Articles | Volume 15, issue 4
https://doi.org/10.5194/se-15-493-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-493-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using internal standards in time-resolved X-ray micro-computed tomography to quantify grain-scale developments in solid-state mineral reactions
Roberto Emanuele Rizzo
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Florence, Via La Pira 4, 50121, Florence, Italy
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Damien Freitas
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Diamond Light Source, Harwell Campus, University of Manchester, Didcot OX11 0DE, UK
James Gilgannon
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Sohan Seth
Data Science Unit, School of Informatics, The University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK
Ian B. Butler
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Gina Elizabeth McGill
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Earth Sciences Institute of Orléans, University of Orleans, T1A Rue de la Férollerie – CS 20066, 45071 Orléans CEDEX 2, France
Florian Fusseis
School of Geosciences, The University of Edinburgh, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
Division of Earth Sciences and Geography, RWTH Aachen University, 52064 Aachen, Germany
Related authors
No articles found.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Tiange Xing, Wenlu Zhu, Florian Fusseis, and Harrison Lisabeth
Solid Earth, 9, 879–896, https://doi.org/10.5194/se-9-879-2018, https://doi.org/10.5194/se-9-879-2018, 2018
Short summary
Short summary
The olivine carbonation reaction is volume increasing and could prevent further reaction by clogging the fluid pathways. This contradicts the observed fully carbonated outcrops in nature, but the mechanism behind this self-sustainability is poorly understood. Our study reveals that the stretching-induced fracturing and the dissolution channelization are mechanisms that could contribute to the sustainability of carbonation reactions. This study provides new insights on the olivine carbonation.
James Gilgannon, Florian Fusseis, Luca Menegon, Klaus Regenauer-Lieb, and Jim Buckman
Solid Earth, 8, 1193–1209, https://doi.org/10.5194/se-8-1193-2017, https://doi.org/10.5194/se-8-1193-2017, 2017
Short summary
Short summary
We examine rocks from the middle crust to explore how fluids circulate and influence a rock’s response to larger-scale tectonic movements. A model is developed in which fluids deep in the Earth migrate to clusters of pores generated during those movements. We document how distinct pores form in a specific order in association with local changes in how quartz deforms. The porosity evolves out of the deformation, changing the rate the rock moved under tectonic forces.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Mineral and rock physics
Investigating rough single-fracture permeabilities with persistent homology
Development of multi-field rock resistivity test system for THMC
Raman spectroscopy in thrust-stacked carbonates: an investigation of spectral parameters with implications for temperature calculations in strained samples
Failure mode transition in Opalinus Clay: a hydro-mechanical and microstructural perspective
Thermal equation of state of the main minerals of eclogite: Constraining the density evolution of eclogite during the delamination process in Tibet
Creep of CarbFix basalt: influence of rock–fluid interaction
Micromechanisms leading to shear failure of Opalinus Clay in a triaxial test: a high-resolution BIB–SEM study
Elastic anisotropies of rocks in a subduction and exhumation setting
Mechanical and hydraulic properties of the excavation damaged zone (EDZ) in the Opalinus Clay of the Mont Terri rock laboratory, Switzerland
The competition between fracture nucleation, propagation, and coalescence in dry and water-saturated crystalline rock
Effect of normal stress on the frictional behavior of brucite: application to slow earthquakes at the subduction plate interface in the mantle wedge
Measuring hydraulic fracture apertures: a comparison of methods
Extracting microphysical fault friction parameters from laboratory and field injection experiments
The physics of fault friction: insights from experiments on simulated gouges at low shearing velocities
Frictional slip weakening and shear-enhanced crystallinity in simulated coal fault gouges at slow slip rates
The hydraulic efficiency of single fractures: correcting the cubic law parameterization for self-affine surface roughness and fracture closure
Magnetic properties of pseudotachylytes from western Jämtland, central Swedish Caledonides
The variation and visualisation of elastic anisotropy in rock-forming minerals
Deformation mechanisms in mafic amphibolites and granulites: record from the Semail metamorphic sole during subduction infancy
Uniaxial compression of calcite single crystals at room temperature: insights into twinning activation and development
Marco Fuchs, Anna Suzuki, Togo Hasumi, and Philipp Blum
Solid Earth, 15, 353–365, https://doi.org/10.5194/se-15-353-2024, https://doi.org/10.5194/se-15-353-2024, 2024
Short summary
Short summary
In this study, the permeability of a natural fracture in sandstone is estimated based only on its geometry. For this purpose, the topological method of persistent homology is applied to three geometric data sets with different resolutions for the first time. The results of all data sets compare well with conventional experimental and numerical methods. Since the analysis takes less time to the same amount of time, it seems to be a good alternative to conventional methods.
