Barbosa, V. C. F. and Silva, J. B.: Generalized compact gravity inversion,
Geophysics, 59, 57–68, 1994.
a,
b,
c
Blakely, R. J.: Potential theory in gravity and magnetic applications, 1st edn.,
Cambridge University Press, ISBN 0-521-57547-8, 1996. a
Boulanger, O. and Chouteau, M.: Constraints in 3D gravity
inversion, Geophys. Prospect., 49, 265–280, 2001.
a,
b,
c
Camacho, A. G., Fernández, J., and Gottsmann, J.: A new gravity inversion
method for multiple subhorizontal discontinuity interfaces and shallow
basins, J. Geophys. Res.-Sol. Ea., 116, B02413,
https://doi.org/10.1029/2010JB008023, 2011.
a
Cella, F. and Fedi, M.: Inversion of potential field data using the structural
index as weighting function rate decay, Geophys. Prospect., 60,
313–336, 2012. a
Commer, M.: Three-dimensional gravity modelling and focusing inversion using
rectangular meshes, Geophys. Prospect., 59, 966–979, 2011.
a,
b
Ekinci, Y. L.: 2D focusing inversion of gravity data with the use
of parameter variation as a stopping criterion, Journal of the Balkan
Geophysical Society, 11, 1–9, 2008. a
Farquharson, C. G.: Constructing piecewise-constant models in multidimensional
minimum-structure inversions, Geophysics, 73, K1–K9,
https://doi.org/10.1190/1.2816650, 2008.
a,
b
Farquharson, C. G. and Oldenburg, D. W.: A comparison of automatic techniques
for estimating the regularization parameter in non-linear inverse problems,
Geophys. J. Int., 156, 411–425, 2004.
a,
b
Fei, Z., Chunhui, T., Tao, W., Zhaofa, Z., and Cai, L.: 3D focused
inversion of near-bottom magnetic data from autonomous underwater vehicle in
rough seas, Ocean Sci. J., 53, 405–412, 2018. a
Feng, X., Liu, S., Guo, R., Wang, P., and Zhang, J.: Gravity inversion of
blocky basement relief using
L0-norm constraint
with exponential density contrast variation, Pure Appl. Geophys.,
177, 3913–3927, 2020.
a,
b
Gebre, M. G. and Lewi, E.:
L0-norm gravity inversion with new depth weighting
function and bound constraints, Acta Geophys., 70, 1619–1634, 2022.
a,
b,
c,
d,
e
Ghalehnoee, M. H., Ansari, A., and Ghorbani, A.: Improving compact gravity
inversion based on new weighting functions, Geophys. J.
Int., 208, 546–560, 2017.
a,
b
Gholami, A. and Aghamiry, H. S.: Iteratively re-weighted and refined least
squares algorithm for robust inversion of geophysical data, Geophys.
Prospect., 65, 201–215, 2017. a
Green, W. R.: Inversion of gravity profiles by use of a
Backus-Gilbert approach, Geophysics, 40, 763–772,
1975.
a,
b,
c,
d,
e,
f
Guillen, A. and Menichetti, V.: Gravity and magnetic inversion with
minimization of a specific functional, Geophysics, 49, 1354–1360, 1984.
a,
b
Hinze, W. J., Von Frese, R. R., Von Frese, R., and Saad, A. H.: Gravity and
magnetic exploration: principles, practices, and applications, 1st edn., Cambridge
University Press, ISBN 978-0-521-87101-3, 2013. a
Last, B. and Kubik, K.: Compact gravity inversion, Geophysics, 48, 713–721,
1983.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l
Lelievre, P. G., Farquharson, C. G., and Bijani, R.: 3D potential field
inversion for wireframe surface geometry, in: 2015 SEG Annual Meeting,
OnePetro, New Orleans, Louisiana, 18 October 2015,
https://doi.org/10.1190/segam2015-5873054.1, 2015.
a
Levin, E. and Meltzer, A. Y.: Stopping criterion for iterative regularization
of large-scale ill-posed problems using the Picard parameter,
arXiv [preprint],
https://doi.org/10.48550/arXiv.1707.04200, 13 July 2017.
a
Lewi, E.: Modelling and inversion of high precision gravity data, PhD thesis,
Verlag der Bayerischen Akademie der Wissenschaften, Munchen, Germany, ISSN
0065-5325, ISBN 3769695119, 1997.
a,
b,
c,
d,
e,
f
Li, F., Xie, R., Song, W., Zhao, T., and Marfurt, K.: Optimal
Lq-norm regularization for sparse reflectivity
inversion, in: SEG Technical Program Expanded Abstracts 2017,
Society of Exploration Geophysicists, 677–681, 2017. a
Li, Y. and Oldenburg, D. W.: 3-D inversion of gravity data,
Geophysics, 63, 109–119, 1998.
a,
b,
c
Li, Y. and Oldenburg, D. W.: Fast inversion of large-scale magnetic data using
wavelet transforms and a logarithmic barrier method, Geophys. J.
