Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-197-2023
https://doi.org/10.5194/se-14-197-2023
Research article
 | 
01 Mar 2023
Research article |  | 01 Mar 2023

A corrected finite-difference scheme for the flexure equation with abrupt changes in coefficient

David Hindle and Olivier Besson

Related authors

The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate
David Hindle and Jonas Kley
Solid Earth, 12, 2425–2438, https://doi.org/10.5194/se-12-2425-2021,https://doi.org/10.5194/se-12-2425-2021, 2021
Short summary
The Ulakhan fault surface rupture and the seismicity of the Okhotsk–North America plate boundary
David Hindle, Boris Sedov, Susanne Lindauer, and Kevin Mackey
Solid Earth, 10, 561–580, https://doi.org/10.5194/se-10-561-2019,https://doi.org/10.5194/se-10-561-2019, 2019
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
The effect of temperature-dependent material properties on simple thermal models of subduction zones
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023,https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
The role of lithospheric thermal structure in the development of lateral heterogeneous of the continental collision system
Mengxue Liu, Dinghui Yang, and Rui Qi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1388,https://doi.org/10.5194/egusphere-2023-1388, 2023
Short summary
Plume–ridge interactions: ridgeward versus plate-drag plume flow
Fengping Pang, Jie Liao, Maxim D. Ballmer, and Lun Li
Solid Earth, 14, 353–368, https://doi.org/10.5194/se-14-353-2023,https://doi.org/10.5194/se-14-353-2023, 2023
Short summary
The role of edge-driven convection in the generation ofvolcanism – Part 2: Interaction with mantle plumes, applied to the Canary Islands
Antonio Manjón-Cabeza Córdoba and Maxim D. Ballmer
Solid Earth, 13, 1585–1605, https://doi.org/10.5194/se-13-1585-2022,https://doi.org/10.5194/se-13-1585-2022, 2022
Short summary
The effect of low-viscosity sediments on the dynamics and accretionary style of subduction margins
Adina E. Pusok, Dave R. Stegman, and Madeleine Kerr
Solid Earth, 13, 1455–1473, https://doi.org/10.5194/se-13-1455-2022,https://doi.org/10.5194/se-13-1455-2022, 2022
Short summary

Cited articles

Adams, R. A. and Fournier, J. J.: Sobolev spaces, Academic Press, ISBN 0-12-044143-8, 2003. a, b
Audet, P. and Mareschal, J.-C.: Variations in elastic thickness in the Canadian Shield, Earth Planet. Sci. Lett., 226, 17–31, https://doi.org/10.1016/j.epsl.2004.07.035, 2004. a
Axelsson, O.: Iterative Solution Methods, Cambridge University Press, https://doi.org/10.1017/CBO9780511624100, 1994. a
Barrell, J.: The strength of the Earth's crust, J. Geol., 22, 655–683, https://doi.org/10.1086/622145, 1914. a, b
Beaumont, C.: Foreland basins, Geophys. J. Int., 65, 291–329, https://doi.org/10.1111/j.1365-246X.1981.tb02715.x, 1981. a, b
Download
Short summary
By making a change to the way we solve the flexure equation that describes how the Earth's outer layer bends when it is subjected to loading by ice sheets or mountains, we develop new ways of using an old method from geodynamics. This lets us study the Earth's outer layer by measuring a parameter called the elastic thickness, effectively how stiff and springy the outer layer is when it gets loaded and also how the Earth's outer layer gets broken around its edges and in its interior.