Articles | Volume 15, issue 12
https://doi.org/10.5194/se-15-1419-2024
https://doi.org/10.5194/se-15-1419-2024
Research article
 | 
04 Dec 2024
Research article |  | 04 Dec 2024

Increased metamorphic conditions in the lower crust during oceanic transform fault evolution

Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck

Related authors

Rift and plume: a discussion on active and passive rifting mechanisms in the Afro-Arabian rift based on synthesis of geophysical data
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024,https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Crustal structure of the Volgo–Uralian subcraton revealed by inverse and forward gravity modelling
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022,https://doi.org/10.5194/se-13-431-2022, 2022
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
The influence of viscous slab rheology on numerical models of subduction
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024,https://doi.org/10.5194/se-15-567-2024, 2024
Short summary
Statistical appraisal of geothermal heat flow observations in the Arctic
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024,https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Thrusts control the thermal maturity of accreted sediments
Utsav Mannu, David Fernández-Blanco, Ayumu Miyakawa, Taras Gerya, and Masataka Kinoshita
Solid Earth, 15, 1–21, https://doi.org/10.5194/se-15-1-2024,https://doi.org/10.5194/se-15-1-2024, 2024
Short summary

Cited articles

Adams, A.: Insights Into the Source of Magmatic Hot-Lines: Forty Years of Geophysical Studies of the Cameroon Volcanic Line, Front. Earth Sci., 10, 838993, https://doi.org/10.3389/feart.2022.838993, 2022. 
Allen, P. A. and Allen, J. R.: Basin analysis: Principles and applications, 3. edn., Wiley-Blackwell, Chichester, ISBN 978-0-470-67377-5, 619 pp., 2013. 
Anikiev, D., Götze, H.-J., Plonka, C., Scheck-Wenderoth, M., and Schmidt, S.: IGMAS+: Interactive Gravity and Magnetic Application System, GFZ Data Services [code], https://doi.org/10.5880/GFZ.4.5.igmas, 2023. 
Antobreh, A. A., Faleide, J. I., Tsikalas, F., and Planke, S.: Rift–shear architecture and tectonic development of the Ghana margin deduced from multichannel seismic reflection and potential field data, Mar. Petrol. Geol., 26, 345–368, https://doi.org/10.1016/j.marpetgeo.2008.04.005, 2009. 
Barth, G. A.: Oceanic crust thickens approaching the Clipperton Fracture Zone, Mar. Geophys. Res., 16, 51–64, https://doi.org/10.1007/BF01812445, 1994. 
Download
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.