Articles | Volume 14, issue 6
https://doi.org/10.5194/se-14-625-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-625-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of permeability evolution in igneous sills on hydrothermal flow and hydrocarbon transport in volcanic sedimentary basins
Ole Rabbel
CORRESPONDING AUTHOR
NJORD, Department of Geosciences, University of Oslo, Oslo, Norway
Jörg Hasenclever
Institute of Geophysics, Center for Earth System Research and
Sustainability, University of Hamburg, Hamburg, Germany
Christophe Y. Galerne
Faculty of Geosciences, University of Bremen, Bremen, Germany
Olivier Galland
NJORD, Department of Geosciences, University of Oslo, Oslo, Norway
Karen Mair
NJORD, Department of Geosciences, University of Oslo, Oslo, Norway
Octavio Palma
Facultad de Ciencias Naturales y Museo, Universidad de La Plata, La Plata,
Argentina
Related authors
No articles found.
Alban Cheviet, Martine Buatier, Flavien Choulet, Christophe Galerne, Armelle Riboulleau, Ivano Aiello, Kathleen M. Marsaglia, and Tobias W. Höfig
Eur. J. Mineral., 35, 987–1007, https://doi.org/10.5194/ejm-35-987-2023, https://doi.org/10.5194/ejm-35-987-2023, 2023
Short summary
Short summary
The present study is based on sample chemical and mineralogical analyses of oceanic sediment and rock that were collected in the Guaymas Basin during IODP Expedition 385. The contact aureoles are not only affected by maturation of organic matter and dehydration reaction, but mineralogical reactions concern all sediment components (silicates, sulfides, carbonates, organic matter) and can be the result of the combination of different stages of alteration during and after the sill emplacement.
Cited articles
Aarnes, I., Svensen, H., Connolly, J. A. D., and Podladchikov, Y. Y.: How contact
metamorphism can trigger global climate changes: Modeling gas generation
around igneous sills in sedimentary basins, Geochim. Cosmochim. Ac.,
74, 7179–7195, https://doi.org/10.1016/j.gca.2010.09.011,
2010.
Aarnes, I., Podladchikov, Y. Y., and Svensen, H.: Devolatilization-induced
pressure build-up: Implications for reaction front movement and breccia pipe
formation, Geofluids, 12, 265–279, 2012.
Angenheister, G., Cermak, V., Huckenholz, H., Rybach, L., Schmid, R.,
Schopper, J., Schuch, M., Stoeffler, D., and Wohlenberg, J.: Physical properties
of rocks, Subvol. A., IAEA, https://inis.iaea.org/search/search.aspx?orig_q=RN:14754475 (last access: 28 March 2023), 1982.
Beyssac, O., Goffé, B., Chopin, C., and Rouzaud, J. N.: Raman spectra of
carbonaceous material in metasediments: a new geothermometer, J.
Metamorph. Geol., 20, 859–871, https://doi.org/10.1046/j.1525-1314.2002.00408.x, 2002.
Buseck, P. R. and Beyssac, O.: From organic matter to graphite: Graphitization,
Elements, 10, 421–426, 2014.
Chevallier, L., Gibson, L. A., Nhleko, L. O., Woodford, A. C., Nomquphu, W., and
Kippie, I.: Hydrogeology of fractured-rock aquifers and related ecosystems
within the Qoqodala dolerite ring and sill complex, Great Kei catchment,
Eastern Cape, Water Res. Com., S. Afr., Report Nr. 1238/1/04, 127, 2004.
Cobbold, P. R., Diraison, M., and Rossello, E. A.: Bitumen veins and Eocene
transpression, Neuquén basin, Argentina, Tectonophysics, 314, 423–442,
1999.
Combina, A. and Nullo, F.: Tertiary volcanism and sedimentation in the southern
Cordillera Principal, Mendoza, Argentina, in: 6th
International Symposium on Andean Geodynamics, Barcelona, Spain, 174–177, https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09-03/010040200.pdf (last access: 28 March 2023), 2005.
Connolly, J. A. D.: The geodynamic equation of state: what and how, Geochem.
Geophys. Geosy., 10, Q10014, https://doi.org/10.1029/2009GC002540, 2009.
