Articles | Volume 15, issue 12
https://doi.org/10.5194/se-15-1419-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1419-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Increased metamorphic conditions in the lower crust during oceanic transform fault evolution
Institute of Geosciences, Christian Albrechts Universität zu Kiel, Kiel, Germany
now at: GEOMAR Helmholtz Institute for Ocean Research, Kiel, Germany
Myron F. H. Thomas
Shell International Exploration and Production B.V., Den Haag, the Netherlands
Christian Heine
Specialist Geosciences, Shell Global Solutions International B.V., Den Haag, the Netherlands
Jörg Ebbing
Institute of Geosciences, Christian Albrechts Universität zu Kiel, Kiel, Germany
Andrey Seregin
Specialist Geosciences, Shell Global Solutions International B.V., Den Haag, the Netherlands
Jimmy van Itterbeeck
Shell International Exploration and Production B.V., Den Haag, the Netherlands
Related authors
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Jonas Liebsch, Jörg Ebbing, and Kenichi Matsuoka
EGUsphere, https://doi.org/10.5194/egusphere-2025-1905, https://doi.org/10.5194/egusphere-2025-1905, 2025
Short summary
Short summary
The evolution of the Antarctic ice sheets depends, in addition to factors representing the warming climate, on the earth structure beneath the ice. What’s beneath the ice is largely inaccessible for direct sampling, but can be interpreted with the use of satellite or airborne measurements. We apply an unsupervised machine learning method to such data in East Antarctica to test whether this can ease interpretation and hence our understanding of what rocks are beneath the ice.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021, https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
Short summary
This study estimates the gravitational contribution from subcrustal density heterogeneities interpreted as subducting lithosphere beneath the Alps to the gravity field. We showed that those heterogeneities contribute up to 40 mGal of gravitational signal. Such density variations are often not accounted for in Alpine lithospheric models. We demonstrate that future studies should account for subcrustal density variations to provide a meaningful representation of the complex geodynamic Alpine area.
Cited articles
Adams, A.: Insights Into the Source of Magmatic Hot-Lines: Forty Years of Geophysical Studies of the Cameroon Volcanic Line, Front. Earth Sci., 10, 838993, https://doi.org/10.3389/feart.2022.838993, 2022.
Allen, P. A. and Allen, J. R.: Basin analysis: Principles and applications, 3. edn., Wiley-Blackwell, Chichester, ISBN 978-0-470-67377-5, 619 pp., 2013.
Anikiev, D., Götze, H.-J., Plonka, C., Scheck-Wenderoth, M., and Schmidt, S.: IGMAS+: Interactive Gravity and Magnetic Application System, GFZ Data Services [code], https://doi.org/10.5880/GFZ.4.5.igmas, 2023.
Antobreh, A. A., Faleide, J. I., Tsikalas, F., and Planke, S.: Rift–shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data, Mar. Petrol. Geol., 26, 345–368, https://doi.org/10.1016/j.marpetgeo.2008.04.005, 2009.
Barth, G. A.: Oceanic crust thickens approaching the Clipperton Fracture Zone, Mar. Geophys. Res., 16, 51–64, https://doi.org/10.1007/BF01812445, 1994.
Bécel, A., Shillington, D. J., Nedimović, M. R., Webb, S. C., and Kuehn, H.: Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data, Earth Planet. Sc. Lett., 424, 26–37, https://doi.org/10.1016/j.epsl.2015.05.016, 2015.
Behn, M. D., Boettcher, M. S., and Hirth, G.: Thermal structure of oceanic transform faults, Geology, 35, 307, https://doi.org/10.1130/G23112A.1, 2007.
Catalán, M., Negrete-Aranda, R., Martos, Y. M., Neumann, F., Santamaría, A., and Fuentes, K.: On the intriguing subject of the low amplitudes of magnetic anomalies at the Powell Basin, Front. Earth Sci., 11, 1–14, https://doi.org/10.3389/feart.2023.1199332, 2023.
