Articles | Volume 15, issue 9
https://doi.org/10.5194/se-15-1113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1113-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
How a volcanic arc influences back-arc extension: insight from 2D numerical models
School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
J. Huw Davies
School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, UK
Related authors
No articles found.
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
Solid Earth, 16, 297–314, https://doi.org/10.5194/se-16-297-2025, https://doi.org/10.5194/se-16-297-2025, 2025
Short summary
Short summary
Phase transitions can influence mantle convection, inhibiting or promoting vertical flow. We are motivated by two examples: the post-spinel reaction proceeding via akimotoite at cool temperatures and a curving post-garnet boundary. Some have suggested these could change mantle dynamics. We find this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state and the second due to the low magnitude of the boundary’s slope in pressure–temperature space and density change.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024, https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Cited articles
Balázs, A., Faccenna, C., Gerya, T., Ueda, K., and Funiciello, F.: The Dynamics of Forearc – Back-Arc Basin Subsidence: Numerical Models and Observations From Mediterranean Subduction Zones, Tectonics, 41, e2021TC007078, https://doi.org/10.1029/2021TC007078, 2022. a
Barckhausen, U., Engels, M., Franke, D., Ladage, S., and Pubellier, M.: Evolution of the South China Sea: Revised ages for breakup and seafloor spreading, Mar. Petrol. Geol., 58, 599–611, 2014. a
Capitanio, F. A., Morra, G., and Goes, S.: Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation, Earth Planet. Sc. Lett., 262, 284–297, 2007. a
Caratori Tontini, F., Bassett, D., de Ronde, C. E., Timm, C., and Wysoczanski, R.: Early evolution of a young back-arc basin in the Havre Trough, Nat. Geosci., 12, 856–862, 2019. a
Chen, Z., Schellart, W. P., and Duarte, J. C.: Quantifying the energy dissipation of overriding plate deformation in three-dimensional subduction models, J. Geophys. Res.-Solid, 120, 519–536, 2015. a
Čížková, H., van Hunen, J., van den Berg, A. P., and Vlaar, N. J.: The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity, Earth Planet. Sc. Lett., 199, 447–457, 2002. a
Clark, S. R., Stegman, D., and Müller, R. D.: Episodicity in back-arc tectonic regimes, Phys. Earth Planet. Inter., 171, 265–279, 2008. a
Corradino, M., Balazs, A., Faccenna, C., and Pepe, F.: Arc and forearc rifting in the Tyrrhenian subduction system, Sci. Rep., 12, 4728, https://doi.org/10.1038/s41598-022-08562-w, 2022. a, b, c
Crameri, F., Tackley, P. J., Meilick, I., Gerya, T. V., and Kaus, B. J. P.: A free plate surface and weak oceanic crust produce single-sided subduction on Earth, Geophys. Res. Lett., 39, L03306, https://doi.org/10.1029/2011GL050046, 2012. a
Cross, T. A. and Pilger Jr, R. H.: Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions, Geol. Soc. Am. Bull., 93, 545–562, 1982. a
Dasgupta, R., Mandal, N., and Lee, C.: Controls of subducting slab dip and age on the extensional versus compressional deformation in the overriding plate, Tectonophysics, 801, 228716, https://doi.org/10.1016/j.tecto.2020.228716, 2021. a, b, c
Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity: A fully unstructured anisotropic adaptive mesh computational modeling framework for geodynamics, Geochem. Geophy. Geosy., 12, Q06001, https://doi.org/10.1029/2011GC003551, 2011. a
Davies, D. R., Wilson, C. R., and Kramer, S. C.: Fluidity, An open-source computational fluid dynamics code with adaptive unstructured mesh capabilities, GitHub [code], http://fluidityproject.github.io/, last access: October 2022. a
Di Giuseppe, E., Van Hunen, J., Funiciello, F., Faccenna, C., and Giardini, D.: Slab stiffness control of trench motion: Insights from numerical models, Geochem. Geophy. Geosy., 9, Q02014, https://doi.org/10.1029/2007GC001776, 2008. a
Di Giuseppe, E., Faccenna, C., Funiciello, F., van Hunen, J., and Giardini, D.: On the relation between trench migration, seafloor age, and the strength of the subducting lithosphere, Lithosphere, 1, 121–128, 2009. a