Jianwei Ren, Lei Song, Qirui Wang, Haipeng Li, Junqi Fan, Jianhua Yue, and Honglei Shen
Solid Earth, 14, 261–270, https://doi.org/10.5194/se-14-261-2023, https://doi.org/10.5194/se-14-261-2023, 2023
Short summary
Short summary
A THMC multi-field rock resistivity test system is developed, which has the functions of rock triaxial and resistivity testing under the conditions of high and low temperature, high pressure, and high salinity water seepage. A sealing method to prevent the formation of a water film on the side of the specimen is proposed based on the characteristics of the device. The device is suitable for studying the relationship between rock mechanical properties and resistivity in complex environments.
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022, https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Short summary
Raman spectroscopy of carbon-bearing rocks is often used to calculate peak temperatures and therefore burial history. However, strain is known to affect Raman spectral parameters. We investigate a series of deformed rocks that have been subjected to varying degrees of strain and find that there is a consistent change in some parameters in the most strained rocks, while other parameters are not affected by strain. We apply temperature calculations and find that strain affects them differently.
Lisa Winhausen, Kavan Khaledi, Mohammadreza Jalali, Janos L. Urai, and Florian Amann
Solid Earth, 13, 901–915, https://doi.org/10.5194/se-13-901-2022, https://doi.org/10.5194/se-13-901-2022, 2022
Short summary
Short summary
Triaxial compression tests at different effective stresses allow for analysing the deformation behaviour of Opalinus Clay, the potential host rock for nuclear waste in Switzerland. We conducted microstructural investigations of the deformed samples to relate the bulk hydro-mechanical behaviour to the processes on the microscale. Results show a transition from brittle- to more ductile-dominated deformation. We propose a non-linear failure envelop associated with the failure mode transition.
Zhilin Ye, Dawei Fan, Bo Li, Qizhe Tang, Jingui Xu, Dongzhou Zhang, and Wenge Zhou
Solid Earth, 13, 745–759, https://doi.org/10.5194/se-13-745-2022, https://doi.org/10.5194/se-13-745-2022, 2022
Short summary
Short summary
Eclogite is a major factor in the initiation of delamination during orogenic collision. According to the equations of state of main minerals of eclogite under high temperature and high pressure, the densities of eclogite along two types of delamination in Tibet are provided. The effects of eclogite on the delamination process are discussed in detail. A high abundance of garnet, a high Fe content, and a high degree of eclogitization are more conducive to instigating the delamination.
Tiange Xing, Hamed O. Ghaffari, Ulrich Mok, and Matej Pec
Solid Earth, 13, 137–160, https://doi.org/10.5194/se-13-137-2022, https://doi.org/10.5194/se-13-137-2022, 2022
Short summary
Short summary
Geological carbon sequestration using basalts provides a solution to mitigate the high CO2 concentration in the atmosphere. Due to the long timespan of the GCS, it is important to understand the long-term deformation of the reservoir rock. Here, we studied the creep of basalt with fluid presence. Our results show presence of fluid weakens the rock and promotes creep, while the composition only has a secondary effect and demonstrate that the governing creep mechanism is subcritical microcracking.
Lisa Winhausen, Jop Klaver, Joyce Schmatz, Guillaume Desbois, Janos L. Urai, Florian Amann, and Christophe Nussbaum
Solid Earth, 12, 2109–2126, https://doi.org/10.5194/se-12-2109-2021, https://doi.org/10.5194/se-12-2109-2021, 2021
Short summary
Short summary
An experimentally deformed sample of Opalinus Clay (OPA), which is being considered as host rock for nuclear waste in Switzerland, was studied by electron microscopy to image deformation microstructures. Deformation localised by forming micrometre-thick fractures. Deformation zones show dilatant micro-cracking, granular flow and bending grains, and pore collapse. Our model, with three different stages of damage accumulation, illustrates microstructural deformation in a compressed OPA sample.
