Articles | Volume 15, issue 5
https://doi.org/10.5194/se-15-567-2024
https://doi.org/10.5194/se-15-567-2024
Research article
 | 
07 May 2024
Research article |  | 07 May 2024

The influence of viscous slab rheology on numerical models of subduction

Natalie Hummel, Susanne Buiter, and Zoltán Erdős

Related authors

The influence of accretionary orogenesis on subsequent rift dynamics
Zoltán Erdős, Susanne J. H. Buiter, and Joya L. Tetreault
EGUsphere, https://doi.org/10.5194/egusphere-2025-1065,https://doi.org/10.5194/egusphere-2025-1065, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Perspectives of physics-based machine learning strategies for geoscientific applications governed by partial differential equations
Denise Degen, Daniel Caviedes Voullième, Susanne Buiter, Harrie-Jan Hendricks Franssen, Harry Vereecken, Ana González-Nicolás, and Florian Wellmann
Geosci. Model Dev., 16, 7375–7409, https://doi.org/10.5194/gmd-16-7375-2023,https://doi.org/10.5194/gmd-16-7375-2023, 2023
Short summary
Analogue modelling of the inversion of multiple extensional basins in foreland fold-and-thrust belts
Nicolás Molnar and Susanne Buiter
Solid Earth, 14, 213–235, https://doi.org/10.5194/se-14-213-2023,https://doi.org/10.5194/se-14-213-2023, 2023
Short summary
Analogue modelling of basin inversion: a review and future perspectives
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022,https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Rifting continents
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139,https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
Increased metamorphic conditions in the lower crust during oceanic transform fault evolution
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024,https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
On the choice of finite element for applications in geodynamics. Part II: A comparison of simplex and hypercube elements
Cedric Thieulot and Wolfgang Bangerth
EGUsphere, https://doi.org/10.5194/egusphere-2024-1668,https://doi.org/10.5194/egusphere-2024-1668, 2024
Short summary
Statistical appraisal of geothermal heat flow observations in the Arctic
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024,https://doi.org/10.5194/se-15-513-2024, 2024
Short summary

Cited articles

Androvičová, A., Ĉížkovǎ, H., and Van Den Berg, A.: The effects of rheological decoupling on slab deformation in the Earth’s upper mantle, Stud. Geophys. Geod., 57, 460–481, https://doi.org/10.1007/s11200-012-0259-7 2013. a
Arcay, D.: Dynamics of interplate domain in subduction zones: influence of rheological parameters and subducting plate age, Solid Earth, 3, 467–488, https://doi.org/10.5194/se-3-467-2012, 2012. a, b
Behr, W. M., Holt, A. F., Becker, T. W., and Faccenna, C.: The effects of plate interface rheology on subduction kinematics and dynamics, Geophys. J. Int., 230, 796–812, https://doi.org/10.1093/gji/ggac075, 2022. a, b
Biemiller, J., Ellis, S., Mizera, M., Little, T., Wallace, L., and Lavier, L.: Tectonic inheritance following failed continental subduction: A model for core complex formation in cold, strong lithosphere, Tectonics, 38, 1742–1763, https://doi.org/10.1029/2018TC005383, 2019. a
Billen, M. I.: Modeling the dynamics of subducting slabs, Annu. Rev. Earth Pl. Sc., 36, 325–356, https://doi.org/10.1146/annurev.earth.36.031207.124129, 2008. a, b, c, d
Download
Short summary
Simulations of subducting tectonic plates often use material properties extrapolated from the behavior of small rock samples in a laboratory to conditions found in the Earth. We explore several typical approaches to simulating these extrapolated material properties and show that they produce very rigid subducting plates with unrealistic dynamics. Our findings imply that subducting plates deform by additional mechanisms that are less commonly implemented in simulations.
Share