, K. L.: A review of Mesozoic-Cenozoic salt
tectonics along the Scotian margin, eastern Canada, in: Permo-Triassic Salt
Provinces of Europe, North Africa and the Atlantic Margins,
Elsevier, 287–312, 2017. a
de Saint Blanquat, M.: La faille normale ductile du massif du Saint
Barthélémy. Evolution hercynienne des massifs
nord-pyrénéens catazonaux considérée du point de vue
de leur histoire thermique, Geodin. Acta, 6, 59–77, 1993. a
De Saint Blanquat, M., Lardeaux, J. M., and Brunel, M.: Petrological
arguments for high-temperature extensional deformation in the Pyrenean
Variscan crust (Saint Barthélémy Massif, Ariège, France),
Tectonophysics, 177, 245–262, 1990. a
De Vicente, G., Cloetingh, S. A., Van Wees, J. D., and Cunha, P. P.:
Tectonic classification of Cenozoic Iberian foreland basins,
Tectonophysics, 502, 38–61,
https://doi.org/10.1016/j.tecto.2011.02.007,
2011.
a
Doré, A. G.: The structural foundation and evolution of Mesozoic seaways
between Europe and the Arctic, Palaeogeogr. Palaeocl., 87, 441–492, 1991. a
Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen,
P. E., and Fichler, C.: Principal tectonic events in the evolution of the
northwest European Atlantic margin, in: Geological society, London,
petroleum geology conference series, Geological Society
of London, 5, 41–61, 1999. a
Duretz, T., Asti, R., Lagabrielle, Y., Brun, J. P., Jourdon, A., Clerc, C., and
Corre, B.: Numerical modelling of Cretaceous Pyrenean Rifting: The
interaction between mantle exhumation and syn-rift salt tectonics, Basin
Res., 1–16,
https://doi.org/10.1111/bre.12389, 2019.
a
Espurt, N., Angrand, P., Teixell, A., Labaume, P., Ford, M., De Saint
Blanquat, M., and Chevrot, S.: Crustal-scale balanced cross-section and
restorations of the Central Pyrenean belt (Nestes-Cinca transect):
Highlighting the structural control of Variscan belt and Permian-Mesozoic
rift systems on mountain building, Tectonophysics, 764, 25–45,
https://doi.org/10.1016/j.tecto.2019.04.026, 2019.
a
Etheve, N., Mohn, G., Frizon de Lamotte, D., Roca, E., Tugend, J., and
Gómez-Romeu, J.: Extreme Mesozoic Crustal Thinning in the Eastern
Iberia Margin: The Example of the Columbrets Basin (Valencia Trough),
Tectonics, 37, 636–662,
https://doi.org/10.1002/2017TC004613, 2018.
a
Evans, C. D. R.: United Kingdom offshore regional report: the geology of the western English Channel and its western approaches, Tech. rep., British Geological Survey, London, 1990.
a,
b
Evans, D.: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea, Geological Society of London, London, 2003. a
Fabriès, J., Lorand, J. P., Bodinier, J. L., and Dupuy, C.: Evolution of
the upper mantle beneath the pyrenees: Evidence from orogenic spinel
lherzolite massifs, J. Petrol., 55–76,
https://doi.org/10.1093/petrology/Special_Volume.2.55, 1991.
a
Fabriès, J., Lorand, J. P., and Bodinier, J. L.: Petrogenetic evolution
of orogenic lherzolite massifs in the central and western Pyrenees,
Tectonophysics, 292, 145–167,
https://doi.org/10.1016/S0040-1951(98)00055-9, 1998.
a
Fernández, O.: The Jurassic evolution of the Africa-Iberia conjugate
margin and its implications on the evolution of the Atlantic-Tethys triple
junction, Tectonophysics, 750, 379–393,
https://doi.org/10.1016/j.tecto.2018.12.006, 2019.
a,
b
Ferrer, O., Jackson, M. P., Roca, E., and Rubinat, M.: Evolution of salt
structures during extension and inversion of the Offshore Parentis Basin
(Eastern Bay of Biscay), Geol. Soc. Spec. Publ., 363,
361–380,
https://doi.org/10.1144/SP363.16, 2012.
a
Ganne, J., Feng, X., Rey, P., and De Andrade, V.: Statistical petrology
reveals a link between supercontinents cycle and mantle global climate,
Am. Mineral., 101, 2768–2773,
https://doi.org/10.2138/am-2016-5868,
2016.