Delaney, P. T.: Rapid intrusion of magma into wet rock: Groundwater flow due
to pore pressure increases, J. Geophys. Res.-Sol. Ea., 87,
7739–7756, 1982.
Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M., Aguayo, E., Aubry,
M.-P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K., Lyle, M., Matoba,
Y., Molina-Cruz, A., Niemitz, J., Rueda, J., Saunders, A., Schrader, H.,
Simoneit, B., and Vacquier, V.: Intrusion of basaltic sills into highly porous
sediments, and resulting hydrothermal activity, Nature, 283, 441–445, https://doi.org/10.1038/283441a0, 1980.
Galerne, C. Y. and Hasenclever, J.: Distinct Degassing Pulses During Magma
Invasion in the Stratified Karoo Basin – New Insights From Hydrothermal
Fluid Flow Modeling, Geochem. Geophy. Geosy., 20, 2955–2984,
https://doi.org/10.1029/2018GC008120, 2019.
Hays, W. W., Nuttli, O. W., and Scharon, L.: Mapping gilsonite veins with the
electrical resistivity method, Geophysics, 32, 302–310, 1967.
Heimdal, T. H., Goddéris, Y., Jones, M. T., and Svensen, H. H.:
Assessing the importance of thermogenic degassing from the Karoo Large
Igneous Province (LIP) in driving Toarcian carbon cycle perturbations,
Nat. Commun., 12, 6221, https://doi.org/10.1038/s41467-021-26467-6, 2021.
Hetényi, G., Taisne, B., Garel, F.,
Médard, É., Bosshard, S., and Mattsson, H. B.: Scales of columnar
jointing in igneous rocks: field measurements and controlling factors,
B. Volcanol., 74, 457–482, https://doi.org/10.1007/s00445-011-0534-4, 2012.
Howell, J. A., Schwarz, E., Spalletti, L. A., and Veiga, G. D.: The Neuquén
Basin: an overview, edited by: Veiga, G. D., Spalletti, L. A., Howell, J. A., and Schwarz,
E., Geological Society, London, Special Publications, 252, 1, https://doi.org/10.1144/GSL.SP.2005.252.01.01,
2005.
Ingebritsen, S. E., Geiger, S., Hurwitz, S., and Driesner, T.: Numerical
simulation of magmatic hydrothermal systems, Rev. Geophys., 48, RG1002, https://doi.org/10.1029/2009RG000287,
2010.
Iyer, K., Rüpke, L., and Galerne, C. Y.: Modeling fluid flow in sedimentary
basins with sill intrusions: Implications for hydrothermal venting and
climate change, Geochem. Geophy. Geosy., 14, 5244–5262,
https://doi.org/10.1002/2013GC005012, 2013.
Iyer, K., Schmid, D. W., Planke, S., and Millett, J.: Modelling hydrothermal
venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and
paleoclimate, Earth Planet. Sc. Lett., 467, 30–42, 2017.
Jamtveit, B., Svensen, H., Podladchikov, Y. Y., and Planke, S.: Hydrothermal vent
complexes associated with sill intrusions in sedimentary basins. Physical
Geology of High-Level Magmatic Systems, Geological Society, London, Special
Publications, 234, 233–241, 2004.
Kay, S. M., Burns, W. M., Copeland, P., and Mancilla, O.: Upper Cretaceous to
Holocene magmatism and evidence for transient Miocene shallowing of the
Andean subduction zone under the northern Neuquén Basin, Geol.
S. Am. S., 407, 19–60, 2006.
Kietzmann, D. A., Palma, R. M., Riccardi, A. C., Martín-Chivelet, J., and
López-Gómez, J.: Sedimentology and sequence stratigraphy of a
Tithonian–Valanginian carbonate ramp (Vaca Muerta Formation): a
misunderstood exceptional source rock in the Southern Mendoza area of the
Neuquén Basin, Argentina, Sediment. Geol., 302, 64–86, 2014.
Kobchenko, M., Hafver, A., Jettestuen, E., Renard, F., Galland, O.,
Jamtveit, B., Meakin, P., and Dysthe, D. K.: Evolution of a fracture network in
an elastic medium with internal fluid generation and expulsion, Phys.