Doo, W. B., Hsu, S. K., Yeh, Y. C., Tsai, C. H., and Chang, C. M.: Age and tectonic evolution of the northwest corner of the West Philippine Basin, Mar. Geophys. Rese., 36, 113–125, 2015. a
Duarte, J. C., Schellart, W. P., and Cruden, A. R.: Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology, Geophys. J. Int., 195, 47–66, 2013. a
Eagles, G.: The age and origin of the central Scotia Sea, Geophys. J. Int., 183, 587–600, 2010. a
Eagles, G., Livermore, R. A., Fairhead, J. D., and Morris, P.: Tectonic evolution of the west Scotia Sea, J. Geophys. Res.-Solid, 110, B02401, https://doi.org/10.1029/2004JB003154, 2005. a
Erdős, Z., Huismans, R. S., and Faccenna, C.: Wide Versus Narrow Back-Arc Rifting: Control of Subduction Velocity and Convective Back-Arc Thinning, Tectonics, 41, e2021TC007086, https://doi.org/10.1029/2021TC007086, 2022. a
Fowler, C. M. R.: The solid earth: an introduction to global geophysics, Cambridge University Press, https://doi.org/10.1017/CBO9780511819643, 1990. a
Fujioka, K., Okino, K., Kanamatsu, T., Ohara, Y., Ishizuka, O., Haraguchi, S., and Ishii, T.: Enigmatic extinct spreading center in the West Philippine backarc basin unveiled, Geology, 27, 1135–1138, 1999. a
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson, C. R.: Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophy. Geosy., 15, 1739–1765, 2014. a, b, c, d, e
Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle wedge: A view from the experimentalists, Geophysical monograph – American geophysical union, 138, 83–106, 2003. a
Holt, A. F., Becker, T., and Buffett, B.: Trench migration and overriding plate stress in dynamic subduction models, Geophys. J. Int., 201, 172–192, 2015. a
Jarrard, R. D.: Relations among subduction parameters, Rev. Geophys., 24, 217–284, 1986. a
Jodie, P.: Calculating arc-trench distances using the Smithsonian Global Volcanism Project database, https://www.earthbyte.org/calculating-arc-trench-distances-using-the-smithsonian-global, (last access: 27 April 2023), 2016. a
Jolivet, L. and Faccenna, C.: Mediterranean extension and the Africa-Eurasia collision, Tectonics, 19, 1095–1106, 2000. a
Jolivet, L., Tamaki, K., and Fournier, M.: Japan Sea, opening history and mechanism: A synthesis, J. Geophys. Res.-Solid, 99, 22237–22259, 1994. a
Kaneoka, I.: 40Ar-39Ar analysis of volcanic rocks recovered from the Japan Sea Floor: Constraints on the age of formation of the Japan Sea, Proceedings of the Ocean Drilling Program, Sci. Results, 127, 819–836, 1992. a
Karato, S. I.: Effects of pressure on plastic deformation of polycrystalline solids: some geological applications, MRS OPL – Online Proceedings Library, 499, 3, https://doi.org/10.1557/PROC-499-3, 1997. a
Karato, S. I. and Wu, P.: Rheology of the upper mantle: A synthesis, Science, 260, 771–778, 1993. a
Kimura, M.: Back-arc rifting in the Okinawa Trough, Mar. Petrol. Geol., 2, 222–240, 1985. a
Kramer, S. C., Wilson, C. R., and Davies, D. R.: An implicit free surface algorithm for geodynamical simulations, Phys. Earth Planet. Inter., 194, 25–37, 2012. a
Lallemand, S., Heuret, A., and Boutelier, D.: On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones, Geochem. Geophy. Geosy., 6, Q09006, https://doi.org/10.1029/2005GC000917, 2005. a
Luyendyk, B. P., MacDonald, K. C., and Bryan, W. B.: Rifting history of the Woodlark Basin in the southwest Pacific, Geol. Soc. Am. Bull., 84, 1125–1134, 1973. a
Madsen, J. A. and Lindley, I. D.: Large-scale structures on Gazelle Peninsula, New Britain: Implications for the evolution of the New Britain arc, Aust. J. Earth Sci., 41, 561–569, 1994. a
Magni, V., Faccenna, C., van Hunen, J., and Funiciello, F.: How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models, Geology, 42, 511–514, 2014. a
Manga, M., Hornbach, M. J., Le Friant, A., Ishizuka, O., Stroncik, N., Adachi, T., Aljahdali, M., Boudon, G., Breitkreuz, C., Fraass, A., Fujinawa, A., Hatfield, R., Jutzeler, M., Kataoka, K., Lafuerza, S., Maeno, F., Martinez-Colon, M., McCanta, M., Morgan, S., Palmer, M. R., Saito, T., Slagle, A., Stinton, A. J., Subramanyam, K. S. V., Tamura, Y., Talling, P. J., Villemant, B., Wall-Palmer, D., and Wang, F.: Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin, Geochem. Geophy. Geosy., 13, Q08007, https://doi.org/10.1029/2012GC004260, 2012. a