Michael J. Schmidtke, Ruth Keppler, Jacek Kossak-Glowczewski, Nikolaus Froitzheim, and Michael Stipp
Solid Earth, 12, 1801–1828, https://doi.org/10.5194/se-12-1801-2021, https://doi.org/10.5194/se-12-1801-2021, 2021
Short summary
Short summary
Properties of deformed rocks are frequently anisotropic. One of these properties is the travel time of a seismic wave. In this study we measured the seismic anisotropy of different rocks, collected in the Alps. Our results show distinct differences between rocks of oceanic origin and those of continental origin.
Sina Hale, Xavier Ries, David Jaeggi, and Philipp Blum
Solid Earth, 12, 1581–1600, https://doi.org/10.5194/se-12-1581-2021, https://doi.org/10.5194/se-12-1581-2021, 2021
Short summary
Short summary
The construction of tunnels leads to substantial alterations of the surrounding rock, which can be critical concerning safety aspects. We use different mobile methods to assess the hydromechanical properties of an excavation damaged zone (EDZ) in a claystone. We show that long-term exposure and dehydration preserve a notable fracture permeability and significantly increase strength and stiffness. The methods are suitable for on-site monitoring without any further disturbance of the rock.
Jessica A. McBeck, Wenlu Zhu, and François Renard
Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021, https://doi.org/10.5194/se-12-375-2021, 2021
Short summary
Short summary
The competing modes of fault network development, including nucleation, propagation, and coalescence, influence the localization and connectivity of fracture networks and are thus critical influences on permeability. We distinguish between these modes of fracture development using in situ X-ray tomography triaxial compression experiments on crystalline rocks. The results underscore the importance of confining stress (burial depth) and fluids on fault network development.
Hanaya Okuda, Ikuo Katayama, Hiroshi Sakuma, and Kenji Kawai
Solid Earth, 12, 171–186, https://doi.org/10.5194/se-12-171-2021, https://doi.org/10.5194/se-12-171-2021, 2021
Short summary
Short summary
Serpentinite, generated by the hydration of ultramafic rocks, is thought to be related to slow earthquakes at the subduction plate interface in the mantle wedge. We conducted friction experiments on brucite, one of the components of serpentinite, and found that wet brucite exhibits low and unstable friction under low effective normal stress conditions. This result suggests that wet brucite may be key for slow earthquakes at the subduction plate interface in a hydrated mantle wedge.
Chaojie Cheng, Sina Hale, Harald Milsch, and Philipp Blum
Solid Earth, 11, 2411–2423, https://doi.org/10.5194/se-11-2411-2020, https://doi.org/10.5194/se-11-2411-2020, 2020
Short summary
Short summary
Fluids (like water or gases) within the Earth's crust often flow and interact with rock through fractures. The efficiency with which these fluids may flow through this void space is controlled by the width of the fracture(s). In this study, three different physical methods to measure fracture width were applied and compared and their predictive accuracy was evaluated. As a result, the mobile methods tested may well be applied in the field if a number of limitations and requirements are observed.
Martijn P. A. van den Ende, Marco M. Scuderi, Frédéric Cappa, and Jean-Paul Ampuero
Solid Earth, 11, 2245–2256, https://doi.org/10.5194/se-11-2245-2020, https://doi.org/10.5194/se-11-2245-2020, 2020
Short summary
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Caiyuan Fan, Jinfeng Liu, Luuk B. Hunfeld, and Christopher J. Spiers
Solid Earth, 11, 1399–1422, https://doi.org/10.5194/se-11-1399-2020, https://doi.org/10.5194/se-11-1399-2020, 2020
Short summary
Short summary
Coal is an important source rock for natural gas recovery, and its frictional properties play a role in induced seismicity. We performed experiments to investigate the frictional properties of bituminous coal, and our results show that the frictional strength of coal became significantly weakened with slip displacement, from a peak value of 0.5 to a steady-state value of 0.3. This may be caused by the development of shear bands with internal shear-enhanced molecular structure.
