Articles | Volume 14, issue 12
https://doi.org/10.5194/se-14-1221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-1221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oblique rifting triggered by slab tearing: the case of the Alboran rifted margin in the eastern Betics
Marine Larrey
Université Paul Sabatier, Géosciences Environnement Toulouse, GET UMR 5563, Toulouse, France
TOTAL S.A., Centre Scientifique & Technique Jean Féger, 64000 Pau, France
Frédéric Mouthereau
CORRESPONDING AUTHOR
Université Paul Sabatier, Géosciences Environnement Toulouse, GET UMR 5563, Toulouse, France
Damien Do Couto
Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, 75005 Paris, France
Emmanuel Masini
M&U sas, 38360 Sassenage, France
Anthony Jourdon
Institute of Geophysics, Ludwig-Maximilians-Universität München, Munich, Germany
Sylvain Calassou
TOTAL S.A., Centre Scientifique & Technique Jean Féger, 64000 Pau, France
Véronique Miegebielle
TOTAL S.A., Centre Scientifique & Technique Jean Féger, 64000 Pau, France
Related authors
No articles found.
Naïm Célini, Frédéric Mouthereau, Abdeltif Lahfid, Claude Gout, and Jean-Paul Callot
Solid Earth, 14, 1–16, https://doi.org/10.5194/se-14-1-2023, https://doi.org/10.5194/se-14-1-2023, 2023
Short summary
Short summary
We investigate the peak temperature of sedimentary rocks of the SW Alps (France), using Raman spectroscopy on carbonaceous material. This method provides an estimate of the peak temperature achieved by organic-rich rocks. To determine the timing and the tectonic context of the origin of these temperatures we use 1D thermal modelling. We find that the high temperatures up to 300 °C were achieved during precollisional extensional events, not during tectonic burial in the Western Alps.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen
Solid Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, https://doi.org/10.5194/se-12-1211-2021, 2021
Short summary
Short summary
The borders between oceans and continents, called margins, can be convergent, divergent, or horizontally sliding. The formation of oceans occurs in a divergent context. However, some divergent margin structures display an accommodation of horizontal sliding during the opening of oceans. To study and understand how the horizontal sliding part occurring during divergence influences the margin structure, we performed 3D high-resolution numerical models evolving during tens of millions of years.
Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, and Riccardo Asti
Solid Earth, 11, 1313–1332, https://doi.org/10.5194/se-11-1313-2020, https://doi.org/10.5194/se-11-1313-2020, 2020
Short summary
Short summary
We study the Iberian plate motion, from the late Permian to middle Cretaceous. During this time interval, two oceanic systems opened. Geological evidence shows that the Iberian domain preserved the propagation of these two rift systems well. We use geological evidence and pre-existing kinematic models to propose a coherent kinematic model of Iberia that considers both the Neotethyan and Atlantic evolutions. Our model shows that the Europe–Iberia plate boundary was made of two rift systems.
Arnaud Vacherat, Stéphane Bonnet, and Frédéric Mouthereau
Earth Surf. Dynam., 6, 369–387, https://doi.org/10.5194/esurf-6-369-2018, https://doi.org/10.5194/esurf-6-369-2018, 2018
Short summary
Short summary
The Ebro and Duero basins share a very common geological history. However, since the late Miocene, the Ebro basin has recorded important unfilling and excavation, whereas the Duero basin has only recorded limited incision and is considered to be still almost endorheic. Such a morphologic contrast led to important drainage reorganization and divide migration toward the Duero basin. Drainage area loss results in the lowering of the incision capacity of the Duero River, increasing this contrast.
Margaux Mouchené, Peter van der Beek, Sébastien Carretier, and Frédéric Mouthereau
Earth Surf. Dynam., 5, 125–143, https://doi.org/10.5194/esurf-5-125-2017, https://doi.org/10.5194/esurf-5-125-2017, 2017
Short summary
Short summary
The Lannemezan megafan (northern Pyrenean foreland) was abandoned during the Quaternary and subsequently incised. We use numerical models to explore possible scenarios for the evolution of this megafan. We show that autogenic processes are sufficient to explain its evolution. Climate may have played a second-order role; in contrast base-level change, tectonic activity and flexural isostatic rebound do not appear to have influenced its evolution.
C. Clerc, A. Lahfid, P. Monié, Y. Lagabrielle, C. Chopin, M. Poujol, P. Boulvais, J.-C. Ringenbach, E. Masini, and M. de St Blanquat
Solid Earth, 6, 643–668, https://doi.org/10.5194/se-6-643-2015, https://doi.org/10.5194/se-6-643-2015, 2015
Short summary
Short summary
The northern flank of the Pyrenean belt is an example of an inverted hot passive margin. We provide a data set of more than 100 peak-temperature estimates by RSCM and 18 new radiogenic ages from metamorphic and magmatic rocks from the North Pyrenean Zone. The results indicate a first-order control of the thermal gradient by the intensity of the Cretaceous crustal thinning. The highest grades of metamorphism are associated with the areas where mantle peridotites have been unroofed or exhumed.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Tectonics
Tectonic interactions during rift linkage: insights from analog and numerical experiments
Assessing the role of thermal disequilibrium in the evolution of the lithosphere–asthenosphere boundary: an idealized model of heat exchange during channelized melt transport
Numerical simulation of contemporary kinematics at the northeastern Tibetan Plateau and its implications for seismic hazard assessment
An efficient partial-differential-equation-based method to compute pressure boundary conditions in regional geodynamic models
The topographic signature of temperature-controlled rheological transitions in an accretionary prism
3D crustal stress state of Germany according to a data-calibrated geomechanical model
Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Mousumi Roy
Solid Earth, 13, 1415–1430, https://doi.org/10.5194/se-13-1415-2022, https://doi.org/10.5194/se-13-1415-2022, 2022
Short summary
Short summary
This study investigates one of the key processes that may lead to the destruction and destabilization of continental tectonic plates: the infiltration of buoyant, hot, molten rock (magma) into the base of the plate. Using simple calculations, I suggest that heating during melt–rock interaction may thermally perturb the tectonic plate, weakening it and potentially allowing it to be reshaped from beneath. Geochemical, petrologic, and geologic observations are used to guide model parameters.
Liming Li, Xianrui Li, Fanyan Yang, Lili Pan, and Jingxiong Tian
Solid Earth, 13, 1371–1391, https://doi.org/10.5194/se-13-1371-2022, https://doi.org/10.5194/se-13-1371-2022, 2022
Short summary
Short summary
We constructed a three-dimensional numerical geomechanics model to obtain the continuous slip rates of active faults and crustal velocities in the northeastern Tibetan Plateau. Based on the analysis of the fault kinematics in the study area, we evaluated the possibility of earthquakes occurring in the main faults in the area, and analyzed the crustal deformation mechanism of the northeastern Tibetan Plateau.