a
Glennie, K. W., Higham, J., and Stemmerik, L.: Permian, in: The millennium
atlas; petroleum geology of the central and northern North Sea, edited by:
Evans, D., Graham, C., Armour, A., and Bathurst, P., chap. 8, 91–103,
Geological Society of London, London, 2003. a
Golberg, J. M. and Leyreloup, A. F.: High temperature-low pressure Cretaceous metamorphism related to crustal thinning (Eastern North Pyrenean Zone, France), Contributions to Mineralogy and Petrology, 104, 194–207,
https://doi.org/10.1007/BF00306443, 1990.
a
Goldsmith, P. J., Hudson, G., and Van Veen, P.: Triassic, in: The
millennium atlas; petroleum geology of the central and northern North Sea,
edited by: Evans, D., Graham, C., Armour, A., and Bathurst, P., 105–127,
Geological Society of London, London, 2003. a
Grool, A. R., Huismans, R. S., and Ford, M.: Salt décollement and rift
inheritance controls on crustal deformation in orogens, Terra Nova, 31,
562–568,
https://doi.org/10.1111/ter.12428, 2019.
a
Handy, M. R., M. Schmid, S., Bousquet, R., Kissling, E., and Bernoulli, D.:
Reconciling plate-tectonic reconstructions of Alpine Tethys with the
geological-geophysical record of spreading and subduction in the Alps,
Earth-Sci. Rev., 102, 121–158,
https://doi.org/10.1016/j.earscirev.2010.06.002,
2010.
a,
b,
c,
d,
e
Hanne, D., White, N., and Lonergan, L.: Subsidence analyses from the Betic
Cordillera, southeast Spain, Basin Res., 15, 1–21,
https://doi.org/10.1046/j.1365-2117.2003.00192.x, 2003.
a,
b
Hassaan, M., Inge, J., Helge, R., and Tsikalas, F.: Carboniferous graben structures , evaporite accumulations and tectonic inversion in the southeastern Norwegian Barents Sea, Marine and Petroleum Geology, 112, 104038,
https://doi.org/10.1016/j.marpetgeo.2019.104038, 2019.
a
Hassaan, M., Inge, J., Helge, R., and Tsikalas, F.: Carboniferous graben
structures, evaporite accumulations and tectonic inversion in the
southeastern Norwegian Barents Sea, Mar. Petrol. Geol., 112,
104038,
https://doi.org/10.1016/j.marpetgeo.2019.104038, 2020.
a,
b
Heeremans, M., Timmerman, M. J., Kirstein, L. A., and Faleide, J. I.: New
constraints on the timing of late Carboniferous-early Permian volcanism in
the central North Sea, Geol. Soc. Spec. Publ.,
223, 177–193, 2004. a
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253,
https://doi.org/10.5194/se-4-215-2013, 2013.
a
Jackson, C. A., Gawthorpe, R. L., Elliott, G. M., and Rogers, E. R.: Salt
thickness and composition influence rift structural style, northern North
Sea, offshore Norway, 514–538,
https://doi.org/10.1111/bre.12332, 2019.
a,
b,
c
Jammes, S., Manatschal, G., Lavier, L., and Masini, E.: Tectonosedimentary
evolution related to extreme crustal thinning ahead of a propagating ocean:
Example of the western Pyrenees, Tectonics, 28, 1–24,
https://doi.org/10.1029/2008TC002406, 2009.
a,
b,
c,
d
Jourdon, A., Mouthereau, F., Pourhiet, L. L., and Callot, J. P.: Topographic
and Tectonic Evolution of Mountain Belts Controlled by Salt Thickness and
Rift Architecture, 39, 1–14,
https://doi.org/10.1029/2019TC005903, 2020.
a
Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J., and Queffelec, T. A.: Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic, Comput. Geosci., 49, 217–230,
https://doi.org/10.1016/j.cageo.2012.06.019, 2012.
a
Labails, C., Olivet, J. L., Aslanian, D., and Roest, W. R.: An alternative
early opening scenario for the Central Atlantic Ocean, Earth Planet.
