Articles | Volume 15, issue 4
https://doi.org/10.5194/se-15-493-2024
https://doi.org/10.5194/se-15-493-2024
Research article
 | 
09 Apr 2024
Research article |  | 09 Apr 2024

Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions

Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis

Related authors

Biotite supports long-range diffusive transport in dissolution–precipitation creep in halite through small porosity fluctuations
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022,https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Experimental evidence that viscous shear zones generate periodic pore sheets
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021,https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Generating porosity during olivine carbonation via dissolution channels and expansion cracks
Tiange Xing, Wenlu Zhu, Florian Fusseis, and Harrison Lisabeth
Solid Earth, 9, 879–896, https://doi.org/10.5194/se-9-879-2018,https://doi.org/10.5194/se-9-879-2018, 2018
Short summary
Hierarchical creep cavity formation in an ultramylonite and implications for phase mixing
James Gilgannon, Florian Fusseis, Luca Menegon, Klaus Regenauer-Lieb, and Jim Buckman
Solid Earth, 8, 1193–1209, https://doi.org/10.5194/se-8-1193-2017,https://doi.org/10.5194/se-8-1193-2017, 2017
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Mineral and rock physics
Investigating rough single-fracture permeabilities with persistent homology
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024,https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Development of multi-field rock resistivity test system for THMC
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
Solid Earth, 14, 261–270, https://doi.org/10.5194/se-14-261-2023,https://doi.org/10.5194/se-14-261-2023, 2023
Short summary
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022,https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Failure mode transition in Opalinus Clay: a hydro-mechanical and microstructural perspective
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022,https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Thermal equation of state of the main minerals of eclogite: Constraining the density evolution of eclogite during the delamination process in Tibet
Zhilin Ye, Dawei Fan, Bo Li, Qizhe Tang, Jingui Xu, Dongzhou Zhang, and Wenge Zhou
Solid Earth, 13, 745–759, https://doi.org/10.5194/se-13-745-2022,https://doi.org/10.5194/se-13-745-2022, 2022
Short summary

Cited articles

Adams, J. E.: Quantitative computed tomography, Eur. J. Radiol., 71, 415–424, 2009. a
Allen, E., Lim, L. Y., Xiao, X., Liu, A., Toney, M. F., Cabana, J., and Nelson Weker, J.: Spatial Quantification of Microstructural Degradation during Fast Charge in Lithium-Ion Batteries through Operando X-ray Microtomography and Euclidean Distance Mapping, ACS Appl. Energy Mater., 5, 12798–12808, 2022. a, b
Andrew, M.: A quantified study of segmentation techniques on synthetic geological XRM and FIB-SEM images, Comput. Geosci., 22, 1503–1512, 2018. a, b
Badran, A., Marshall, D., Legault, Z., Makovetsky, R., Provencher, B., Piché, N., and Marsh, M.: Automated segmentation of computed tomography images of fiber-reinforced composites by deep learning, J. Mater. Sci., 55, 16273–16289, 2020. a, b
Beaudoin, N., Hamilton, A., Koehn, D., Shipton, Z. K., and Kelka, U.: Reaction-induced porosity fingering: replacement dynamic and porosity evolution in the KBr-KCl system, Geochim. Cosmochim. Ac., 232, 163–180, 2018. a
Download
Short summary
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral changes in rocks. Using deep learning, we accurately identify and quantify the evolution of mineral components during reactions. The method demonstrates high precision in quantifying a metamorphic reaction, enabling accurate calculation of mineral growth rates and porosity changes. This showcases artificial intelligence's potential to enhance our understanding of Earth science processes.