Anthony Jourdon and Dave A. May
Solid Earth, 13, 1107–1125, https://doi.org/10.5194/se-13-1107-2022, https://doi.org/10.5194/se-13-1107-2022, 2022
Short summary
Short summary
In this study we present a method to compute a reference pressure based on density structure in which we cast the problem in terms of a partial differential equation (PDE). We show in the context of 3D models of continental rifting that using the pressure as a boundary condition within the flow problem results in non-cylindrical velocity fields, producing strain localization in the lithosphere along large-scale strike-slip shear zones and allowing the formation and evolution of triple junctions.
Sepideh Pajang, Laetitia Le Pourhiet, and Nadaya Cubas
Solid Earth, 13, 535–551, https://doi.org/10.5194/se-13-535-2022, https://doi.org/10.5194/se-13-535-2022, 2022
Short summary
Short summary
The local topographic slope of an accretionary prism is often used to determine the effective friction on subduction megathrust. We investigate how the brittle–ductile and the smectite–illite transitions affect the topographic slope of an accretionary prism and its internal deformation to provide clues to determine the origin of observed low topographic slopes in subduction zones. We finally discuss their implications in terms of the forearc basin and forearc high genesis and nature.
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Anthony Jourdon, Charlie Kergaravat, Guillaume Duclaux, and Caroline Huguen
Solid Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, https://doi.org/10.5194/se-12-1211-2021, 2021
Short summary
Short summary
The borders between oceans and continents, called margins, can be convergent, divergent, or horizontally sliding. The formation of oceans occurs in a divergent context. However, some divergent margin structures display an accommodation of horizontal sliding during the opening of oceans. To study and understand how the horizontal sliding part occurring during divergence influences the margin structure, we performed 3D high-resolution numerical models evolving during tens of millions of years.
Cited articles
Angrand, P. and Mouthereau, F.: Evolution of the Alpine orogenic belts in the Western Mediterranean region as resolved by the kinematics of the Europe-Africa diffuse plate boundary, Bsgf – Earth Sci. Bull., 192, 42, https://doi.org/10.1051/bsgf/2021031, 2021.
Argus, D. F., Gordon, R. G., and DeMets, C.: Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12, https://doi.org/10.1029/2011gc003751, 2011.
Augier, R.: Evolution tardi-orogénique des Cordillères Betiques (Espagne): apports d'une étude integrée 1 Vol., 400 p., tel-00008744, 2004.
Augier, R, Agard, P., Monié, P., Jolivet, L., Robin, C., and Booth-Rea, G.: Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filabride complex, J. Metamorph. Geol., 23, 357–381, https://doi.org/10.1111/j.1525-1314.2005.00581.x, 2005.
Augier, R., Booth-Rea, G., Agard, P., Martínez-Martínez, J. M., Jolivet, L., and Azañón, J. M.: Exhumation constraints for the lower Nevado-Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach, Bsgf – Earth Sci. Bulletin, 176, 403–416, https://doi.org/10.2113/176.5.403, 2005a.
Augier, R., Jolivet, L., Do Couto, D., and Negro, F.: From ductile to brittle, late- to post-orogenic evolution of the Betic Cordillera: Structural insights from the northeastern Internal zones, Bsgf – Earth Sci. Bulletin, 184, 405–425, https://doi.org/10.2113/gssgfbull.184.4-5.405, 2013.
Augier, R., Jolivet, L., and Robin, C.: Late Orogenic doming in the eastern Betic Cordilleras: Final exhumation of the Nevado-Filabride complex and its relation to basin genesis, Tectonics, 24, TC4003, https://doi.org/10.1029/2004tc001687, 2005b.
Badji, R., Charvis, P., Bracene, R., Galve, A., Badsi, M., Ribodetti, A., Benaissa, Z., Klingelhoefer, F., Medaouri, M., and Beslier, M.-O.: Geophysical evidence for a transform margin offshore Western Algeria: a witness of a subduction-transform edge propagator?, Geophys. J. Int., 200, 1029–1045, https://doi.org/10.1093/gji/ggu454, 2014.
Barcos, L., Balanyá, J. C., Díaz-Azpiroz, M., Expósito, I., and Jiménez-Bonilla, A.: Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc, Tectonophysics, 663, 62–77, https://doi.org/10.1016/j.tecto.2015.05.002, 2015.
Baudouy, L., Haughton, P. D. W., and Walsh, J. J.: Evolution of a Fault-Controlled, Deep-Water Sub-Basin, Tabernas, SE Spain, Front. Earth Sci., 9, 767286, https://doi.org/10.3389/feart.2021.767286, 2021.
Bessière, E., Jolivet, L., Augier, R., Scaillet, S., Précigout, J., Azañon, J.-M., Crespo-Blanc, A., Masini, E., and Do Couto, D.: Lateral variations of pressure-temperature evolution in non-cylindrical orogens and 3-D subduction dynamics: the Betic-Rif Cordillera example, Bsgf – Earth Sci. Bull., 192, 8, https://doi.org/10.1051/bsgf/2021007, 2021.
Bezada, M. J., Humphreys, E. D., Toomey, D. R., Harnafi, M., Dávila, J. M., and Gallart, J.: Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging, Earth Planet. Sci. Let., 368, 51–60, https://doi.org/10.1016/j.epsl.2013.02.024, 2013.
Booth-Rea, G., Martínez-Martínez, J. M., and Giaconia, F.: Continental subduction, intracrustal shortening, and coeval upper-crustal extension: P-T evolution of subducted south Iberian paleomargin metapelites (Betics, SE Spain), Tectonophysics, 663, 122–139, https://doi.org/10.1016/j.tecto.2015.08.036, 2015.
Booth-Rea, G., Ranero, C. R., and Grevemeyer, I.: The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis, Sci. Rep., 8, 13015, https://doi.org/10.1038/s41598-018-31307-7, 2018.
Booth-Rea, G., Ranero, C. R., Martinez-Martinez, J. M., and Grevemeyer, I.: Crustal types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean, Geochem. Geophys. Geosyst., 8, Q10005, https://doi.org/10.1029/2007gc001639, 2007.
Booth-Rea, G., Azañón, J.-M., Azor, A., and Garcìa-Dueñas, V.: Influence of strike-slip fault segmentation on drainage evolution and topography. A case study: the Palomares Fault Zone (southeastern Betics, Spain), J. Struct. Geol., 26, 1615–1632, https://doi.org/10.1016/j.jsg.2004.01.007, 2004a.
Booth-Rea, G., Azañón, J. M., and Garcìa-Dueñas, V.: Extensional tectonics in the northeastern Betics (SE Spain): case study of extension in a multilayered upper crust with contrasting rheologies, J. Struct. Geol., 26, 2039–2058, https://doi.org/10.1016/j.jsg.2004.04.005, 2004b.