Rev. E, 90, 052801, https://doi.org/10.1103/PhysRevE.90.052801, 2014.
Kwiecinska, B., Suárez-Ruiz, I., Paluszkiewicz, C., and Rodriques, S.: Raman
spectroscopy of selected carbonaceous samples, Int. J. Coal
Geol., 84, 206–212, 2010.
Lenhardt, N., Galerne, C. Y., Le Roux, P., Götz, A. E., and Lötter,
F. J.: Geochemistry of dolerite intrusions of the southeastern Main Karoo
Basin, South Africa: Magma evolution, evidence for thermogenic gas
sequestration, and potential implications for the early Toarcian Oceanic
Anoxic Event, Gondwana Res., 113, 144–162, 2023.
Manceda, R. and Figueroa, D.: Inversion of the Mesozoic Neuquén rift in the
Malargüe fold and thrust belt, Mendoza, Argentina, in: Petroleum basins of South America: AAPG
Memoir, edited by: Tankard, A. J.,
S., S., Welsink, H. J., 62, 369–382, 1995.
Mark, N., Schofield, N., Pugliese, S., Watson, D., Holford, S., Muirhead,
D., Brown, R., and Healy, D.: Igneous intrusions in the Faroe Shetland basin and
their implications for hydrocarbon exploration; new insights from well and
seismic data, Mar. Petrol. Geol., 92, 733–753, 2018.
Marsh, B. D.: On bimodal differentiation by solidification front instability
in basaltic magmas, part 1: basic mechanics, Geochim. Cosmochim. Ac.,
66, 2211–2229, https://doi.org/10.1016/S0016-7037(02)00905-5,
2002.
Nermoen, A., Galland, O., Jettestuen, E., Fristad, K., Podladchikov, Y. Y.,
Svensen, H., and Malthe-Sørenssen, A.: Experimental and analytic modeling of
piercement structures, J. Geophys. Res., 115, B10202, https://doi.org/10.1029/2010jb007583,
2010.
Palma, J. O., Spacapan, J. B., Rabbel, O., Galland, O., Ruiz, R., and Leanza,
H. A.: The atypical igneous Petroleum System of the Cara Cura range, southern
Mendoza province, Argentina, in: The Physical Geology of Subvolcanic
Systems: Laccoliths, Sills and Dykes (LASI6), Malargüe, Argentina, 25–29 November 2019, 159–161, http://lasi6.org/wp-content/uploads/2019/11/LASI6-abstract-book-1.pdf (last access: 28 March 2023), 2019.
Panahi, H., Kobchenko, M., Meakin, P., Dysthe, D. K., and Renard, F.: In-situ
imaging of fracture development during maturation of an organic-rich shale:
Effects of heating rate and confinement, Mar. Petrol. Geol., 95,
314–327, 2018.
Parnell, J. and Carey, P. F.: Emplacement of bitumen (asphaltite) veins in
the Neuquén Basin, Argentina, AAPG Bull., 79, 1798–1816, 1995.
Petford, N.: Controls on primary porosity and permeability development in
igneous rocks, Hydrocarbons in Crystalline Rocks, 214, 93–107, https://doi.org/10.1144/Gsl.Sp.2003.214.01.06, 2003.
Potgieter-Vermaak, S., Maledi, N., Wagner, N., Van Heerden, J., Van Grieken,
R., and Potgieter, J.: Raman spectroscopy for the analysis of coal: a review,
J. Raman Spectrosc., 42, 123–129, 2011.
Rabbel, O.: Integrated Seismic and Rock Physics Modelling of Oil-Producing
Volcanic Sills in the Neuquén Basin, Argentina, Department of
Geosciences, MS thesis, University of Oslo, Oslo, 83 pp., 2017.
Rabbel, O.: Impact of permeability evolution in igneous sills on hydrothermal flow and hydrocarbon transport in volcanic sedimentary basins, OSF Home [data set], https://osf.io/28whp/?view_only=5ad1d2cc52844f1cb715516d076a5dd0, last access: 28 March 2023.