Sc. Lett., 297, 355–368,
https://doi.org/10.1016/j.epsl.2010.06.024,
2010.
a
Lagabrielle, Y., Labaume, P., and De Saint Blanquat, M.: Mantle exhumation,
crustal denudation, and gravity tectonics during Cretaceous rifting in the
Pyrenean realm (SW Europe): Insights from the geological setting of the
lherzolite bodies, Tectonics, 29, 1–26,
https://doi.org/10.1029/2009TC002588, 2010.
a,
b,
c
Lagabrielle, Y., Asti, R., Duretz, T., Clerc, C., Fourcade, S., Teixell, A.,
Labaume, P., Corre, B., and Saspiturry, N.: A review of cretaceous
smooth-slopes extensional basins along the Iberia-Eurasia plate boundary: How
pre-rift salt controls the modes of continental rifting and mantle
exhumation, Earth-Sci. Rev., 201, 103071,
https://doi.org/10.1016/j.earscirev.2019.103071, 2020.
a,
b
Lago, M., Arranz, E., Pocoví, A., Galé, C., and Gil-Imaz, A.:
Lower Permian magmatism of the Iberian Chain, Central Spain, and its
relationship to extensional tectonics, Geol. Soc. Spec.
Publ., 223, 465–490,
https://doi.org/10.1144/GSL.SP.2004.223.01.20,
2004a.
a
Lago, M., Arranz, E., Pocoví, A., Galé, C., and Gil-Imaz, A.:
Permian magmatism and basin dynamics in the southern Pyrenees: a record of
the transition from late Variscan transtension to early Alpine extension,
Geol. Soc. Spec. Publ., 223, 439–464,
2004b. a
Leleu, S., Hartley, A. J., van Oosterhout, C., Kennan, L., Ruckwied, K., and
Gerdes, K.: Structural, stratigraphic and sedimentological characterisation
of a wide rift system: The Triassic rift system of the Central Atlantic
Domain, Earth-Sci. Rev., 158, 89–124,
https://doi.org/10.1016/j.earscirev.2016.03.008, 2016.
a,
b,
c,
d,
e
Lucas, C.: Le grès rouge du versant nord des Pyrénées: essai
sur la géodynamique de dépôts continentaux du Permien et du
Trias, PhD thesis, Université de Toulouse, Toulouse, 1985.
a,
b
Malavieille, J., Guihot, P., Costa, S., Lardeaux, J. M., and Gardien, V.:
Collapse of the thickened Variscan crust in the French Massif Central: Mont
Pilat extensional shear zone and St. Etienne Late Carboniferous basin,
Tectonophysics, 177, 139–149, 1990. a
Marroni, M., Meneghini, F., and Pandolfi, L.: A Revised Subduction Inception
Model to Explain the Late Cretaceous, Double-Vergent Orogen in the
Precollisional West
ern Tethys: Evidence From the Northern Apennines,
Tectonics, 36, 2227–2249,
https://doi.org/10.1002/2017TC004627, 2017.
a
Marzoli, A., Renne, P. R., Piccirillo, E. M., Ernesto, M., Bellieni, G., and
De Min, A.: Extensive 200-million-year-old continental flood basalts of
the Central Atlantic Magmatic Province, Science, 284, 616–618,
https://doi.org/10.1126/science.284.5414.616, 1999.
a,
b
Masini, E., Manatschal, G., Tugend, J., Mohn, G., and Flament, J. M.: The
tectono-sedimentary evolution of a hyper-extended rift basin: The example of
the Arzacq-Mauléon rift system (Western Pyrenees, SW France),
Int. J. Earth Sci., 103, 1569–1596,
https://doi.org/10.1007/s00531-014-1023-8, 2014.
a
McKenzie, D., Daly, M. C., and Priestley, K.: The lithospheric structure of
Pangea, Geology, 43, 783–786,
https://doi.org/10.1130/G36819.1, 2015.
a
McKie, T.: Paleogeographic evolution of latest Permian and Triassic salt
basins in Northwest Europe, in: Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins, Elsevier, 159–173, 2017.
a,
b,
c
McQuarrie, N. and Van Hinsbergen, D. J.: Retrodeforming the Arabia-Eurasia
collision zone: Age of collision versus magnitude of continental subduction,
Geology, 41, 315–318,
https://doi.org/10.1130/G33591.1, 2013.
a
Mohn, G., Karner, G. D., Manatschal, G., and Johnson, C. A.: Structural and
stratigraphic evolution of the Iberia-Newfoundland hyper-extended rifted
margin: A quantitative modelling approach, Geol. Soc. Spec.