Borque, M. J., Alzola, A. S., Martin-Rojas, I., Alfaro, P., Molina, S., Cintas, S. R., Caderot, G. R., Lacy, C., Avilés, M., Olmo, A. H., Tortosa, F. J. G., Estévez, A., and Gil, A. J.: How Much Nubia-Eurasia Convergence Is Accommodated by the NE End of the Eastern Betic Shear Zone (SE Spain)? Constraints From GPS Velocities, Tectonics, 38, 271–1839, https://doi.org/10.1029/2018tc004970, 2019.
Braga, J. C., Martìn, J. M., and Quesada, C.: Patterns and average rates of late Neogene–Recent uplift of the Betic Cordillera, SE Spain, Geomorphology, 50, 3–26, https://doi.org/10.1016/s0169-555x(02)00205-2, 2003.
Carbonell, R., Sallares, V., Pous, J., Dañobeitia, J. J., Queralt, P., Ledo, J. J., and Dueñas, V. G.: A multidisciplinary geophysical study in the Betic chain (southern Iberia Peninsula), Tectonophysics, 288, 137–152, https://doi.org/10.1016/s0040-1951(97)00289-8, 1998.
Chertova, M. V., Spakman, W., Geenen, T., Berg, A. P., and Hinsbergen, D. J. J.: Underpinning tectonic reconstructions of the western Mediterranean region with dynamic slab evolution from 3-D numerical modeling, J. Geophys. Res.-Solid Earth, 119, 5876–5902, https://doi.org/10.1002/2014jb011150, 2014.
Clark, S. J. P. and Dempster, T. J.: The record of tectonic denudation and erosion in an emerging orogen: an apatite fission-track study of the Sierra Nevada, southern Spain, J. Geol. Soc., 166, 87–100, https://doi.org/10.1144/0016-76492008-041, 2009.
Comas, M. C., Dañobeitia, J. J., Alvarez-Maron, J., and Soto, J. I.: Crustal reflections and structure in the Alboran Basin. Preliminary results of the ESCI-Alboran survey, Rev. Soc. Geol. Esp., 8, 529–542, 1995.
Comas, M. C., García-Dueñas, V., and Jurado, M. J.: Neogene tectonic evolution of the Alboran Sea from MCS data, Geo.-Mar. Lett., 12, 157–164, https://doi.org/10.1007/bf02084927, 1992.
Comas, M. and MARSIBAL 1-06 Scientific Party: Preliminary results of Marsibal 1-06 cruise in the Alboran and western Algero-Balearic basins, Geophys. Res. Abst., 9, 10871, SRef-ID 1607-7962/gra/EGU2007-A-10871, 2007.
Conand, C., Mouthereau, F., Ganne, J., Lin, A. T., Lahfid, A., Daudet, M., Mesalles, L., Giletycz, S., and Bonzani, M.: Strain Partitioning and Exhumation in Oblique Taiwan Collision: Role of Rift Architecture and Plate Kinematics, Tectonics, 39, e2019TC005798, https://doi.org/10.1029/2019tc005798, 2020.
Crespo-Blanc, A., Comas, M., and Balanyá, J. C.: Clues for a Tortonian reconstruction of the Gibraltar Arc: Structural pattern, deformation diachronism and block rotations, Tectonophysics, 683, 308–324, https://doi.org/10.1016/j.tecto.2016.05.045, 2016.
d'Acremont, E., Lafosse, M., Rabaute, A., Teurquety, G., Couto, D. D., Ercilla, G., Juan, C., Lépinay, B. M., Lafuerza, S., Galindo-Zaldivar, J., Estrada, F., Vazquez, J. T., Leroy, S., Poort, J., Ammar, A., and Gorini, C.: Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean), Tectonics, 39, e2019TC00588, https://doi.org/10.1029/2019tc005885, 2020.
Dalziel, I. W. D., Lawver, L. A., Norton, I. O., and Gahagan, L. M.: The Scotia Arc: Genesis, Evolution, Global Significance, Annu. Rev. Earth Pl. Sc., 41, 767–793, https://doi.org/10.1146/annurev-earth-050212-124155, 2013.
Daudet, M., Mouthereau, F., Brichau, S., Crespo-Blanc, A., Gautheron, C., and Angrand, P.: Tectono-Stratigraphic and Thermal Evolution of the Western Betic Flysch: Implications for the Geodynamics of South Iberian Margin and Alboran Domain, Tectonics, 39, e2020TC006093, https://doi.org/10.1029/2020tc006093, 2020.
Delvaux, D. and Sperner, B.: New aspects of tectonic stress inversion with reference to the TENSOR program, Geol. Soc., Lond., Spéc. Publ., 212, 75–100, https://doi.org/10.1144/gsl.sp.2003.212.01.06, 2003.
Dewey, J. F.: Extensional collapse of orogens, Tectonics, 7, 1123–1139, https://doi.org/10.1029/tc007i006p01123, 1988.
Dewey, J.F., Helman, M.L., Knott, S.D., Turco, E., Hutton, D.H.W.: Kinematics of the western Mediterranean, Geol. Soc. London Spec. Pub., 45, 265–283, https://doi.org/10.1144/gsl.sp.1989.045.01.15, 1989.
Diaz, J., Gallart, J., and Carbonell, R.: Moho topography beneath the Iberian-Western Mediterranean region mapped from controlled-source and natural seismicity surveys, Tectonophysics, 692, 74–85, https://doi.org/10.1016/j.tecto.2016.08.023, 2016.
Do Couto, D., Gumiaux, C., Augier, R., Lebret, N., Folcher, N., Jouannic, G., Jolivet, L., Suc, J., and Gorini, C.: Tectonic inversion of an asymmetric graben: Insights from a combined field and gravity survey in the Sorbas basin, Tectonics, 33, 1360–1385, https://doi.org/10.1002/2013tc003458, 2014.
Duggen, S., Hoernle, K., Bogaard, P., van den Rüpke, L., and Morgan, J. P.: Deep roots of the Messinian salinity crisis, Nature, 422, 602–606, https://doi.org/10.1038/nature01553, 2003.
Duggen, S., Hoernle, K., Bogaard, P., and van den Harris, C.: Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis, Earth. Planet. Sc. Lett., 218, 91–108, https://doi.org/10.1016/s0012-821x(03)00632-0, 2004.
Duggen, S., Hoernle, K., Klügel, A., Geldmacher, J., Thirlwall, M., Hauff, F., Lowry, D., and Oates, N.: Geochemical zonation of the Miocene Alborán Basin volcanism (westernmost Mediterranean): geodynamic implications, Contrib. Mineral. Petr., 156, 577, https://doi.org/10.1007/s00410-008-0302-4, 2008.
Echeverria, A., Khazaradze, G., Asensio, E., Gárate, J., Dávila, J. M., and Suriñach, E.: Crustal deformation in eastern Betics from CuaTeNeo GPS network, Tectonophysics, 608, 600–612, https://doi.org/10.1016/j.tecto.2013.08.020, 2013.