Maximilian O. Kottwitz, Anton A. Popov, Tobias S. Baumann, and Boris J. P. Kaus
Solid Earth, 11, 947–957, https://doi.org/10.5194/se-11-947-2020, https://doi.org/10.5194/se-11-947-2020, 2020
Short summary
Short summary
In this study, we conducted 3-D numerical simulations of fluid flow in synthetically generated fractures that statistically reflect geometries of naturally occurring fractures. We introduced a non-dimensional characterization scheme to relate fracture permeabilities estimated from the numerical simulations to their geometries in a unique manner. By that, we refined the scaling law for fracture permeability, which can be easily integrated into discrete-fracture-network (DFN) modeling approaches.
Bjarne S. G. Almqvist, Hagen Bender, Amanda Bergman, and Uwe Ring
Solid Earth, 11, 807–828, https://doi.org/10.5194/se-11-807-2020, https://doi.org/10.5194/se-11-807-2020, 2020
Short summary
Short summary
Rocks in fault zones can melt during earthquakes. The geometry and magnetic properties of such earthquake-melted rocks from Jämtland, central Sweden, show that they formed during Caledonian mountain building in the Palaeozoic. The small sample size (~0.2 cm3) used in this study is unconventional in studies of magnetic anisotropy and introduces challenges for interpretations. Nevertheless, the magnetic properties help shed light on the earthquake event and subsequent alteration of the rock.
David Healy, Nicholas Erik Timms, and Mark Alan Pearce
Solid Earth, 11, 259–286, https://doi.org/10.5194/se-11-259-2020, https://doi.org/10.5194/se-11-259-2020, 2020
Short summary
Short summary
Rock-forming minerals behave elastically, a property that controls their ability to support stress and strain, controls the transmission of seismic waves, and influences subsequent permanent deformation. Minerals are intrinsically anisotropic in their elastic properties; that is, they have directional variations that are related to the crystal lattice. We explore this directionality and present new ways of visualising it. We hope this will enable further advances in understanding deformation.
Mathieu Soret, Philippe Agard, Benoît Ildefonse, Benoît Dubacq, Cécile Prigent, and Claudio Rosenberg
Solid Earth, 10, 1733–1755, https://doi.org/10.5194/se-10-1733-2019, https://doi.org/10.5194/se-10-1733-2019, 2019
Short summary
Short summary
This study sheds light on the mineral-scale mechanisms controlling the progressive deformation of sheared amphibolites from the Oman metamorphic sole during subduction initiation and unravels how strain is localized and accommodated in hydrated mafic rocks at high temperature conditions. Our results indicate how metamorphic reactions and pore-fluid pressures driven by changes in pressure–temperature conditions and/or water activity control the rheology of mafic rocks.
Camille Parlangeau, Alexandre Dimanov, Olivier Lacombe, Simon Hallais, and Jean-Marc Daniel
Solid Earth, 10, 307–316, https://doi.org/10.5194/se-10-307-2019, https://doi.org/10.5194/se-10-307-2019, 2019
Short summary
Short summary
Calcite twinning is a common deformation mechanism that mainly occurs at low temperatures. Twinning activation appears at a critical strength value, which is poorly documented and still debated. Temperature is known to influence twin thickness and shape; however, few studies have been conducted on calcite deformation at low temperatures. The goal of this work is to determine if thickness is mainly due to high temperatures and to establish the validity of a threshold twinning activation value.
Cited articles
Adams, J. E.: Quantitative computed tomography, Eur. J. Radiol., 71, 415–424, 2009. a
Allen, E., Lim, L. Y., Xiao, X., Liu, A., Toney, M. F., Cabana, J., and Nelson Weker, J.: Spatial Quantification of Microstructural Degradation during Fast Charge in Lithium-Ion Batteries through Operando X-ray Microtomography and Euclidean Distance Mapping, ACS Appl. Energy Mater., 5, 12798–12808, 2022. a, b
Beaudoin, N., Hamilton, A., Koehn, D., Shipton, Z. K., and Kelka, U.: Reaction-induced porosity fingering: replacement dynamic and porosity evolution in the KBr-KCl system, Geochim. Cosmochim. Ac., 232, 163–180, 2018. a
Beinlich, A., Plümper, O., Boter, E., Müller, I. A., Kourim, F., Ziegler, M., Harigane, Y., Lafay, R., Kelemen, P. B., and Oman Drilling Project Science Team: Ultramafic rock carbonation: Constraints from listvenite core BT1B, Oman Drilling Project, J. Geophys. Res.-Sol. Ea., 125, e2019JB019060, https://doi.org/10.1029/2019JB019060, 2020. a
Bizhani, M., Ardakani, O. H., and Little, E.: Reconstructing high fidelity digital rock images using deep convolutional neural networks, Sci. Rep.-UK, 12, 4264, https://doi.org/10.1038/s41598-022-08170-8, 2022.