Rabbel, O., Galland, O., Mair, K., Lecomte, I., Senger, K., Spacapan, J. B., and
Manceda, R.: From field analogues to realistic seismic modelling: a case
study of an oil-producing andesitic sill complex in the Neuquén Basin,
Argentina. J. Geol. Soc., 175, 580–593, https://doi.org/10.1144/jgs2017-116, 2018.
Rabbel, O., Mair, K., Galland, O., Grühser, C., and Meier, T.: Numerical
modeling of fracture network evolution in organic-rich shale with rapid
internal fluid generation, J. Geophys. Res.-Sol. Ea., 125,
e2020JB019445, https://doi.org/10.1029/2020JB019445, 2020.
Rabbel, O., Palma, J. O., Mair, K., Galland, O., Spacapan, J. B., and Senger, K.:
Fracture networks in shale-hosted igneous intrusions: Processes,
distribution and implications for igneous petroleum systems, J. Struct.
Geol., 150, 104403, https://doi.org/10.1016/j.jsg.2021.104403, 2021.
Rantitsch, G., Lämmerer, W., Fisslthaler, E., Mitsche, S., and
Kaltenböck, H.: On the discrimination of semi-graphite and graphite by
Raman spectroscopy, Int. J. Coal Geol., 159, 48–56, 2016.
Rateau, R., Schofield, N., and Smith, M.: The potential role of igneous
intrusions on hydrocarbon migration, West of Shetland, Petrol. Geosci.,
19, 259–272, https://doi.org/10.1144/petgeo2012-035, 2013.
Rodriguez Monreal, F., Villar, H. J., Baudino, R., Delpino, D., and Zencich, S.:
Modeling an atypical petroleum system: A case study of hydrocarbon
generation, migration and accumulation related to igneous intrusions in the
Neuquen Basin, Argentina, Mar. Petrol. Geol., 26, 590–605, https://doi.org/10.1016/j.marpetgeo.2009.01.005, 2009.
Romero-Sarmiento, M. F., Ramiro-Ramirez, S., Berthe, G., Fleury, M., and Littke, R.: Geochemical and petrophysical source rock characterization of the Vaca Muerta Formation, Argentina: Implications for unconventional petroleum resource estimations, Int. J. Coal Geol., 184, 27–41, 2017.
Rumble, D.: Hydrothermal graphitic carbon, Elements, 10, 427–433, 2014.
Schiuma, M. F.: Intrusivos del valle del Río Grande, provincia de
Mendoza, su importancia como productores de hidrocarburos, PhD thesis, Universidad
Nacional de La Plata, unpublished, 1994.
Schofield, N., Holford, S., Edwards, A., Mark, N., and Pugliese, S.:
Overpressure transmission through interconnected igneous intrusions, AAPG
Bull., 104, 285–303, 2020.
Schön, J. H.: Physical properties of rocks: Fundamentals and principles
of petrophysics, 2nd edn., edited by: Cubitt, J., Elsevier, ISBN 978-0-08-100404-3, 2015.
Senger, K., Buckley, S. J., Chevallier, L., Fagereng, Å., Galland, O., Kurz, T. H., Ogata, K., Planke, S., and Tveranger, J.: Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins, J. Afr. Earth Sci., 102, 70–85, 2015.
Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C., Festøy, M.,
Galland, O., and Jerram, D. A.: Effects of igneous intrusions on the petroleum
system: a review, First Break, 35.6, 47–56, https://doi.org/10.3997/1365-2397.2017011, 2017.
Spacapan, J. B., Galland, O., Leanza, H. A., and Planke, S.: Igneous sill and
finger emplacement mechanism in shale-dominated formations: a field study at
Cuesta del Chihuido, Neuquén Basin, Argentina. J. Geol. Soc., 174,
422–433, https://doi.org/10.1144/jgs2016-056, 2017.
Spacapan, J. B., Palma, O., Galland, O., Manceda, R., Rocha, E., D'Odorico,
A., and Leanza, H. A.: Thermal impact of igneous sill complexes on organic-rich
formations and the generation of a petroleum system: case study in the
Neuquén Basin, Argentina, Mar. Pet. Geol., 91, 519–531, https://doi.org/10.1016/j.marpetgeo.2018.01.018, 2018.