Ercilla, G., Galindo-Zaldívar, J., Estrada, F., Valencia, J., Juan, C., Casas, D., Alonso, B., Comas, M. C., Tendero-Salmerón, V., Casalbore, D., Azpiroz-Zabala, M., Bárcenas, P., Ceramicola, S., Chiocci, F. L., Idárraga-García, J., López-González, N., Mata, P., Palomino, D., Rodríguez-García, J. A., Teixeira, M., Nespereira, J., Vázquez, J. T., and Yenes, M.: Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: The case of the Gulf of Vera (Western Mediterranean), Geomorphology, 402, 108126, https://doi.org/10.1016/j.geomorph.2022.108126, 2022.
Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvàth, F., Jolivet, L., Piromallo, C., Royden, L., Rossetti, F., and Serpelloni, E.: Mantle dynamics in the Mediterranean, Rev. Geophys., 52, 283–332, https://doi.org/10.1002/2013rg000444, 2014.
Fadil, A., Vernant, P., McClusky, S., Reilinger, R., Gomez, F., Sari, D. B., Mourabit, T., Feigl, K., and Barazangi, M.: Active tectonics of the western Mediterranean: Geodetic evidence for rollback of a delaminated subcontinental lithospheric slab beneath the Rif Mountains, Morocco, Geology, 34, 529–532, https://doi.org/10.1130/g22291.1, 2006.
Fortuin, A. R. and Krijgsman, W.: The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution, Sediment. Geol., 160, 213–242, https://doi.org/10.1016/s0037-0738(02)00377-9, 2003.
Fossen, H., Teyssier, C., and Whitney, D.L.: Transtensional folding, J. Struct. Geol., 56, 89–102, https://doi.org/10.1016/j.jsg.2013.09.004, 2013.
Fossen, H. and Tikoff, B.: Extended models of transpression and transtension, and application to tectonic settings, Geol. Soc. London Spec. Pub., 135, 15–33, https://doi.org/10.1144/gsl.sp.1998.135.01.02, 1998.
Galindo-Zaldivar, J., Gonzalez-Lodeiro, F., and Jabaloy, A.: Progressive extensional shear structures in a detachment contact in the Western Sierra Nevada (Betic Cordilleras, Spain), Geodin. Acta, 3, 73–85, https://doi.org/10.1080/09853111.1989.11105175, 2015.
Galindo-Zaldivar, J., Gil, A. J., Borque, M. J., González-Lodeiro, F., Jabaloy, A., Marin-Lechado, C., Ruano, P., and Sanz de Galdeano, C.: Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain), J. Geodyn., 36, 239–250, https://doi.org/10.1016/s0264-3707(03)00049-8, 2003.
Gallais, F., Graindorge, D., Gutscher, M.-A., and Klaeschen, D.: Propagation of a lithospheric tear fault (STEP) through the western boundary of the Calabrian accretionary wedge offshore eastern Sicily (Southern Italy), Tectonophysics, 602, 141–152, https://doi.org/10.1016/j.tecto.2012.12.026, 2013.
Garcia-Castellanos, D. and Villaseñor, A.: Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc, Nature, 480, 359–363, https://doi.org/10.1038/nature10651, 2012.
García-Dueñas, V., Banda, E., Torné, M., Córdoba, D., and ESCI-Béticas Working Group: A deep seismic reflection survey across the Betic Chain (southern Spain): first results, Tectonophysics, 232, 77–89, https://doi.org/10.1016/0040-1951(94)90077-9, 1994.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., Pérez-Peña, J. V., Pérez-Romero, J., and Villegas, I.: Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain), Geomorphology, 145, 90–10, https://doi.org/10.1016/j.geomorph.2011.12.043, 2012.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M., Azañón, J. M., Pérez-Romero, J., and Villegas, I.: Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain), J. Struct. Geol., 46, 76–91, https://doi.org/10.1016/j.jsg.2012.10.005, 2013.
Giaconia, F., Booth-Rea, G., Martinez-Martinez, J. M., Azañón, J. M., Storti, F., and Artoni, A.: Heterogeneous extension and the role of transfer faults in the development of the southeastern Betic basins (SE Spain), Tectonics, 33, 2467–2489, https://doi.org/10.1002/2014tc003681, 2014.
Giaconia, F., Booth-Rea, G., Ranero, C. R., Gràcia, E., Bartolome, R., Calahorrano, A., Iacono, C.L., Vendrell, M. G., Cameselle, A. L., Costa, S., Gómez de la Peña, L., Martínez-Loriente, S., Perea, H., and Viñas, M. Compressional tectonic inversion of the Algero-Balearic basin: Latemost Miocene to present oblique convergence at the Palomares margin (Western Mediterranean): Tectonic Inversion of Palomares Margin, Tectonics, 34, 1516–1543, https://doi.org/10.1002/2015tc003861, 2015.
Gomez-Pugnaire, M. T. and Fernandez-Soler, J. M.: High-pressure metamorphism in metabasites from the Betic Cordilleras (S.E. Spain) and its evolution during the Alpine orogeny, Contrib. Mineral. Petr., 95, 231–244, https://doi.org/10.1007/bf00381273, 1987.
Gómez de la Peña, L., Grevemeyer, I., Kopp, H., Díaz, J., Gallart, J., Booth-Rea, G., Gràcia, E., and Ranero, C. R.: The Lithospheric Structure of the Gibraltar Arc System From Wide-Angle Seismic Data, J. Geophys. Res.-Solid Earth, 125, e2020JB019854, https://doi.org/10.1029/2020jb019854, 2020a.
Gómez de la Peña, L., Ranero, C. R., and Gràcia, E.: The Crustal Domains of the Alboran Basin (Western Mediterranean), Tectonics, 37, 3352–3377, https://doi.org/10.1029/2017tc004946, 2018.
Gómez de la Peña, L., Ranero, C. R., Gràcia, E., and Booth-Rea, G.: The evolution of the westernmost Mediterranean basins, Earth Sci. Rev., 214, 103445, https://doi.org/10.1016/j.earscirev.2020.103445, 2020b.
Gonzalez-Castillo, L., Galindo-Zaldivar, J., Lacy, M. C. de, Borque, M. J., Martinez-Moreno, F. J., García-Armenteros, J. A., and Gil, A. J.: Active rollback in the Gibraltar Arc: Evidences from CGPS data in the western Betic Cordillera, Tectonophysics, 663, 310–321, https://doi.org/10.1016/j.tecto.2015.03.010, 2015.
Govers, R. and Wortel, M. J. R.: Lithosphere tearing at STEP faults: response to edges of subduction zones, Earth Planet. Sc. Lett., 236, 505–523, https://doi.org/10.1016/j.epsl.2005.03.022, 2005.
Haq, B., Gorini, C., Baur, J., Moneron, J., and Rubino, J.-L.: Deep Mediterranean's Messinian evaporite giant: How much salt?, Global Planet. Change, 184, 103052, https://doi.org/10.1016/j.gloplacha.2019.103052, 2020.
Haughton, P. D. W.: Evolving turbidite systems on a deforming basin floor, Tabernas, SE Spain, Sedimentology, 47, 497–518, https://doi.org/10.1046/j.1365-3091.2000.00293.x, 2000.