Butler, I. B., Fusseis, F., Cartwright-Taylor, A., and Flynn, M.: Mjölnir: a miniature triaxial rock deformation apparatus for 4D synchrotron x-ray micro-tomography, J. Synchrotron Radiat., 27, 1681–1687, 2020. a
Cartwright-Taylor, A., Mangriotis, M.-D., Main, I. G., Butler, I. B., Fusseis, F., Ling, M., Andò, E., Curtis, A., Bell, A. F., Crippen, A., Rizzo, R. E., Marti, S., Leung, D., and Magdysyuk, O. V.: Seismic events miss important kinematically governed grain scale mechanisms during shear failure of porous rock, Nat. Commun., 13, 6169, https://doi.org/10.1038/s41467-022-33855-z, 2022. a
Da Wang, Y., Blunt, M. J., Armstrong, R. T., and Mostaghimi, P.: Deep learning in pore scale imaging and modeling, Earth Sci. Rev., 215, 103555, https://doi.org/10.1016/j.earscirev.2021.103555, 2021. a, b
Dice, L. R.: Measures of the amount of ecologic association between species, Ecology, 26, 297–302, 1945.
Fusseis, F.: Metamorphic fabrics can be formed by stress without significant strain – sample VA17, PSI Public Data Repository [data set], https://doi.org/10.16907/8ca0995b-d09b-46a7-945d-a996a70bf70b, 2023a. a
Fusseis, F.: Metamorphic fabrics can be formed by stress without significant strain – sample VA19, PSI Public Data Repository [data set], https://doi.org/10.16907/a97b5230-7a16-4fdf-92f6-1ed800e45e37, 2023b. a
Fusseis, F., Schrank, C., Liu, J., Karrech, A., Llana-Fúnez, S., Xiao, X., and Regenauer-Lieb, K.: Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment, Solid Earth, 3, 71–86, https://doi.org/10.5194/se-3-71-2012, 2012.
Fusseis, F., Schrank, C. Xiao, X., and De Carlo, F.: The application of synchrotron radiation-based microtomography to (structural) geology, J. Struct. Geol., 65, 1–14, 2014. a
Gilgannon, J., Freitas, D., Rizzo, R. E., Wheeler, J., Butler, I., Seth, S., Marone, F., Schlepütz, C., McGill, G., Watt, I., Plümper, O., Eberhard, L., Amiri, H., Chogani, A., and Fusseis, F.: Elastic stresses can form metamorphic fabrics, Geology, 12, https://doi.org/10.1130/G51612.1, 2023. a, b, c, d
Heap, M. J., Gravley, D. M., Kennedy, B. M., Gilg, H. A., Bertolett, E., and Barker, S. L.: Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: The Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand), J. Volcanol. Geoth. Res., 390, 106703, https://doi.org/10.1016/j.jvolgeores.2019.106703, 2020. a
Karimpouli, S., and Tahmasebi, P.: Segmentation of digital rock images using deep convolutional autoencoder networks, Comput. Geosci., 126, 142–150, 2019.