Celli, N. L., Lebedev, S., Schaeffer, A. J., Ravenna, M., and Gaina, C.: The upper mantle beneath the South Atlantic Ocean, South America and Africa from waveform tomography with massive data sets, Geophys. J. Int., 221, 178–204, https://doi.org/10.1093/gji/ggz574, 2020.
Clark, D.: Magnetic petrophysics and magnetic petrology: Aids to geological interpretation of magnetic surveys, AGSO Journal of Australian Geology & Geophysics, 17, 83–104, 1997.
Clark, D. A. and Emerson, J. B.: Notes On Rock Magnetization Characteristics In Applied Geophysical Studies, Exploration Geophysics, 22, 547–555, https://doi.org/10.1071/EG991547, 1991.
Dentith, M. and Mudge, S. T.: Geophysics for the Mineral Exploration Geoscientist, Cambridge University Press, https://doi.org/10.1017/CBO9781139024358, 2018.
Dyment, J. and Arkani-Hamed, J.: Contribution of lithospheric remanent magnetization to satellite magnetic anomalies over the world's oceans, J. Geophys. Res., 103, 15423–15441, https://doi.org/10.1029/97JB03574, 1998.
Fichler, C. and Pastore, Z.: Petrology of the crystalline crust in the southwestern Barents Sea inferred from geophysical data, NJG, 102, 1–43, https://doi.org/10.17850/njg102-2-2, 2022.
Fox, P. J. and Opdyke, N. D.: Geology of the oceanic crust: Magnetic properties of oceanic rocks, J. Geophys. Res., 78, 5139–5154, https://doi.org/10.1029/JB078i023p05139, 1973.
Frisch, W., Meschede, M., and Blakey, R. C.: Plate Tectonics: Continental Drift and Mountain Building, 2nd edn., Springer Textbooks in Earth Sciences, Geography and Environment Ser, Springer International Publishing AG, Cham, https://doi.org/10.1007/978-3-030-88999-9, 247 pp., 2022.
Götze, H.-J. and Lahmeyer, B.: Application of three-dimensional interactive modeling in gravity and magnetics, GEOPHYSICS, 53, 1096–1108, https://doi.org/10.1190/1.1442546, 1988.
Granot, R., Dyment, J., and Gallet, Y.: Geomagnetic field variability during the Cretaceous Normal Superchron, Nat. Geosci., 5, 220–223, https://doi.org/10.1038/ngeo1404, 2012.
Gregg, P. M., Lin, J., Behn, M. D., and Montési, L. G. J.: Spreading rate dependence of gravity anomalies along oceanic transform faults, Nature, 448, 183–187, https://doi.org/10.1038/nature05962, 2007.
Grevemeyer, I., Rüpke, L. H., Morgan, J. P., Iyer, K., and Devey, C. W.: Extensional tectonics and two-stage crustal accretion at oceanic transform faults, Nature, 591, 402–407, https://doi.org/10.1038/s41586-021-03278-9, 2021.
Growe, K., Grevemeyer, I., Singh, S. C., Marjanović, M., Gregory, E. P. M., Papenberg, C., Vaddineni, V., La Gómez de Peña, L., and Wang, Z.: Seismic Structure of the St. Paul Fracture Zone and Late Cretaceous to Mid Eocene Oceanic Crust in the Equatorial Atlantic Ocean Near 18° W, J. Geophys. Res.-Sol. Ea., 126, 1–24, https://doi.org/10.1029/2021JB022456, 2021.
Guo, Z., Liu, S., Rüpke, L., Grevemeyer, I., Morgan, J. P., Lange, D., Ren, Y., and Tao, C.: Disparate crustal thicknesses beneath oceanic transform faults and adjacent fracture zones revealed by gravity anomalies, Geology, 51, 300–304, https://doi.org/10.1130/G50429.1, 2023.
Harlan, R. B.: Eotvos corrections for airborne gravimetry, J. Geophys. Res., 73, 4675–4679, https://doi.org/10.1029/JB073i014p04675, 1968.