Haughton, P. D. W.: Deposits of deflected and ponded turbidity currents, Sorbas Basin, Southeast Spain, J. Sediment. Res., 64, 233–246, https://doi.org/10.1306/d4267d6b-2b26-11d7-8648000102c1865d, 1994.
Heit, B., de Mancilla, F. L., Yuan, X., Morales, J., Stich, D., Martín, R., and Molina-Aguilera, A.: Tearing of the mantle lithosphere along the intermediate-depth seismicity zone beneath the Gibraltar Arc: The onset of lithospheric delamination, Geophys. Res. Lett., 44, 4027–4035, https://doi.org/10.1002/2017gl073358, 2017.
Hodgson, D. M. and Haughton, P. D. W.: Impact of syndepositional faulting on gravity current behaviour and deep-water stratigraphy: Tabernas-Sorbas Basin, SE Spain, Geol. Soc. London Spec. Pub., 222, 135–158, https://doi.org/10.1144/gsl.sp.2004.222.01.08, 2004.
Jabaloy-Sánchez, A., Talavera, C., Rodríguez-Peces, M. J., Vázquez-Vílchez, M., and Evans, N. J.: U-Pb geochronology of detrital and igneous zircon grains from the Águilas Arc in the Internal Betics (SE Spain): Implications for Carboniferous-Permian paleogeography of Pangea, Gondwana Res., 90, 135–158, https://doi.org/10.1016/j.gr.2020.10.013, 2021.
Janowski, M., Loget, N., Gautheron, C., Barbarand, J., Bellahsen, N., Driessche, J. V. den Babault, J., and Meyer, B.: Neogene exhumation and relief evolution in the eastern Betics (SE Spain): Insights from the Sierra de Gador, Terra Nova, 29, 91–97, https://doi.org/10.1111/ter.12252, 2017.
Johnson, C., Harbury, N., and Hurford, A. J.: The role of extension in the Miocene denudation of the Nevado-Filábride Complex, Betic Cordillera (SE Spain), Tectonics, 16, 189–204, https://doi.org/10.1029/96tc03289, 1997.
Jolivet, L., Baudin, T., Calassou, S., Chevrot, S., Ford, M., Issautier, B., Lasseur, E., Masini, E., Manatschal, G., Mouthereau, F., Thinon, I., and Vidal, O: Geodynamic evolution of a wide plate boundary in the Western Mediterranean, near-field versus far-field interactions, Bsgf – Earth Sci. Bull., 192, 48, https://doi.org/10.1051/bsgf/2021043, 2021a.
Jolivet, L. and Faccenna, C.: Mediterranean extension and the Africa-Eurasia collision, Tectonics, 19, 1095–1106, https://doi.org/10.1029/2000tc900018, 2000.
Jolivet, L., Menant, A., Roche, V., Le Pourhiet, L., Maillard, A., Augier, R., Couto, D. D., Gorini, C., Thinon, I., and Canva, A.: Transfer zones in Mediterranean back-arc regions and tear faults, Bsgf – Earth Sci. Bulletin, 192, 11, https://doi.org/10.1051/bsgf/2021006, 2021b.
Jourdon, A., Kergaravat, C., Duclaux, G., and Huguen, C.: Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamics of transform margins, Sol. Earth, 12, 1211–1232, https://doi.org/10.5194/se-12-1211-2021, 2021.
Juan, C., Ercilla, G., Javier Hernández-Molina, F., Estrada, F., Alonso, B., Casas, D., García, M., Farran, M., Llave, E., Palomino, D., Vázquez, J.-T., Medialdea, T., Gorini, C., D'Acremont, E., Moumni, B. E., and Ammar, A.: Seismic evidence of current-controlled sedimentation in the Alboran Sea during the Pliocene and Quaternary: Palaeoceanographic implications, Mar. Geol., 378, 292–311, https://doi.org/10.1016/j.margeo.2016.01.006, 2016.
Jurado, M. J. and Comas, M. C.: Well log interpretation and seismic character of the cenozoic sequence in the northern Alboran Sea, Geo-Mar. Lett., 12, 129–136, https://doi.org/10.1007/BF02084923, 1992.
Kleverlaan, K.: Neogene history of the Tabernas basin (SE Spain) and its Tortonian submarine fan development, Geol. Mijnbouw, 421–432, 1989.
Kleverlaan, K.: Three distinctive feeder-lobe systems within one time slice of the Tortonian Tabernas fan, SE Spain, Sedimentology, 36, 25–45, https://doi.org/10.1111/j.1365-3091.1989.tb00818.x, 1989.
Kleverlaan, K.: Gordo megabed: a possible seismite in a tortonian submarine fan, tabernas basin, province almeria, southeast spain, Sediment Geol., 51, 165–180, https://doi.org/10.1016/0037-0738(87)90047-9, 1987.
Koulali, A., Ouazar, D., Tahayt, A., King, R.W., Vernant, P., Reilinger, R.E., McClusky, S., Mourabit, T., Davila, J. M., and Amraoui, N.: New GPS constraints on active deformation along the Africa–Iberia plate boundary, Earth Planet. Sc. Lett., 308, 211–217, https://doi.org/10.1016/j.epsl.2011.05.048, 2011.
De Larouzière, F. D., Bolze, J., Bordet, P., Hernandez, J., Montenat, C., and Ott d'Estevou, P.: The Betic segment of the lithospheric Trans-Alboran shear zone during the Late Miocene, Tectonophysics, 152, 41–52, https://doi.org/10.1016/0040-1951(88)90028-5, 1988.
Le Pourhiet, L., Huet, B., May, D. A., Labrousse, L., and Jolivet, L.: Kinematic interpretation of the 3D shapes of metamorphic core complexes: 3D shapes of MCCS, Geochem. Geophys. Geosystems, 13, Q09002, https://doi.org/10.1029/2012gc004271, 2012.
Lonergan, L. and White, N.: Origin of the Betic-Rif mountain belt, Tectonics, 16, 504–522, https://doi.org/10.1029/96tc03937, 1997.
Mancilla, F. de L., Booth-Rea, G., Stich, D., Pérez-Peña, J. V., Morales, J., Azañón, J. M., Martin, R., and Giaconia, F.: Slab rupture and delamination under the Betics and Rif constrained from receiver functions, Tectonophysics, 663, 225–237, https://doi.org/10.1016/j.tecto.2015.06.028, 2015a.
Mancilla, F. de L., Heit, B., Morales, J., Yuan, X., Stich, D., Molina-Aguilera, A., Azañon, J. M., and Martín, R. A.: STEP fault in Central Betics, associated with lateral lithospheric tearing at the northern edge of the Gibraltar arc subduction system, Earth Planet. Sc. Lett., 486, 32–40, https://doi.org/10.1016/j.epsl.2018.01.008, 2018.