McKenzie, D. P., Roberts, J. M., and Weiss, N. O.: Convection in the Earth's mantle: towards a numerical simulation, J. Fluid Mech., 62, 465–538, 1974. a
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008. a
Rogers, G. C.: An assessment of the megathrust earthquake potential of the Cascadia subduction zone, Can. J. Earth Sci., 25, 844–852, 1988. a
Ruellan, E., Delteil, J., Wright, I., and Matsumoto, T.: From rifting to active spreading in the Lau Basin–Havre Trough backarc system (SW Pacific): Locking/unlocking induced by seamount chain subduction, Geochem. Geophy. Geosy., 4, 8909, https://doi.org/10.1029/2001GC000261, 2003. a
Schellart, W. P.: Quantifying the net slab pull force as a driving mechanism for plate tectonics, Geophys. Res. Lett., 31, 1–5, https://doi.org/10.1029/2004GL019528, 2004. a
Schliffke, N., van Hunen, J., Allen, M. B., Magni, V., and Gueydan, F.: Episodic back-arc spreading centre jumps controlled by transform fault to overriding plate strength ratio, Nat. Commun., 13, 582, https://doi.org/10.1038/s41467-022-28228-5, 2022. a
Schmeling, H., Babeyko, A., Enns, A., Faccenna, C., Funiciello, F., Gerya, T., Golabek, G., Grigull, S., Kaus, B., Morra, G., Schmalholz, S., and van Hunen, J.: A benchmark comparison of spontaneous subduction models – Towards a free surface, Phys. Earth Planet. Inter., 171, 198–223, https://doi.org/10.1016/j.pepi.2008.06.028, 2008. a
Sdrolias, M. and Müller, R. D.: Controls on back-arc basin formation, Geochem. Geophy. Geosy., 7, 69–86, 2006. a
Sibuet, J. C., Deffontaines, B., Hsu, S. K., Thareau, N., Le Formal, J. P., and Liu, C. S.: Okinawa trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res.-Solid, 103, 30245–30267, 1998. a
Tamaki, K.: Tectonic synthesis and implications of Japan Sea ODP drilling, edited by: Tamaki, K., Suyehiro, K., Allan, J. F., Ingle, J. C., and Pisciotto, K. A., Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Texas, https://doi.org/10.2973/odp.proc.sr.127128-2.240.1992, 1992. a
Tamaki, K.: Opening tectonics of the Japan Sea, in: Backarc basins: Tectonics and magmatism, Springer, 407–420, https://doi.org/10.1007/978-1-4615-1843-3_11, 1995. a
Tatsumi, Y., Maruyama, S., and Nohda, S.: Mechanism of backarc opening in the Japan Sea: role of asthenospheric injection, Tectonophysics, 181, 299–306, 1990. a
Weissel, J. K.: Evolution of the Lau Basin by the growth of small plates, Island Arcs, Deep-Sea Trench. Back-Arc Basins, 1, 429–436, 1977. a
Wolf, S. G. and Huismans, R. S.: Mountain building or Backarc extension in ocean-continent subduction systems: A function of backarc lithospheric strength and absolute plate velocities, J. Geophys. Res.-Solid, 124, 7461–7482, 2019. a
Yamazaki, T., Seama, N., Okino, K., Kitada, K., Joshima, M., Oda, H., and Naka, J.: Spreading process of the northern Mariana Trough: Rifting-spreading transition at 22° N, Geochem. Geophy. Geosy., 4, 1–18, https://doi.org/10.1029/2002GC000492, 2003. a
Yang, S., Li, Z.-H., Wan, B., Chen, L., and Kaus, B. J.: Subduction-Induced Back-Arc Extension Versus Far-Field Stretching: Contrasting Modes for Continental Marginal Break-Up, Geochem. Geophy. Geosy., 22, e2020GC009416, https://doi.org/10.1029/2020GC009416, 2021. a
Yang, T., Moresi, L., Gurnis, M., Liu, S., Sandiford, D., Williams, S., and Capitanio, F. A.: Contrasted East Asia and South America tectonics driven by deep mantle flow, Earth Planet. Sc. Lett., 517, 106–116, 2019. a
Zellmer, K. E. and Taylor, B.: A three-plate kinematic model for Lau Basin opening, Geochem. Geophy. Geosy., 2, 1020–1026, https://doi.org/10.1029/2000GC000106, 2001. a
Zhang, D.: How a volcanic arc influences back-arc extension: insight from 2D numerical models, https://zenodo.org/records/11143014, Zenodo [data set], last access: April 2024. a
Short summary
We numerically model the influence of an arc on back-arc extension. The arc is simulated by placing a hot region on the overriding plate. We investigate how plate ages and properties of the hot region affect back-arc extension and present regime diagrams illustrating the nature of back-arc extension for these models. We find that back-arc extension occurs not only in the hot region but also, surprisingly, away from it, and a hot region facilitates extension on the overriding plate.
We numerically model the influence of an arc on back-arc extension. The arc is simulated by...