Haas, P.: Sample code for the manuscript “Increased metamorphic conditions in the lower crust during oceanic transform fault evolution”, Zenodo [code], https://doi.org/10.5281/zenodo.10654795, 2024.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Hemant, K. and Maus, S.: Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 110, B12103, https://doi.org/10.1029/2005JB003837, 2005.
Honnorez, J.: Hydrothermal alteration vs. ocean-floor metamorphism. A comparison between two case histories: the TAG hydrothermal mound (Mid-Atlantic Ridge) vs. DSDP/ODP Hole 504B (Equatorial East Pacific), C. R. Geosci., 335, 781–824, https://doi.org/10.1016/j.crte.2003.08.009, 2003.
Keen, C. and Tramontini, C.: A Seismic Refraction Survey on the Mid-Atlantic Ridge, Geophys. J. Int., 20, 473–491, https://doi.org/10.1111/j.1365-246X.1970.tb06087.x, 1970.
LaBrecque, J. L. and Raymond, C. A.: Seafloor spreading anomalies in the Magsat field of the North Atlantic, J. Geophys. Res., 90, 2565–2575, https://doi.org/10.1029/JB090iB03p02565, 1985.
Lawrence, S. R., Beach, A., Jackson, O., and Jackson, A.: Deformation of oceanic crust in the eastern Gulf of Guinea: role in the evolution of the Cameroon Volcanic Line and influence on the petroleum endowment of the Douala–Rio Muni Basin, SP, 438, 7–26, https://doi.org/10.1144/SP438.7, 2017.
Lee, D.-C., Halliday, A. N., Fitton, J., and Poli, G.: Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin, Earth Planet. Sc. Lett., 123, 119–138, https://doi.org/10.1016/0012-821X(94)90262-3, 1994.
Li, X.: Magnetic reduction-to-the-pole at low latitudes: Observations and considerations, Leading Edge, 27, 990–1002, https://doi.org/10.1190/1.2967550, 2008.
Lin, J., Purdy, G. M., Schouten, H., Sempere, J.-C., and Zervas, C.: Evidence from gravity data for focusedmagmatic accretionalong the Mid-Atlantic Ridge, Nature, 344, 627–632, https://doi.org/10.1038/344627a0, 1990.
Lizarralde, D., Gaherty, J. B., Collins, J. A., Hirth, G., and Kim, S. D.: Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data, Nature, 432, 744–747, https://doi.org/10.1038/nature03140, 2004.
Lösing, M., Moorkamp, M., and Ebbing, J.: Joint inversion based on variation of information—a crustal model of Wilkes Land, East Antarctica, Geophys. J. Int., 232, 162–175, https://doi.org/10.1093/gji/ggac334, 2022.
Longman, I. M.: Formulas for computing the tidal accelerations due to the moon and the sun, J. Geophys. Res., 64, 2351–2355, https://doi.org/10.1029/JZ064i012p02351, 1959.
Marjanović, M., Singh, S. C., Gregory, E. P. M., Grevemeyer, I., Growe, K., Wang, Z., Vaddineni, V., Laurencin, M., Carton, H., La Gómez de Peña, L., and Filbrandt, C.: Seismic Crustal Structure and Morphotectonic Features Associated With the Chain Fracture Zone and Their Role in the Evolution of the Equatorial Atlantic Region, J. Geophys. Res.-Sol. Ea., 125, e2020JB020275, https://doi.org/10.1029/2020JB020275, 2020.
Matthews, K. J., Müller, R. D., Wessel, P., and Whittaker, J. M.: The tectonic fabric of the ocean basins, J. Geophys. Res., 116, B12109, https://doi.org/10.1029/2011JB008413, 2011.
Maystrenko, Y. P., Gernigon, L., Nasuti, A., and Olesen, O.: Deep structure of the Mid-Norwegian continental margin (the Vøring and Møre basins) according to 3-D density and magnetic modelling, Geophys. J. Int., 212, 1696–1721, https://doi.org/10.1093/gji/ggx491, 2018.