Mancilla, F. de L., Stich, D., Morales, J., Martin, R., Diaz, J., Pazos, A., Córdoba, D., Pulgar, J. A., Ibarra, P., Harnafi, M., and Gonzalez-Lodeiro, F.: Crustal thickness and images of the lithospheric discontinuities in the Gibraltar arc and surrounding areas, Geophys. J. Int., 203, 1804–1820, https://doi.org/10.1093/gji/ggv390, 2015b.
Martin, J. M., Braga, J. C., and Rivas, P.: Coral successions in Upper Tortonian reefs in SE Spain, Lethaia, 22, 271–286, https://doi.org/10.1111/j.1502-3931.1989.tb01342.x, 1989.
Martín, J. M. and Braga, J. C.: Messinian events in the Sorbas Basin in southeastern Spain and their implications in the recent history of the Mediterranean, Sediment Geol., 90, 257–268, https://doi.org/10.1016/0037-0738(94)90042-6, 1994.
Martínez-García, P., Comas, M., Lonergan, L., and Watts, A. B.: From Extension to Shortening: Tectonic Inversion Distributed in Time and Space in the Alboran Sea, Western Mediterranean, Tectonics, 36, 2777–2805, https://doi.org/10.1002/2017tc004489, 2017.
Martínez-García, P., Soto, J. I., and Comas, M.: Recent structures in the Alboran Ridge and Yusuf fault zones based on swath bathymetry and sub-bottom profiling: evidence of active tectonics, Geo.-Mar. Lett., 31, 19–36, https://doi.org/10.1007/s00367-010-0212-0, 2011.
Martínez-Martínez, J. M. and Azañón, J. M.: Mode of extensional tectonics in the southeastern Betics (SE Spain): Implications for the tectonic evolution of the peri-Alborán orogenic system, Tectonics ,16, 205–225, https://doi.org/10.1029/97tc00157, 1997.
Martínez-Martínez, J. M., Booth-Rea, G., Azañón, J. M., and Torcal, F.: Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination, Tectonophysics, 422, 159–173, https://doi.org/10.1016/j.tecto.2006.06.001, 2006.
Martínez-Martínez, J. M., Soto, J. I., and Balanyá, J. C.: Orthogonal folding of extensional detachments: Structure and origin of the Sierra Nevada elongated dome (Betics, SE Spain), Tectonics, 21, 1012, https://doi.org/10.1029/2001tc001283, 2002.
Martinez-Martínez, J. M., Soto, J. I., and Balanyá, J. C.: Elongated domes in extended orogens: A mode of mountain uplift in the Betics (southeast Spain), in: Special Paper 380: Gneiss Domes in Orogeny, edited by: Whitney, D., Teyssier, C., and Siddoway, C. S., Geological Society of America, 243–265, https://doi.org/10.1130/0-8137-2380-9.243, 2004.
Martínez-Martos, M., Galindo-Zaldivar, J., Martínez-Moreno, F. J., Calvo-Rayo, R., and Sanz de Galdeano, C.: Superposition of tectonic structures leading elongated intramontane basin: the Alhabia basin (Internal Zones, Betic Cordillera), Int. J. Earth Sci., 106, 2461–2471, https://doi.org/10.1007/s00531-016-1442-9, 2017.
Meighan, H. E., ten Brink, U., and Pulliam, J.: Slab tears and intermediate-depth seismicity: slab tears and intermediate seismicity, Geophys. Res. Lett., 40, 4244–4248, https://doi.org/10.1002/grl.50830, 2013.
Meijninger, B. M. L. and Vissers, R. L. M.: Miocene extensional basin development in the Betic Cordillera, SE Spain revealed through analysis of the Alhama de Murcia and Crevillente Faults: Miocene extensional basin development in the Betic Cordillera, Basin Res., 18, 547–571, https://doi.org/10.1111/j.1365-2117.2006.00308.x, 2006.
Montenat, C. and d'Estevou, P. O.: Geodynamics of the Eastern Betic late Neogene Basins. A Review, Física de la Tierra, 57–75, ISSN 0214-4557, 1992.
Montenat, C. and d'Estevou, P. O.: The diversity of late Neogene sedimentary basins generated by wrench faulting in the eastern Betic Cordillera, SE Spain, J. Petrol. Geol., 22, 61–80, https://doi.org/10.1111/j.1747-5457.1999.tb00459.x, 1999.
Mora, M.: Tectonic and sedimentary analysis of the Huercal-Overa region, South East Spain, Betic Cordillera, PhD thesis, University of Oxford, 300 pp., https://openaccess.library.uitm.edu.my/Record/ndltd-bl.uk-oai-ethos.bl.uk-336120 (last access: 1 December 2023), 1993.
Moragues, L., Ruano, P., Azañón, J. M., Garrido, C. J., Hidas, K., and Booth-Rea, G.: Two Cenozoic Extensional Phases in Mallorca and Their Bearing on the Geodynamic Evolution of the Western Mediterranean, Tectonics, 40, e2021TC006868, https://doi.org/10.1029/2021tc006868, 2021.
Mouthereau, F., Angrand, P., Jourdon, A., Ternois, S., Fillon, C., Calassou, S., Chevrot, S., Ford, M., Jolivet, L., Manatschal, G., Masini, E., Thinon, I., Vidal, O., and Baudin, T.: Cenozoic mountain building and topographic evolution in Western Europe: impact of billions of years of lithosphere evolution and plate kinematics, Bsgf – Earth Sci. Bull., 192, 56, https://doi.org/10.1051/bsgf/2021040, 2021.
Mouthereau, F., Filleaudeau, P., Vacherat, A., Pik, R., Lacombe, O., Fellin, M.G., Castelltort, S., Christophoul, F., and Masini, E.: Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence, Tectonics, 33, 2283–2314, https://doi.org/10.1002/2014tc003663, 2014.
Neuharth, D., Brune, S., Glerum, A., Morley, C. K., Yuan, X., and Braun, J.: Flexural strike-slip basins, Geology, 50, 361–365, https://doi.org/10.1130/g49351.1, 2021.
Nocquet, J.-M.: Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results, Tectonophysics, 579, 220–242, https://doi.org/10.1016/j.tecto.2012.03.037, 2012.
Okay, A.I., Tüysüz, O., and Kaya, Ş : From transpression to transtension: changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region, Tectonophysics, 391, 259–282, https://doi.org/10.1016/j.tecto.2004.07.016, 2004.
Palano, M., González, P. J., and Fernández, J.: The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere, Earth Planet. Sci.e Lett., 430, 439–447, https://doi.org/10.1016/j.epsl.2015.08.040, 2015.
Palano, M., González P. J., and Fernández, J.: Strain and stress fields along the Gibraltar Orogenic Arc: Constraints on active geodynamics, Gondwana Res., 23, 1071–1088, https://doi.org/10.1016/j.gr.2012.05.021, 2013.