Spacapan, J. B., D'Odorico, A., Palma, O., Galland, O.,
Senger, K., Ruiz, R., Manceda, R., and Leanza, H. A.: Low resistivity zones at
contacts of igneous intrusions emplaced in organic-rich formations and their
implications on fluid flow and petroleum systems: A case study in the
northern Neuquén Basin, Argentina, Basin Res., 32, 3–24, https://doi.org/10.1111/bre.12363,
2019.
Spacapan, J. B., D'Odorico, A., Palma, O., Galland, O., Rojas Vera, E., Ruiz,
R., Leanza, H. A., Medialdea, A., and Manceda, R.: Igneous petroleum systems in
the Malargüe fold and thrust belt, Río Grande Valley area,
Neuquén Basin, Argentina, Mar. Petrol. Geol. 111, 309–331,
https://doi.org/10.1016/j.marpetgeo.2019.08.038, 2020.
Stern, C. R., Huang, W.-L., and Wyllie, P. J.: Basalt-andesite-rhyolite-H2O:
Crystallization intervals with excess H2O and H2O-undersaturated liquidus
surfaces to 35 kolbras, with implications for magma genesis, Earth
Planet. Sc. Lett., 28, 189–196, 1975.
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust,
R., Rasmussen Eidem, T., and Rey, S.S.: Release of methane from a volcanic basin
as a mechanism for initial Eocene global warming, Nature, 429, 542–545, https://doi.org/10.1038/nature02566, 2004.
Svensen, H., Aarnes, I., Podladchikov, Y. Y., Jettestuen, E., Harstad, C. H., and
Planke, S.: Sandstone dikes in dolerite sills: Evidence for high-pressure
gradients and sediment mobilization during solidification of magmatic sheet
intrusions in sedimentary basins, Geosphere, 6, 211–224, 2010.
Sweeney, J. J. and Burnham, A. K.: Evaluation of a simple model of vitrinite
reflectance based on chemical kinetics, AAPG Bull., 74, 1559–1570, 1990.
Teske A., Lizarralde D., and Höfig T. W.: the Expedition 385 Scientists:
Expedition 385 Summary, Proceedings of the International Ocean Discovery
Program, 385, https://doi.org/10.14379/iodp.proc.385.101.2021, 2021.
Townsend, M. R.: Modeling Thermal Pressurization Around Shallow Dikes Using
Temperature-Dependent Hydraulic Properties: Implications for Deformation
Around Intrusions, J. Geophys. Res.-Sol. Ea., 123,
311–323, 2018.
Witte, J., Bonora, M., Carbone, C., and Oncken, O.: Fracture evolution in
oil-producing sills of the Rio Grande Valley, northern Neuquen Basin,
Argentina, AAPG Bull., 96, 1253–1277, https://doi.org/10.1306/10181110152, 2012.
Yagupsky, D. L., Cristallini, E. O., Fantín, J., Valcarce, G. Z., Bottesi,
G., and Varadé, R.: Oblique half-graben inversion of the Mesozoic
Neuquén Rift in the Malargüe Fold and Thrust Belt, Mendoza,
Argentina: New insights from analogue models, J. Struct. Geol.,
30, 839–853, https://doi.org/10.1016/j.jsg.2008.03.007, 2008.
Zanella, A., Cobbold, P. R., Ruffet, G., and Leanza, H. A.: Geological evidence
for fluid overpressure, hydraulic fracturing and strong heating during
maturation and migration of hydrocarbons in Mesozoic rocks of the northern
Neuquén Basin, Mendoza Province, Argentina, J. S. Amer. Earth. Sci., 62,
229–242, https://doi.org/10.1016/j.jsames.2015.06.006, 2015.
Short summary
This work investigates the interaction between magma in the subsurface and the rocks and fluids that surround it. The study investigates how fluids containing hydrocarbons like methane are moving in the rocks surrounding the magma. We show that the generation of fractures in the cooling magma has a significant impact on the flow paths of the fluid and that some of the hydrocabons may be converted to graphite and stored in the fractures within the intrusions.
This work investigates the interaction between magma in the subsurface and the rocks and fluids...