Mevel, C.: Occurrence of pumpellyite in hydrothermally altered basalts from the Vema fracture zone (mid-Atlantic ridge), Contrib. Mineral. Petr., 76, 386–393, https://doi.org/10.1007/BF00371480, 1981.
Mével, C.: Serpentinization of abyssal peridotites at mid-ocean ridges, C. R. Geosci., 335, 825–852, https://doi.org/10.1016/j.crte.2003.08.006, 2003.
Meyers, J. B., Rosendahl, B. R., Harrison, C. G., and Ding, Z.-D.: Deep-imaging seismic and gravity results from the offshore Cameroon Volcanic Line, and speculation of African hotlines, Tectonophysics, 284, 31–63, https://doi.org/10.1016/s0040-1951(97)00173-x, 1998.
Milelli, L., Fourel, L., and Jaupart, C.: A lithospheric instability origin for the Cameroon Volcanic Line, Earth Planet. Sc. Lett., 335–336, 80–87, https://doi.org/10.1016/j.epsl.2012.04.028, 2012.
Ogg, J. G.: Geomagnetic Polarity Time Scale, in: Geologic Time Scale 2020, edited by: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M., Elsevier, 159–192, https://doi.org/10.1016/B978-0-12-824360-2.00005-X, 159–192, 2020.
Olive, J.-A., Behn, M. D., Ito, G., Buck, W. R., Escartín, J., and Howell, S.: Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply, Science, 350, 310–313, https://doi.org/10.1126/science.aad0715, 2015.
Osorio-Granada, A. M., Jigena-Antelo, B., Vidal Pérez, J. M., Hernández-Pardo, O., León-Rincón, H., and Muñoz-Pérez, J. J.: Potential fields modeling for the Cayos Basin (Western Caribbean Plate): Implications in basin crustal structure, Mar. Geol., 449, 106819, https://doi.org/10.1016/j.margeo.2022.106819, 2022.
Parker, R. L.: The Rapid Calculation of Potential Anomalies, Geophys. J. Int., 31, 447–455, https://doi.org/10.1111/j.1365-246X.1973.tb06513.x, 1973.
Prince, R. A. and Forsyth, D. W.: Horizontal extent of anomalously thin crust near the Vema Fracture Zone from the three-dimensional analysis of gravity anomalies, J. Geophys. Res., 93, 8051–8063, https://doi.org/10.1029/JB093iB07p08051, 1988.
Reusch, A. M., Nyblade, A. A., Tibi, R., Wiens, D. A., Shore, P. J., Bekoa, A., Tabod, C. T., and Nnange, J. M.: Mantle transition zone thickness beneath Cameroon: evidence for an upper mantle origin for the Cameroon Volcanic Line, Geophys. J. Int., 187, 1146–1150, https://doi.org/10.1111/j.1365-246X.2011.05239.x, 2011.
Rouméjon, S. and Cannat, M.: Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation, Geochem. Geophy. Geosy., 15, 2354–2379, https://doi.org/10.1002/2013GC005148, 2014.
Rundquist, D. and Sobolev, P.: Seismicity of mid-oceanic ridges and its geodynamic implications: a review, Earth-Sci. Rev., 58, 143–161, https://doi.org/10.1016/S0012-8252(01)00086-1, 2002.
Sauter, D., Werner, P., Ceuleneer, G., Manatschal, G., Rospabé, M., Tugend, J., Gillard, M., Autin, J., and Ulrich, M.: Sub-axial deformation in oceanic lower crust: Insights from seismic reflection profiles in the Enderby Basin and comparison with the Oman ophiolite, Earth Planet. Sc. Lett., 554, 116698, https://doi.org/10.1016/j.epsl.2020.116698, 2021.
Schlindwein, V. and Schmid, F.: Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere, Nature, 535, 276–279, https://doi.org/10.1038/nature18277, 2016.
Seton, M., Müller, R. D., Zahirovic, S., Williams, S., Wright, N. M., Cannon, J., Whittaker, J. M., Matthews, K. J., and McGirr, R.: A Global Data Set of Present-Day Oceanic Crustal Age and Seafloor Spreading Parameters, Geochem. Geophy. Geosy., 21, 1–15, https://doi.org/10.1029/2020GC009214, 2020.