Palomeras, I., Thurner, S., Levander, A., Liu, K., Villaseñor, A., Carbonell, R., and Harnafi, M.: Finite-frequency Rayleigh wave tomography of the western Mediterranean: Mapping its lithospheric structure. Geochem. Geophys. Geosyst., 15, 140–160, https://doi.org/10.1002/2013gc004861, 2014.
Pedrera, A., Galindo-Zaldívar, J., Sanz de Galdeano, C., and López-Garrido, Á.C.: Fold and fault interactions during the development of an elongated narrow basin: The Almanzora Neogene-Quaternary Corridor (SE Betic Cordillera, Spain): fold and fault interactions, Tectonics, 26, TC6002, https://doi.org/10.1029/2007tc002138, 2007.
Pedrera, A., Galindo-Zaldívar, J., Ruíz-Constán, A., Duque, C., Marín-Lechado, C., and Serrano, I.: Recent large fold nucleation in the upper crust: Insight from gravity, magnetic, magnetotelluric and seismicity data (Sierra de Los Filabres–Sierra de Las Estancias, Internal Zones, Betic Cordillera), Tectonophysics, 463, 145–160, https://doi.org/10.1016/j.tecto.2008.09.037, 2009.
Pedrera, A., Galindo-Zaldívar, J., Tello, A., and Marín-Lechado, C.: Intramontane basin development related to contractional and extensional structure interaction at the termination of a major sinistral fault: The Huércal-Overa Basin (Eastern Betic Cordillera), J. Geodyn., 49, 271–286, https://doi.org/10.1016/j.jog.2010.01.008, 2010.
Pickering, K. T., Hodgson, D. M., Platzman, E., Clark, J. D., and Stephens, C.: A New Type of Bedform Produced by Backfilling Processes in a Submarine Channel, Late Miocene, Tabernas-Sorbas Basin, SE Spain, J. Sediment Res., 71, 692–704, https://doi.org/10.1306/2dc40960-0e47-11d7-8643000102c1865d, 2001.
Pindell, J. L. and Kennan, L.: Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update, Geol. Soc. London Special Publ. 328, 1–55, https://doi.org/10.1144/sp328.1, 2009.
Platt, J. P., Behr, W. M., Johanesen, K., and Williams, J. R.: The Betic-Rif Arc and Its Orogenic Hinterland: A Review, Annu. Rev. Earth Planet. Sci., 41, 313–357, https://doi.org/10.1146/annurev-earth-050212-123951, 2013.
Platt, J. P., Kelley, S. P., Carter, A., and Orozco, M.: Timing of tectonic events in the Alpujárride Complex, Betic Cordillera, southern Spain, J. Geol. Soc. London, 162, 451–462, https://doi.org/10.1144/0016-764903-039, 2005.
Platt, J. P., Whitehouse, M. J., Kelley, S. P., Carter, A., and Hollick, L.: Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension, Geology, 31, 251–254, https://doi.org/10.1130/0091-7613(2003)031<0251:seeata>2.0.co;2, 2003.
Platt, J. P., Anczkiewicz, R., Soto, J.-I., Kelley, S. P., and Thirlwall, M.: Early Miocene continental subduction and rapid exhumation in the western Mediterranean, Geology, 34, 981–984, https://doi.org/10.1130/g22801a.1, 2006.
Platt, J. P. and Vissers, R. L. M.: Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc, Geology, 17, 540–543, https://doi.org/10.1130/0091-7613(1989)017<0540:ecotcl>2.3.co;2, 1989.
Platt, J. P. and Whitehouse, M. J.: Early Miocene high-temperature metamorphism and rapid exhumation in the Betic Cordillera (Spain): evidence from U–Pb zircon ages, Earth Planet. Sci. Lett., 171, 591–605, https://doi.org/10.1016/S0012-821X(99)00176-4, 1999.
Platzman, E. S.: Paleomagnetic rotations and the kinematics of the Gibraltar arc, Geology, 20, 311–314, https://doi.org/10.1130/0091-7613(1992)020<0311:pratko>2.3.co;2, 1992.
Poisson, A., Guezou, J. C., Ozturk, A., Inan, S., Temiz, H., Gürsöy, H., Kavak, K. S., and ÖZDEN, S.: Tectonic Setting and Evolution of the Sivas Basin, Central Anatolia, Turkey, Int. Geol. Rev., 38, 838–853, https://doi.org/10.1080/00206819709465366, 1996.
Poisson, A. M., Morel, J. L., Andrieux, J., Coulon, M., Wernli, R., and Guernet, C.: The origin and development of neogene basins in the SE Betic Cordillera (SE Spain): a case study of the Tabernas-Sorbas and Huercal Overa basins, J. Petrol. Geol., 22, 97–114, https://doi.org/10.1111/j.1747-5457.1999.tb00461.x, 1999.
Pownall, J. M., Hall, R., and Watkinson, I. M.: Extreme extension across Seram and Ambon, eastern Indonesia: evidence for Banda slab rollback, Sol. Earth, 4, 277–314, https://doi.org/10.5194/se-4-277-2013, 2013.
Rat, J., Mouthereau, F., Brichau, S., Crémades, A., Bernet, M., Balvay, M., Ganne, J., Lahfid, A., and Gautheron, C.: Tectonothermal Evolution of the Cameros Basin: Implications for Tectonics of North Iberia, Tectonics, 38, 440–469, https://doi.org/10.1029/2018tc005294, 2019.
Rat, J., Mouthereau, F., Brichau, S., Vacherat, A., Fillon, C., and Gautheron, C.: Timing and distribution of exhumation in the Ebro basin reveal a plate-scale 10 Ma geodynamic event, Global Planet. Change, 18, 103973, https://doi.org/10.1016/j.gloplacha.2022.103973, 2022.
Reicherter, K. and Hübscher, C.: Evidence for a seafloor rupture of the Carboneras Fault Zone (southern Spain): Relation to the 1522 Almería earthquake?, J. Seismol., 11, 15–26, https://doi.org/10.1007/s10950-006-9024-0, 2006.
Reinhardt, L. J., Dempster, T. J., Shroder, J. F., and Persano, C.: Tectonic denudation and topographic development in the Spanish Sierra Nevada, Tectonics, 26, TC3001, https://doi.org/10.1029/2006tc001954, 2007.
Richards, J. P.: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, Geology, 37, 247–250, https://doi.org/10.1130/g25451a.1, 2009.
Riding, R., Braga, J. C., Martìn, J. M., and Sánchez-Almazo, I. M.: Mediterranean Messinian Salinity Crisis: constraints from a coeval marginal basin, Sorbas, southeastern Spain, Mar. Geol., 146, 1–20, https://doi.org/10.1016/s0025-3227(97)00136-9, 1998.
Rodríguez-Fernández, J., Azor, A., and Azañón, J. M.: The Betic Intramontane Basins (SE Spain): Stratigraphy, Subsidence, and Tectonic History, in: Tectonics of Sedimentary Basins: Recent Advances, edited by: Busby, C. and Azor, A., Wiley-Blackwell, 461–479, https://doi.org/10.1002/9781444347166.ch23, 2012.