Int., 152, 251–265, 2003. a
Li, Z., Yao, C., Zheng, Y., Wang, J., and Zhang, Y.: 3D magnetic
sparse inversion using an interior-point method, Geophysics, 83, J15–J32,
2018.
a,
b,
c
Meng, Z.: 3D inversion of full gravity gradient tensor data using
SL0 sparse recovery, J. Appl. Geophys., 127,
112–128, 2016. a
Meng, Z.-H., Xu, X.-C., and Huang, D.-N.: Three-dimensional gravity inversion
based on sparse recovery iteration using approximate zero norm, Appl.
Geophys., 15, 524–535, 2018.
a,
b,
c
Menke, W.: Geophysical data analysis: Discrete inverse theory, International
Geophysics Series, vol. 45, Academic Press, New York, ISBN 0-12-490921-3, 1989. a
Nagy, D.: The gravitational attraction of a right rectangular prism,
Geophysics, 31, 362–371, 1966. a
Paoletti, V., Ialongo, S., Florio, G., Fedi, M., and Cella, F.:
Self-constrained inversion of potential fields, Geophys. J.
Int., 195, 854–869, 2013. a
Pilkington, M.: 3D magnetic data-space inversion with sparseness
constraints, Geophysics, 74, L7–L15, 2008.
a,
b
Portniaguine, O. and Zhdanov, M. S.: Focusing geophysical inversion images,
Geophysics, 64, 874–887, 1999.
a,
b
Rao, K., Malan, P., and Perot, J. B.: A stopping criterion for the iterative
solution of partial differential equations, J. Comput. Phys.,
352, 265–284, 2018.
a,
b
Rezaie, M. and Moazam, S.: A new method for 3-D magnetic data
inversion with physical bound, Journal of Mining and Environment, 8,
501–510, 2017. a
Rezaie, M., Moradzadeh, A., Kalate, A. N., and Aghajani, H.: Fast
3D focusing inversion of gravity data using reweighted
regularized Lanczos bidiagonalization method, Pure Appl.
Geophys., 174, 359–374, 2017.
a,
b,
c,
d
Singh, A., Sharma, S. P., Akca, İ., and Baranwal, V. C.: Fuzzy constrained
Lp-norm inversion of direct current resistivity
data, Geophysics, 83, E11–E24, 2018. a
Sun, J. and Li, Y.: Adaptive
Lp inversion for
simultaneous recovery of both blocky and smooth features in a geophysical
model, Geophys. J. Int., 197, 882–899, 2014.
a,
b
Tikhonov, A. N., Goncharsky, A., Stepanov, V., and Yagola, A. G.: Numerical
methods for the solution of ill-posed problems, vol. 328, Springer Science &
Business Media,
https://doi.org/10.1007/978-94-015-8480-7, 2013.
a
Varfinezhad, R., Oskooi, B., and Fedi, M.: Joint inversion of DC resistivity
and magnetic data, constrained by cross gradients, compactness and depth
weighting, Pure Appl. Geophys., 177, 4325–4343, 2020. a
Varfinezhad, R., Fedi, M., and Milano, M.: The role of model weighting
functions in the gravity and DC resistivity inversion, IEEE T.
Geosci. Remote, 60, 1–15,
https://doi.org/10.1109/TGRS.2022.3149139, 2022.
a
Vatankhah, S., Ardestani, V. E., and Renaut, R. A.: Automatic estimation of the
regularization parameter in 2D focusing gravity inversion: application of the
method to the Safo manganese mine in the northwest of Iran,
J. Geophys. Eng., 11, 045001,
https://doi.org/10.1088/1742-2132/11/4/045001, 2014.
a
Vatankhah, S., Renaut, R. A., and Ardestani, V. E.: 3-D Projected
L1 inversion of gravity data using truncated
unbiased predictive risk estimator for regularization parameter estimation,
Geophys. J. Int., 210, 1872–1887, 2017.
a,
b,
c
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
and Van Der Walt, S. J.: SciPy 1.0: fundamental algorithms for scientific computing in Python,
Nat. Methods, 17, 261–272, 2020. a
Vogel, C. R.: Computational methods for inverse problems, Siam, 23, ISBN 0-89871-507-5, 2002. a
Wang, Y. and Ma, S.: Projected Barzilai-Borwein method
for large-scale nonnegative image restoration, Inverse Probl. Sci.
En., 15, 559–583, 2007. a
Whiteley, R. J.: Geophysical Case Study of the Woodlawn Orebody, New South
Wales, Australia: The First Publication of Methods and Techniques Tested Over
a Base Metal Orebody of the Type which Yields the Highest Rate of Return on
Mining Investment with Modest Capital Requirements, 1st edn., Pergamon, ISBN 0-08-023996-X,
TN271.C6, 1981.
a,
b
Zhao, C., Yu, P., and Zhang, L.: A new stabilizing functional to enhance the
sharp boundary in potential field regularized inversion, J. Appl.
Geophys., 135, 356–366, 2016. a
Zhdanov, M. S.: Geophysical inverse theory and regularization problems, 1st edn.,
vol. 36, Elsevier, ISBN 0 444 51089 3,
ISSN 0076-6895,
2002.
a,
b,
c
Zhdanov, M. S.: New advances in regularized inversion of gravity and
electromagnetic data, Geophys. Prospect., 57, 463–478, 2009.
a,
b,
c