Publ., 413, 53–89,
https://doi.org/10.1144/SP413.9, 2015.
a,
b
Mouthereau, F., Filleaudeau, P. Y., Vacherat, A., Pik, R., Lacombe, O., Fellin,
M. G., Castelltort, S., Christophoul, F., and Masini, E.: Placing limits to
shortening evolution in the Pyrenees: Role of margin architecture and
implications for the Iberia/Europe convergence, Tectonics, 33, 2283–2314,
https://doi.org/10.1002/2014TC003663, 2014.
a,
b,
c
Müller, D. R., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams,
S., Pfaffelmoser, T., Seton, M., Russell, S. H., and Zahirovic, S.: GPlates:
Building a Virtual Earth Through Deep Time, Geochem. Geophy.
Geosy., 19, 2243–2261,
https://doi.org/10.1029/2018GC007584, 2018.
a,
b
Müller, D. R., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M.,
Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell,
S. H., Yang, T., Leonard, J., and Gurnis, M.: A Global Plate Model Including
Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic,
Tectonics, 38, 1884–1907,
https://doi.org/10.1029/2018TC005462, 2019.
a,
b,
c
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading
rates, and spreading asymmetry of the world's ocean crust, Geochem.
Geophy. Geosy., 9, 1–19,
https://doi.org/10.1029/2007GC001743, 2008.
a
Murillas, J., Mougenot, D., Boillot, G., Comas, M. C., Banda, E., and Mauffret,
A.: Structure and evolution of the Galicia Interior Basin (Atlantic western
Iberian continental margin), Tectonophysics, 184, 297–319, 1990.
a,
b
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J., and Sauter, D.:
Nature and origin of the J-magnetic anomaly offshore Iberia–Newfoundland:
implications for plate reconstructions, Terra Nova, 29, 20–28,
https://doi.org/10.1111/ter.12240, 2017.
a
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N. J., and Sauter, D.:
Kinematic Evolution of the Southern North Atlantic: Implications for the
Formation of Hyperextended Rift Systems, Tectonics, 37, 89–118,
https://doi.org/10.1002/2017TC004495, 2018.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Olivet, J. L.: La cinématique de la plaque ibérique, Bulletin des centres de recherches exploration-production Elf-Aquitaine, 20, 131–195, 1996.
a,
b,
c,
d,
e
Olyphant, J. R., Johnson, R. A., and Hughes, A. N.: Evolution of the Southern
Guinea Plateau: Implications on Guinea-Demerara Plateau formation using
insights from seismic, subsidence, and gravity data, Tectonophysics, 717,
358–371,
https://doi.org/10.1016/j.tecto.2017.08.036, 2017.
a
Omodeo-Salé, S., Salas, R., Guimerà, J., Ondrak, R., Mas, R.,
Arribas, J., Suárez-Ruiz, I., and Martinez, L.: Subsidence and thermal
history of an inverted Late Jurassic-Early Cretaceous extensional basin
(Cameros, North-central Spain) affected by very low- to low-grade
metamorphism, Basin Res., 29, 156–174,
https://doi.org/10.1111/bre.12142, 2017.
a
Ortí, F., Pérez-López, A., and Salvany, J. M.: Triassic
evaporites of Iberia: Sedimentological and palaeogeographical implications
for the western Neotethys evolution during the Middle Triassic–Earliest
Jurassic, Palaeogeogr. Palaeocl., 471, 157–180,
https://doi.org/10.1016/j.palaeo.2017.01.025, 2017.
a,
b
Peace, A. L., Phethean, J., Franke, D., Foulger, G., Schiffer, C., Welford, J.,
McHone, G., Rocchi, S., Schnabel, M., and Doré, A.: A review of
Pangaea dispersal and Large Igneous Provinces – In search of a causative
mechanism, Earth-Sci. Rev., p. 102902,
https://doi.org/10.1016/j.earscirev.2019.102902, 2019a.
a,
b,
c
Peace, A. L., Welford, J. K., Ball, P. J., and Nirrengarten, M.: Deformable
plate tectonic models of the southern North Atlantic, J.