Romagny, A., Jolivet, L., Menant, A., Bessière, E., Maillard, A., Canva, A., Gorini, C., and Augier, R.: Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 Ma, insights on driving mechanisms, Bsgf – Earth Sci. Bull., 191, 37, https://doi.org/10.1051/bsgf/2020040, 2020.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Relative motions of Africa, Iberia and Europe during Alpine orogeny, Tectonophysics, 359, 117–129, https://doi.org/10.1016/s0040-1951(02)00442-0, 2002.
Sanz de Galdeano, C. and Vera, J. A.: Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain, Basin Res., 4, 21–36, https://doi.org/10.1111/j.1365-2117.1992.tb00040.x, 1992.
Sanz de Galdeano, C., Rodriguez-Fernandez, J., and Lopez-Garrido, A. C.: A strike-slip fault corridor within the Alpujarra Mountains (Betic Cordilleras, Spain), Geol. Rundsch., 74, 641–655, https://doi.org/10.1007/bf01821218, 1985.
Scotney, P., Burgess, R., and, Rutter, E. H.: 40Ar/39Ar age of the Cabo de Gata volcanic series and displacements on the Carboneras fault zone, SE Spain, J. Geol. Soc. London, 157, 1003–1008, https://doi.org/10.1144/jgs.157.5.1003, 2000.
Sosson, M., Morrillon, A.-C., Bourgois, J., Féraud, G., Poupeau, G., and Saint-Marc, P.: Late exhumation stages of the Alpujarride Complex (western Betic Cordilleras, Spain): new thermochronological and structural data on Los Reales and Ojen nappes, Tectonophysics, 285, 253–273, https://doi.org/10.1016/s0040-1951(97)00274-6, 1998.
Spakman, W. and Wortel, R.: A Tomographic View on Western Mediterranean Geodynamics, in: The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle, edited by: Cavazza, W., Roure, F., Spakman, W., Stampfli, G. M., and Ziegler, P. A., Springer, Berlin, Heidelberg, 31–52, https://doi.org/10.1007/978-3-642-18919-7_2, 2004.
Spakman, W., Chertova, M. V., Berg, A., and van Hinsbergen, D. J. J.: Puzzling features of western Mediterranean tectonics explained by slab dragging, Nat. Geosci., 11, 211–216, https://doi.org/10.1038/s41561-018-0066-z, 2018.
Stich, D., Serpelloni, E., Mancilla, F. de L., and Morales, J.: Kinematics of the Iberia–Maghreb plate contact from seismic moment tensors and GPS observations, Tectonophysics, 426, 295–317, https://doi.org/10.1016/j.tecto.2006.08.004, 2006.
Tendero-Salmerón, V., Galindo-Zaldivar, J., d'Acremont, E., Catalán, M., Martos, Y.M., Ammar, A., and Ercilla, G.: New insights on the Alboran Sea basin extension and continental collision from magnetic anomalies related to magmatism (western Mediterranean), Mar. Geol., 443, 106696, https://doi.org/10.1016/j.margeo.2021.106696, 2022.
Teyssier, C. and Tikoff, B.: Strike-slip partitioned transpression of the San Andreas fault system: a lithospheric-scale approach, Geol. Soc. London Spec. Pub., 135, 143–158, https://doi.org/10.1144/gsl.sp.1998.135.01.10, 1998.
Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet, M., Daudet, M., Balansa, J., Tibari, B., Jamme, R. P., and Radal, J.: Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees, Tectonics, 35, 907–933, https://doi.org/10.1002/2015tc004016, 2016.
van Hinsbergen, D. J. J., Vissers, R. L. M., and Spakman, W.: Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation, Tectonics, 33, 393–419, https://doi.org/10.1002/2013tc003349, 2014.
Vázquez, M., Jabaloy, A., Barbero, L., and Stuart, F. M.: Deciphering tectonic- and erosion-driven exhumation of the Nevado-Filábride Complex (Betic Cordillera, Southern Spain) by low temperature thermochronology: Deciphering tectonic- and erosion-driven exhumation, Terra Nova, 23, 257–263, https://doi.org/10.1111/j.1365-3121.2011.01007.x, 2011.
Vergés, J. and Fernàndez, M.: Tethys–Atlantic interaction along the Iberia–Africa plate boundary: The Betic–Rif orogenic system, Tectonophysics, 579, 144–172, https://doi.org/10.1016/j.tecto.2012.08.032, 2012.
Vernant, P., Fadil, A., Mourabit, T., Ouazar, D., Koulali, A., Davila, J. M., Garate, J., McClusky, S., and Reilinger, R.: Geodetic constraints on active tectonics of the Western Mediterranean: Implications for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone, J. Geodyn., 49, 123–129, https://doi.org/10.1016/j.jog.2009.10.007, 2010.
Villaseñor, A., Chevrot, S., Harnafi, M., Gallart, J., Pazos, A., Serrano, I., Córdoba, D., Pulgar, J. A., and Ibarra, P.: Subduction and volcanism in the Iberia–North Africa collision zone from tomographic images of the upper mantle, Tectonophysics, 663, 238–249, https://doi.org/10.1016/j.tecto.2015.08.042, 2015.
Waldner, M., Bellahsen, N., Mouthereau, F., Bernet, M., Pik, R., Rosenberg, C. L., and Balvay, M.: Central Pyrenees Mountain Building: Constraints From New LT Thermochronological Data From the Axial Zone, Tectonics, 40, e2020TC006614, https://doi.org/10.1029/2020tc006614, 2021.
Weijermars, R., Roep, Th. B., van den Eeckhout, B., Postma, G., and Kleverlaan, K.: Uplift history of a Betic fold nappe inferred from Neogene-Quaternary sedimentation and tectonics (in the Sierra Alhamilla and Almeria, Sorbas and Tabernas Basins of the Betic Cordilleras, SE Spain), 397–411, Geologie en Mijnbouw, https://drive.google.com/file/d/0B7j8bPm9Cse0SS11NUlWRmtnZE0/view?pli=1&resourcekey=0-AC79UAWcljTEJw6P7Y-CoA (last access: 1 December 2023), 1985.
Zeck, H. P., Monié, P., Villa, I. M., and Hansen, B. T.: Very high rates of cooling and uplift in the Alpine belt of the Betic Cordilleras, southern Spain, Geology, 20, 79, https://doi.org/10.1130/0091-7613(1992)020<0079:vhroca>2.3.co;2, 1992.
Short summary
Extension leading to the formation of ocean–continental transition can be highly oblique to the main direction of crustal thinning. Here we explore the case of a continental margin exposed in the Betics that developed in a back-arc setting perpendicular to the direction of the retreating Gibraltar subduction. We show that transtension is the main mode of crustal deformation that led to the development of metamorphic domes and extensional intramontane basins.
Extension leading to the formation of ocean–continental transition can be highly oblique to the...