Articles | Volume 12, issue 1
Solid Earth, 12, 171–186, 2021
https://doi.org/10.5194/se-12-171-2021

Special issue: Thermo-hydro-mechanical–chemical (THMC) processes in natural...

Solid Earth, 12, 171–186, 2021
https://doi.org/10.5194/se-12-171-2021

Research article 25 Jan 2021

Research article | 25 Jan 2021

Effect of normal stress on the frictional behavior of brucite: application to slow earthquakes at the subduction plate interface in the mantle wedge

Hanaya Okuda et al.

Related authors

Workshop report: Exploring deep oceanic crust off Hawai`i
Susumu Umino, Gregory F. Moore, Brian Boston, Rosalind Coggon, Laura Crispini, Steven D'Hondt, Michael O. Garcia, Takeshi Hanyu, Frieder Klein, Nobukazu Seama, Damon A. H. Teagle, Masako Tominaga, Mikiya Yamashita, Michelle Harris, Benoit Ildefonse, Ikuo Katayama, Yuki Kusano, Yohey Suzuki, Elizabeth Trembath-Reichert, Yasuhiro Yamada, Natsue Abe, Nan Xiao, and Fumio Inagaki
Sci. Dril., 29, 69–82, https://doi.org/10.5194/sd-29-69-2021,https://doi.org/10.5194/sd-29-69-2021, 2021

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, rock physics, experimental deformation | Discipline: Mineral and rock physics
The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock
Jessica A. McBeck, Wenlu Zhu, and François Renard
Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021,https://doi.org/10.5194/se-12-375-2021, 2021
Short summary
Measuring hydraulic fracture apertures: a comparison of methods
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020,https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary
Extracting microphysical fault friction parameters from laboratory and field injection experiments
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020,https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
The physics of fault friction: insights from experiments on simulated gouges at low shearing velocities
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020,https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Frictional slip weakening and shear-enhanced crystallinity in simulated coal fault gouges at slow slip rates
Caiyuan Fan, Jinfeng Liu, Luuk B. Hunfeld, and Christopher J. Spiers
Solid Earth, 11, 1399–1422, https://doi.org/10.5194/se-11-1399-2020,https://doi.org/10.5194/se-11-1399-2020, 2020
Short summary

Cited articles

Angiboust, S. and Agard, P.: Initial water budget: The key to detaching large volumes of eclogitized oceanic crust along the subduction channel?, Lithos, 120, 453–474, https://doi.org/10.1016/j.lithos.2010.09.007, 2010. 
Anthony, J. L. and Marone, C.: Influence of particle characteristics on granular friction, J. Geophys. Res., 110, B08409, https://doi.org/10.1029/2004JB003399, 2005. 
Audet, P. and Kim, Y.: Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: A review, Tectonophysics, 670, 1–15, https://doi.org/10.1016/j.tecto.2016.01.005, 2016. 
Audet, P., Bostock, M. G., Christensen, N. I., and Peacock, S. M.: Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing, Nature, 457, 76–78, https://doi.org/10.1038/nature07650, 2009. 
Berman, H.: Fibrous Brucite from Quebec, Am. Mineral., 17, 313–316, 1932. 
Download
Short summary
Serpentinite, generated by the hydration of ultramafic rocks, is thought to be related to slow earthquakes at the subduction plate interface in the mantle wedge. We conducted friction experiments on brucite, one of the components of serpentinite, and found that wet brucite exhibits low and unstable friction under low effective normal stress conditions. This result suggests that wet brucite may be key for slow earthquakes at the subduction plate interface in a hydrated mantle wedge.