Geodyn., 128, 11–37,
https://doi.org/10.1016/j.jog.2019.05.005,
2019b.
a,
b,
c
Pereira, R., Alves, T. M., and Mata, J.: Alternating crustal architecture in
West Iberia: A review of its significance in the context of NE atlantic
rifting, J. Geol. Soc., 174, 522–540,
https://doi.org/10.1144/jgs2016-050, 2017.
a
Phillips, T. B., Jackson, C. A.-L., Bell, R. E., and Duffy, O. B.: Oblique reactivation of lithosphere-scale lineaments controls rift physiography – the upper-crustal expression of the Sorgenfrei–Tornquist Zone, offshore southern Norway, Solid Earth, 9, 403–429,
https://doi.org/10.5194/se-9-403-2018, 2018.
a
Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A., Bell, R. E., Faleide, J. I., and Rotevatn, A.: The Influence of Structural Inheritance and Multiphase Extension on Rift Development, the NorthernNorth Sea, Tectonics, 38, 4099–4126,
https://doi.org/10.1029/2019TC005756, 2019.
a
Puga, E., Fanning, M., Díaz de Federico, A., Nieto, J. M., Beccaluva,
L., Bianchini, G., and Díaz Puga, M. A.: Petrology, geochemistry and
U-Pb geochronology of the Betic Ophiolites: Inferences for Pangaea break-up
and birth of the westernmost Tethys Ocean, Lithos, 124, 255–272,
https://doi.org/10.1016/j.lithos.2011.01.002, 2011.
a
Quintana, L., Pulgar, J. A., and Alonso, J. L.: Displacement transfer from borders to interior of a plate: A crustal transect of Iberia, Tectonophysics, 663, 378–398,
https://doi.org/10.1016/j.tecto.2015.08.046, 2015
a
Ramos, A., Fernández, O., Terrinha, P., and Muñoz, J. A.:
Extension and inversion structures in the Tethys–Atlantic linkage zone,
Algarve Basin, Portugal, Int. J. Earth Sci., 105,
1663–1679,
https://doi.org/10.1007/s00531-015-1280-1, 2016.
a
Rasmussen, E. S., Lomholt, S., Andersen, C., and Vejbæk, O. V.: Aspects of
the structural evolution of the Lusitanian Basin in Portugal and the shelf
and slope area offshore Portugal, Tectonophysics, 300, 199–225,
https://doi.org/10.1016/S0040-1951(98)00241-8, 1998.
a
Rat, J., Mouthereau, F., Brichau, S., Crémades, A., Bernet, M., Balvay,
M., Ganne, J., Lahfid, A., and Gautheron, C.: Tectonothermal Evolution of
the Cameros Basin: Implications for Tectonics of North Iberia, Tectonics,
38, 440–469,
https://doi.org/10.1029/2018TC005294, 2019.
a,
b,
c,
d,
e
Salas, R. and Casas, A.: Mesozoic extensional tectonics, stratigraphy and
crustal evolution during the Alpine cycle of the eastern Iberian basin,
Tectonophysics, 228, 33–55,
https://doi.org/10.1016/0040-1951(93)90213-4, 1993.
a,
b
Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Melendez, A., and Alonso, A.: Evolution of the Mesozoic Central Iberian Rift System and its Cainozoic inversion (Iberian chain), in: Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins, edited by: Ziegler, P. A., Cavazza, W., Robertson, A., and Crasquin-Soleau, S., Paris, Mémoir du Muséum d'Histoire Naturelle edn., 186, 145–186, 2001.
a,
b,
c
Sallarès, V., Martínez-Loriente, S., Prada, M., Gràcia, E.,
Ranero, C., Gutscher, M. A., Bartolome, R., Gailler, A., Dañobeitia,
J. J., and Zitellini, N.: Seismic evidence of exhumed mantle rock basement
at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW
Iberia), Earth Planet. Sci. Lett., 365, 120–131,
https://doi.org/10.1016/j.epsl.2013.01.021, 2013.
a
Sánchez-Navas, A., García-Casco, A., Mazzoli, S., and
Martín-Algarra, A.: Polymetamorphism in the Alpujarride Complex, Betic
Cordillera, South Spain, J. Geol., 125, 637–657,
https://doi.org/10.1086/693862, 2017.
a
Sandoval, L., Welford, J. K., MacMahon, H., and Peace, A. L.: Determining
continuous basins across conjugate margins: The East Orphan, Porcupine, and
Galicia Interior basins of the southern North Atlantic Ocean, Mar.
Petrol. Geol., 110, 138–161,
https://doi.org/10.1016/j.marpetgeo.2019.06.047,
2019.
a,
b
Saspiturry, N., Cochelin, B., Razin, P., Leleu, S., Lemirre, B., Bouscary, C., Issautier, B., Serrano, O., Lasseur, E., Baudin, T., and Allanic, C.: Tectono-sedimentary evolution of a rift system controlled by Permian post-orogenic extension and metamorphic core complex formation (Bidarray Basin and Ursuya dome, Western Pyrenees), Tectonophysics, 768, 228180,
https://doi.org/10.1016/j.tecto.2019.228180, 2019.
a,
b,
c
Schaltegger, U., Desmurs, L., Manatschal, G., Müntener, O., Meier, M.,
Frank, M., and Bernoulli, D.: The transition from rifting to sea‐floor
spreading within a magma‐poor rifted margin: Field and isotopic
constraints, Terra Nova, 14, 156–162, 2002. a
Schettino, A. and Turco, E.: Tectonic history of the Western Tethys since the
Late Triassic, B. Geol. Soc. Am., 123, 89–105,
https://doi.org/10.1130/B30064.1, 2011.
a
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183,
https://doi.org/10.1007/s00015-008-1247-3, 2008.
a,
b,
c,
d,
e,
f
Scisciani, V. and Esestime, P.: The Triassic evaporites in the evolution of
the Adriatic Basin, in: Permo-Triassic Salt Provinces of Europe, North
Africa and the Atlantic Margins, Elsevier, 499–516, 2017. a
Serrano, O., Delmas, J., Hanot, F., Vially, R., Herbin, J.-P., Houel, P., and Tourlière, B.: Le Bassin d’Aquitaine: valorisation des données sismiques, cartographie structurale et potentiel pétrolier, Tech. rep., BRGM & IFP, Orléans, 2006. a
Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T. H.,
Shephard, G. E., Talsma, A., Gurnis, M., Turner, M., Maus, S., and Chandler,
M.: Global continental and ocean basin reconstructions since 200 Ma,
Earth-Sci. Rev., 113, 212–270,
https://doi.org/10.1016/j.earscirev.2012.03.002, 2012.
a,
b
Sibuet, J. C., Srivastava, S. P., and Spakman, W.: Pyrenean orogeny and plate
kinematics, J. Geophys. Res.-Sol. Ea., 109, 1–18,
https://doi.org/10.1029/2003JB002514, 2004.
a,
b,
c,
d
Silver, P. G., Behn, M. D., Kelley, K., Schmitz, M., and Savage, B.:
Understanding cratonic flood basalts, Earth Planet. Sc. Lett.,
245, 190–201,
https://doi.org/10.1016/j.epsl.2006.01.050, 2006.
a,
b
Solé, J., Cosca, M., Sharp, Z., and Enrique, P.:
40Ar∕39Ar
Geochronology and stable isotope geochemistry of Late-Hercynian intrusions
from north-eastern Iberia with implications for argon loss in K-feldspar,
Int. J. Earth Sci., 91, 865–881,
https://doi.org/10.1007/s00531-001-0251-x, 2002.
a
Sopeña, A., López, J., Arche, A., Pérez-Arlucea, M., Ramos,
A., Virgili, C., and Hernando, S.: Permian and Triassic rift basins of the
Iberian Peninsula, in: Developments in Geotectonics, 22, 757–786,
https://doi.org/10.1016/B978-0-444-42903-2.50036-1,
1988.
a,
b
Soto, R., Casas-Sainz, A. M., Oliva-Urcia, B., García-Lasanta, C.,
Izquierdo-Llavall, E., Moussaid, B., Kullberg, J. C., Román-Berdiel,
T., Sánchez-Moya, Y., Sopeña, A., Torres-López, S.,
Villalaín, J. J., El-Ouardi, H., Gil-Peña, I., and Hirt, A. M.:
Triassic stretching directions in Iberia and North Africa inferred from
magnetic fabrics, Terra Nova, 31, 465–478,
https://doi.org/10.1111/ter.12416, 2019.
a,
b,
c,
d,
e,
f
Spooner, C., Stephenson, R., and Butler, R. W.: Pooled subsidence records from
numerous wells reveal variations in pre-break-up rifting along the proximal
dom
ains of the Iberia-Newfoundland continental margins, Geol. Mag.,
156, 1323–1333,
https://doi.org/10.1017/S0016756818000651, 2019.
a,
b,
c
Stampfli, G. M. and Borel, G. D.: A plate tectonic model for the Paleozoic and
Mesozoic constrained by dynamic plate boundaries and restored synthetic
oceanic isochrons, Earth Planet. Sc. Lett., 196, 17–33,
https://doi.org/10.1016/S0012-821X(01)00588-X, 2002.
a,
b,
c,
d
Stampfli, G. M., Mosar, J., Favre, P., Pillevuit, A., and Vannay, J.-C.:
Permo-Mesozoic evolution of the western Tethyan realm: the Neotethys/East-
Mediterranean connection, in: Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench
Basins and Passive Margins, edited by: Ziegler, P. A., Cavazza, W., Robertson,
A. H. F., and Crasquin-Soleau, S., Mémoirs du
Muséum d'Histoire Naturelle, Paris, 186, 51–108, 2001.
a,
b,
c
Srivastava, S. P., Sibuet, J. C., Cande, S., Roest, W. R., and Reid, I. D.: Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins, Earth Planet. Sc. Lett., 182, 61–76,
https://doi.org/10.1016/S0012-821X(00)00231-4, 2000.
a
Štolfová, K. and Shannon, P. M.: Permo‐Triassic development from
Ireland to Norway: basin architecture and regional controls, Geol.
J., 44, 652–676, 2009.
a,
b
Tavani, S. and Granado, P.: Along-strike evolution of folding, stretching and
breaching of supra-salt strata in the Plataforma Burgalesa extensional forced
fold system (northern Spain), Basin Res., 27, 573–585,
https://doi.org/10.1111/bre.12089, 2015.
a
Tavani, S., Quintà, A., and Granado, P.: Tectonophysics Cenozoic
right-lateral wrench tectonics in the Western Pyrenees (Spain): The Ubierna
Fault System, Tectonophysics, 509, 238–253,
https://doi.org/10.1016/j.tecto.2011.06.013, 2011.
a,
b,
c
Tavani, S., Bertok, C., Granado, P., Piana, F., Salas, R., Vigna, B., and
Muñoz, J. A.: The Iberia-Eurasia plate boundary east of the Pyrenees,
Earth-Sci. Revi., 187, 314–337,
https://doi.org/10.1016/j.earscirev.2018.10.008,
2018.
a,
b,
c,
d
Thinon, I., Fidalgo-González, L., Réhault, J. P., and Olivet, J. L.: Déformations pyrénéennes dans le golfe de Gascogne, Comptes Rendus de l’Academie de Sciences – Serie IIa: Sciences de la Terre et des Planetes, 332, 561–568,
https://doi.org/10.1016/S1251-8050(01)01576-2, 2001.
a
Thinon, I., Réhault, J. P., and Fidalgo-González, L.: La couverture sédimentaire syn-rift de la marge Nord-Gascogne et du Bassin armoricain (golfe de Gascogne): à partir de nouvelles données de sismique réflexion, Bulletin de la Societe Geologique de France, 173, 515–522,
https://doi.org/10.2113/173.6.515, 2002.
a
Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and Thinon,
I.: Formation and deformation of hyperextended rift systems: Insights from
rift domain mapping in the Bay of Biscay-Pyrenees, Tectonics, 33,
1239–1276,
https://doi.org/10.1002/2014TC003529, 2014.
a,
b
Tugend, J., Manatschal, G., and Kusznir, N. J.: Spatial and temporal evolution
of hyperextended rift systems: Implication for the nature, kinematics, and
timing of the Iberian- European plate boundary, Geology, 43, 15–18,
https://doi.org/10.1130/G36072.1, 2015.
a,
b,
c,
d
Tugend, J., Chamot-Rooke, N., Arsenikos, S., Blanpied, C., and Frizon de
Lamotte, D.: Geology of the Ionian Basin and Margins: A Key to the East
Mediterranean Geodynamics, Tectonics, 38, 2668–2702,
https://doi.org/10.1029/2018TC005472, 2019.
a,
b
Upton, B. G. J., Stephenson, D., Smedley, P. M., Wallis, S. M., and Fitton,
J. G.: Carboniferous and Permian magmatism in Scotland, Geol. Soc.
Spec. Publ., 223, 195–218, 2004.
a,
b
Vacherat, A., Mouthereau, F., Pik, R., Huyghe, D., Paquette, J. L.,
Christophoul, F., Loget, N., and Tibari, B.: Rift-to-collision sediment
routing in the Pyrenees: A synthesis from sedimentological, geochronological
and kinematic constraints, Earth-Sci. Rev., 172, 43–74,
https://doi.org/10.1016/j.earscirev.2017.07.004, 2017.
a
van Hinsbergen, D. J., Torsvik, T. H., Schmid, S. M.,
Maţenco,
L. C., Maffione, M., Vissers, R. L., Gürer, D., and Spakman, W.: Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic, Gondwana Research, 81, 79–229,
https://doi.org/10.1016/j.gr.2019.07.009, 2020.
a,
b,
c,
d,
e
Van Wees, J. D., Arche, A., Beijdorff, C. G., López-Gómez, J.,
and Cloetingh, S. A.: Temporal and spatial variations in tectonic subsidence
in the Iberian Basin (eastern Spain): Inferences from automated forward
modelling of high-resolution stratigraphy (Permian-Mesozoic),
Tectonophysics, 300, 285–310,
https://doi.org/10.1016/S0040-1951(98)00244-3, 1998.
a
Van Wees, J. D., Stephenson, R., Ziegler, P. A., Bayer, U., McCann, T.,
Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., and Scheck, M.: On the
origin of the southern Permian Basin, Central Europe, Mar. Petrol.
Geol., 17, 43–59, 2000. a
Vargas, H., Gaspar-Escribano, J. M., López-Gómez, J., Van Wees, J. D., Cloetingh, S., de La Horra, R., and Arche, A.: A comparison of the Iberian and Ebro Basins during the Permian and Triassic, eastern Spain: A quantitative subsidence modelling approach, Tectonophysics, 474, 160–183,
https://doi.org/10.1016/j.tecto.2008.06.005, 2009.
a
Vergés, J., Poprawski, Y., Almar, Y., Drzewiecki, P. A., Moragas, M., Bover-Arnal, T., Macchiavelli, C., Wright, W., Messager, G., Embry, J., and Hunt, D.: Tectono-sedimentary evolution of Jurassic–Cretaceous diapiric structures: Miravete anticline, Maestrat Basin, Spain, Basin Res.,
https://doi.org/10.1111/bre.12447, online first, 2020.
a
Vielzeuf, D. and Kornprobst, J.: Crustal splitting and the emplacement of Pyrenean lherzolites and granulites – A reply to M. W. Fischer, Earth Planet. Sc. Lett., 70, 439–443,
https://doi.org/10.1016/0012-821X(84)90028-1, 1984.
a
Vissers, R.: Variscan extension in the Pyrenees, Tectonics, 11, 1369–1384,
1992. a
Vissers, R. and Meijer, P.: Mesozoic rotation of Iberia: Subduction in the
Pyrenees?, Earth-Sci. Rev., 110, 93–110,
https://doi.org/10.1016/j.earscirev.2011.11.001, 2012.
a,
b,
c,
d
Watts, A. B.: Isostasy and Flexure of the Lithosphere, Cambridge University
Press, 2001. a
Whitmarsh, R. B. and Manatschal, G.: Evolution of magma poor continental margins: from rifting to the onset of seafloor spreading, in: Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, edited by: Roberts, D. and Bally, A. W., chap. 9, Elsevier, 326–341,
https://doi.org/10.1016/B978-0-444-56357-6.00008-1, 2012.
a
Ziegler, P. A.: Geodynamic model for Alpine intra-plate compressional
deformation in Western and Central Europe, in: Inversion Tectonics, edited
by: Cooper, M. A. and Williams, G. D., Geol. Soc.
Spec. Publ., 3, 63–85, 1989. a
Ziegler, P. A.: Collision related intra-plate compression deformations in
Western and Central Europe, J. Geodyn., 11, 357–388, 1990. a
Ziegler, P. A., Schumacher, M. E., Dèzes, P., van Wees, J. D., and
Cloetingh, S. A.: Post-Variscan evolution of the lithosphere in the Rhine
Graben area: Constraints from subsidence modelling, Geol. Soc. Spec. Publ., 223, 289–317,
https://doi.org/10.1144/GSL.SP.2004.223.01.13,
2004.
a