Somoza, L., Medialdea, T., González, F. J., Machancoses, S., Candón, J. A., Cid, C., Calado, A., Afonso, A., Pinto Ribeiro, L., Blasco, I., Albuquerque, M., Asensio-Ramos, M., Bettencourt, R., Ignacio, C. de, López-Pamo, E., Ramos, B., Rincón-Tomás, B., Santofimia, E., Souto, M., Tojeira, I., Viegas, C., and Madureira, P.: High-resolution multibeam bathymetry of the northern Mid-Atlantic Ridge at 45–46° N: the Moytirra hydrothermal field, J. Maps, 17, 184–196, https://doi.org/10.1080/17445647.2021.1898485, 2021.
Stewart, I. C.: A simple approximation for low-latitude magnetic reduction-to-the-pole, J. Appl. Geophys., 166, 57–67, https://doi.org/10.1016/j.jappgeo.2019.04.021, 2019.
Thomas, M. F. H., Heine, C., van Itterbeeck, J., Ostanin, I., Seregin, A., Spaak, M., Morales, T., and Essink, T. O.: A New Model for the Evolution of Oceanic Transform Faults Based on 3D Broadband Seismic Observations From São Tomé and Príncipe in the Eastern Gulf of Guinea, Geochem. Geophy. Geosy., 23, 1–24, https://doi.org/10.1029/2022GC010351, 2022.
Tucholke, B. E., Parnell-Turner, R., and Smith, D. K.: The Global Spectrum of Seafloor Morphology on Mid-Ocean Ridge Flanks Related to Magma Supply, J. Geophys. Res.-Sol. Ea., 128, 1–42, https://doi.org/10.1029/2023JB027367, 2023.
Vaddineni, V. A., Singh, S. C., Grevemeyer, I., Audhkhasi, P., and Papenberg, C.: Evolution of the Crustal and Upper Mantle Seismic Structure From 0–27 Ma in the Equatorial Atlantic Ocean at 2°43′ S, J. Geophys. Res.-Sol. Ea., 126, e2020JB021390, https://doi.org/10.1029/2020JB021390, 2021.
Varga, R. J., Horst, A. J., Gee, J. S., and Karson, J. A.: Direct evidence from anisotropy of magnetic susceptibility for lateral melt migration at superfast spreading centers, Geochem. Geophy. Geosy., 9, Q08008, https://doi.org/10.1029/2008GC002075, 2008.
Wessel, P., Matthews, K. J., Müller, R. D., Mazzoni, A., Whittaker, J. M., Myhill, R., and Chandler, M. T.: Semiautomatic fracture zone tracking, Geochem. Geophy. Geosy., 16, 2462–2472, https://doi.org/10.1002/2015GC005853, 2015.
Wilson, J. T.: A New Class of Faults and their Bearing on Continental Drift, Nature, 207, 343–347, https://doi.org/10.1038/207343a0, 1965.
Wilson, P. G., Turner, J. P., and Westbrook, G. K.: Structural architecture of the ocean–continent boundary at an oblique transform margin through deep-imaging seismic interpretation and gravity modelling: Equatorial Guinea, West Africa, Tectonophysics, 374, 19–40, https://doi.org/10.1016/s0040-1951(03)00326-3, 2003.
Winter, J. D.: An introduction to igneous and metamorphic petrology, Prentice Hall, Upper Saddle River, NJ, ISBN 13 978-0132403429, 697 pp., 2001.
Yoshimura, Y.: The Cretaceous Normal Superchron: A Mini-Review of Its Discovery, Short Reversal Events, Paleointensity, Paleosecular Variations, Paleoenvironment, Volcanism, and Mechanism, Front. Earth Sci., 10, 834024, https://doi.org/10.3389/feart.2022.834024, 2022.
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
Transform faults are conservative plate boundaries where no material is added or destroyed....