Articles | Volume 12, issue 7
Solid Earth, 12, 1581–1600, 2021
https://doi.org/10.5194/se-12-1581-2021
Solid Earth, 12, 1581–1600, 2021
https://doi.org/10.5194/se-12-1581-2021

Research article 13 Jul 2021

Research article | 13 Jul 2021

Mechanical and hydraulic properties of the excavation damaged zone (EDZ) in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland

Sina Hale et al.

Related authors

Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021,https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Measuring hydraulic fracture apertures: a comparison of methods
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020,https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Mineral and rock physics
Micromechanisms leading to shear failure of Opalinus Clay in a triaxial test: a high-resolution BIB–SEM study
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021,https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Creep of CarbFix Basalt: Influence of Rock-fluid Interaction
Tiange Xing, Hamed Ghaffari, Ulrich Mok, and Matej Pec
Solid Earth Discuss., https://doi.org/10.5194/se-2021-114,https://doi.org/10.5194/se-2021-114, 2021
Revised manuscript accepted for SE
Short summary
Elastic anisotropies of rocks in a subduction and exhumation setting
Michael J. Schmidtke, Ruth Keppler, Jacek Kossak-Glowczewski, Nikolaus Froitzheim, and Michael Stipp
Solid Earth, 12, 1801–1828, https://doi.org/10.5194/se-12-1801-2021,https://doi.org/10.5194/se-12-1801-2021, 2021
Short summary
The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock
Jessica A. McBeck, Wenlu Zhu, and François Renard
Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021,https://doi.org/10.5194/se-12-375-2021, 2021
Short summary
Effect of normal stress on the frictional behavior of brucite: application to slow earthquakes at the subduction plate interface in the mantle wedge
Hanaya Okuda, Ikuo Katayama, Hiroshi Sakuma, and Kenji Kawai
Solid Earth, 12, 171–186, https://doi.org/10.5194/se-12-171-2021,https://doi.org/10.5194/se-12-171-2021, 2021
Short summary

Cited articles

Amadei, B. and Illangasekare, T.: A Mathematical Model for Flow and Solute Transport in Non-homogeneous Rock Fractures, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31, 719–731, https://doi.org/10.1016/0148-9062(94)90011-6, 1994. 
Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., and Blümel, M.: Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression, Rock Mech. Rock Eng., 44, 415–430, https://doi.org/10.1007/s00603-011-0156-3, 2011. 
Amann, F., Kaiser, P., and Button, E. A.: Experimental Study of Brittle Behavior of Clay Shale in Rapid Triaxial Compression, Rock Mech. Rock Eng., 45, 21–33, https://doi.org/10.1007/s00603-011-0195-9, 2012. 
Amann, F., Wild, K. M., Loew, S., Yong, S., Thoeny, R. and Frank, E.: Geomechanical behaviour of Opalinus Clay at multiple scales: results from Mont Terri rock laboratory (Switzerland), Swiss J. Geosci., 110, 151–171, https://doi.org/10.1007/s00015-016-0245-0, 2017. 
Aoyagi, K. and Ishii, E.: A Method for Estimating the Highest Potential Hydraulic Conductivity in the Excavation Damaged Zone in Mudstone, Rock Mech. Rock Eng., 52, 385–401, https://doi.org/10.1007/s00603-018-1577-z, 2019. 
Download
Short summary
The construction of tunnels leads to substantial alterations of the surrounding rock, which can be critical concerning safety aspects. We use different mobile methods to assess the hydromechanical properties of an excavation damaged zone (EDZ) in a claystone. We show that long-term exposure and dehydration preserve a notable fracture permeability and significantly increase strength and stiffness. The methods are suitable for on-site monitoring without any further disturbance of the rock.