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M. E., and Ganslandt, T.: Transfer learning for medical image classification: a literature review, BMC Med. Imaging, 22, 69, https://doi.org/10.1186/s12880-022-00793-7, 2022. a
Le, N., Rathour, V. S., Yamazaki, K., Luu, K., and Savvides, M.: Deep reinforcement learning in computer vision: a comprehensive survey, Artif. Intell. Rev., 55, 1–87, https://doi.org/10.1007/s10462-021-10061-9, 2022. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, 2015. a
Lee, D., Karadimitriou, N., Ruf, M., and Steeb, H.: Detecting micro fractures: a comprehensive comparison of conventional and machine-learning-based segmentation methods, Solid Earth, 13, 1475–1494, https://doi.org/10.5194/se-13-1475-2022, 2022. a
Mahdaviara, M., Sharifi, M., and Rafiei, Y.: PoreSeg: An Unsupervised and Interactive-based Framework for Automatic Segmentation of X-ray Tomography of Porous Materials, Adv. Water Resour., 178, 104495, https://doi.org/10.1016/j.advwatres.2023.104495, 2023. a
Marti, S., Fusseis, F., Butler, I. B., Schlepütz, C., Marone, F., Gilgannon, J., Kilian, R., and Yang, Y.: Time-resolved grain-scale 3D imaging of hydrofracturing in halite layers induced by gypsum dehydration and pore fluid pressure buildup, Earth Planet. Sc. Lett., 554, 116679, https://doi.org/10.1016/j.epsl.2020.116679, 2021. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas, J.: Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Phan, J., Ruspini, L. C., and Lindseth, F. L.: Automatic segmentation tool for 3D digital rocks by deep learning, Sci. Rep.-UK, 11, 1–15, 2021. a
Phillips, T., Bultreys, T., Bisdom, K., Kampman, N., Van Offenwert, S., Mascini, A., Cnudde, V., and Busch, A.: A Systematic Investigation Into the Control of Roughness on the Flow Properties of 3D-Printed Fractures, Water Resour. Res., 57, e2020WR028671, https://doi.org/10.1029/2020WR028671, 2021. a
Reinhardt, M., Jacob, A., Sadeghnejad, S., Cappuccio, F., Arnold, P., Frank, S., Enzmann, F., and Kersten, M.: Benchmarking conventional and machine learning segmentation techniques for digital rock physics analysis of fractured rocks, Environ. Earth Sci., 81, 71, https://doi.org/10.1007/s12665-021-10133-7, 2022. a, b, c
Rezaee, M., Mahdianpari, M., Zhang, Y., and Salehi, B.: Deep convolutional neural network for complex wetland classification using optical remote sensing imagery, IEEE J. Sel. Top. Appl., 11, 3030–3039, 2018. a
Rizzo, R. E.: Deep learning training model, University of Edinburgh. School of GeoScience [code and data set], https://doi.org/10.7488/ds/7493, 2023. a, b
Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image segmentation, Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, vol. 9351, 234–241, Springer International Publishing, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a
Shorten, C., and Khoshgoftaar, T. M.: A survey on image data augmentation for deep learning, J. Big Data, 6, 1–48, 2019. a
Snaebjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through mineral carbonation, Nat. Rev. Earth Environ., 1, 90–102, 2020. a
Sokac, M., Budak, I., Katic, M., Jakovljevic, Z., Santosi, Z., and Vukelic, D.: Improved surface extraction of multi-material components for single-source industrial X-ray computed tomography, Measurement, 153, 107438, https://doi.org/10.1016/j.measurement.2019.107438, 2020. a
Torralba, M., Jiménez, R., Yagüe-Fabra, J. A., Ontiveros, S., and Tosello, G.: Comparison of surface extraction techniques performance in computed tomography for 3D complex micro-geometry dimensional measurements, Int. J. Adv. Manuf. Tech., 97, 441–453, 2018. a
Withers, P. J., Bouman, C., Carmignato, S., Cnudde, V., Grimaldi, D., Hagen, C. K., Maire, E., Manley, M., Du Plessis, A., and Stock, S. R.: X-ray computed tomography, Nat. Rev. Methods Primers, 1, 18, https://doi.org/10.1038/s43586-021-00015-4, 2021. a, b
Zeiler, M. D.: Adadelta: an adaptive learning rate method, arXiv [preprint], arXiv:1212.5701, 2012.
Short summary
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral changes in rocks. Using deep learning, we accurately identify and quantify the evolution of mineral components during reactions. The method demonstrates high precision in quantifying a metamorphic reaction, enabling accurate calculation of mineral growth rates and porosity changes. This showcases artificial intelligence's potential to enhance our understanding of Earth science processes.
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral...