Articles | Volume 15, issue 7
https://doi.org/10.5194/se-15-861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-861-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying mantle mixing through configurational entropy
Erik van der Wiel
CORRESPONDING AUTHOR
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Cedric Thieulot
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Douwe J. J. van Hinsbergen
Department of Earth Sciences, Utrecht University, Princetonlaan 8A, 3584 CB Utrecht, the Netherlands
Related authors
No articles found.
Deok-Kyu Jang, Kyeong-Min Lee, Cedric Thieulot, Whan-Hyuk Choi, and Byung-Dal So
EGUsphere, https://doi.org/10.5194/egusphere-2025-5480, https://doi.org/10.5194/egusphere-2025-5480, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We developed faster methods for simulating Earth's interior dynamics. Standard iterative algorithms struggle to solve these equations efficiently. We introduced two improvements. First, we reformulated how calculation errors are measured. Second, we added a mass conservation correction. Our method solves the equations much faster while staying accurate. We tested it on multiple benchmark problems, showing significant speed improvements with minimal extra computational cost.
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 16, 457–476, https://doi.org/10.5194/se-16-457-2025, https://doi.org/10.5194/se-16-457-2025, 2025
Short summary
Short summary
One of the main numerical methods in geodynamics is the finite element method. Many types of elements have been used in the past decades in hundreds of publications. They usually fall under two categories: quadrilaterals and triangles. For the first time we compare results obtained with the most-used elements of each type on a series of geodynamical benchmarks and draw conclusions as to which are the best ones and which are to be preferably avoided.
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024, https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
Short summary
Numerical models that use simulated particles are a powerful tool for investigating flow in the interior of the Earth, but the accuracy of these models is not fully understood. Here we present two new benchmarks that allow measurement of model accuracy. We then document that better accuracy matters for applications like convection beneath an oceanic plate. Our benchmarks and methods are freely available to help the community develop better models.
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023, https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Short summary
A common simplification in subduction zone models is the use of constant thermal parameters, while experiments have shown that they vary with temperature. We test various formulations of temperature-dependent thermal parameters and show that they change the thermal structure of the subducting slab. We recommend that modelling studies of the thermal structure of subduction zones take the temperature dependence of thermal parameters into account, especially when providing insights into seismicity.
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022, https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
Short summary
Several alternative gravity modelling techniques and associated numerical codes with their own advantages and limitations are available for the solid Earth community. With upcoming state-of-the-art lithosphere density models and accurate global gravity field data sets, it is vital to understand the differences of the various approaches. In this paper, we discuss the four widely used techniques: spherical harmonics, tesseroid integration, triangle integration, and hexahedral integration.
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, https://doi.org/10.5194/se-13-583-2022, 2022
Short summary
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Short summary
One of the main numerical methods to solve the mass, momentum, and energy conservation equations in geodynamics is the finite-element method. Four main types of elements have been used in the past decades in hundreds of publications. For the first time we compare results obtained with these four elements on a series of geodynamical benchmarks and applications and draw conclusions as to which are the best ones and which are to be preferably avoided.
Cited articles
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., and Hirose, K.: Persistence of strong silica-enriched domains in the Earth's lower mantle, Nat. Geosci., 10, 236–240, https://doi.org/10.1038/NGEO2898, 2017.
Bello, L., Coltice, N., Rolf, T., and Tackley, P. J.: On the predictability limit of convection models of the Earth's mantle, Geochem. Geophy. Geosy., 15, 2319–2328, 2014.
Bocher, M., Coltice, N., Fournier, A., and Tackley, P. J.: A sequential data assimilation approach for the joint reconstruction of mantle convection and surface tectonics, Geophys. J. Int., 204, 200–214, 2016.
Bower, D. J., Gurnis, M., and Flament, N.: Assimilating lithosphere and slab history in 4-D Earth models, Phys. Earth Planet. In., 238, 8–22, https://doi.org/10.1016/j.pepi.2014.10.013, 2015.
Bull, A. L., Domeier, M., and Torsvik, T. H.: The effect of plate motion history on the longevity of deep mantle heterogeneities, Earth Planet. Sc. Lett., 401, 172–182, https://doi.org/10.1016/j.epsl.2014.06.008, 2014.
Camesasca, M., Kaufman, M., and Manas-Zloczower, I.: Quantifying fluid mixing with the Shannon entropy, Macromol. Theor. Simul., 15, 595–607, https://doi.org/10.1002/mats.200600037, 2006.
Christensen, U.: Mixing by time-dependent convection, Earth Planet. Sc. Lett., 95, 382–394, 1989.
Colli, L., Bunge, H. P., and Schuberth, B. S.: On retrodictions of global mantle flow with assimilated surface velocities, Geophys. Res. Lett., 42, 8341–8348, 2015.
Coltice, N.: The role of convective mixing in degassing the Earth's mantle, Earth Planet. Sc. Lett., 234, 15–25, 2005.
Coltice, N. and Schmalzl, J.: Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection, Geophys. Res. Lett., 33, L23304, https://doi.org/10.1029/2006GL027707, 2006.
Coltice, N. and Shephard, G. E.: Tectonic predictions with mantle convection model, Geophys. J. Int., 213, 16–29, https://doi.org/10.1093/gji/ggx531, 2018.
Dannberg, J. and Gassmöller, R.: Chemical trends in ocean islands explained by plume–slab interaction, P. Nat. Acad. Sci. USA, 115, 4351–4356, https://doi.org/10.1073/pnas.1714125115, 2018.
Deschamps, F., Cobden, L., and Tackley, P. J.: The primitive nature of large low shear-wave velocity provinces, Earth Planet. Sc. Lett., 349, 198–208, https://doi.org/10.1016/j.epsl.2012.07.012, 2012.
Domeier, M. and Torsvik, T. H.: Plate tectonics in the late Paleozoic, Geosci. Front., 5, 303–350, https://doi.org/10.1016/j.gsf.2014.01.002, 2014.
Doucet, L. S., Li, Z.-X., Gamal El Dien, H., Pourteau, A., Murphy, J. B., Collins, W. J., Mattielli, N., Olierook, H. K., Spencer, C. J., and Mitchell, R. N.: Distinct formation history for deep-mantle domains reflected in geochemical differences, Nat. Geosci., 13, 511–515, https://doi.org/10.1038/s41561-020-0599-9, 2020.
Dupré, B. and Allègre, C. J.: Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena, Nature, 303, 142–146, https://doi.org/10.1038/303142a0, 1983.
Faccenna, C., Becker, T. W., Conrad, C. P., and Husson, L.: Mountain building and mantle dynamics, Tectonics, 32, 80–93, https://doi.org/10.1029/2012TC003176, 2013.
Farnetani, C. G. and Samuel, H.: Lagrangian structures and stirring in the Earth's mantle, Earth Planet. Sc. Lett., 206, 335–348, 2003.
Farnetani, C. G., Legras, B., and Tackley, P. J.: Mixing and deformations in mantle plumes, Earth Planet. Sc. Lett., 196, 1–15, 2002.
Ferrachat, S. and Ricard, Y.: Regular vs. chaotic mantle mixing, Earth Planet. Sc. Lett., 155, 75–86, 1998.
Ferrachat, S. and Ricard, Y.: Mixing properties in the Earth's mantle: Effects of the viscosity stratification and of oceanic crust segregation, Geochem. Geophy. Geosy., 2, 2000GC000092, https://doi.org/10.1029/2000GC000092, 2001.
Flament, N., Bodur, Ö. F., Williams, S. E., and Merdith, A. S.: Assembly of the basal mantle structure beneath Africa, Nature, 603, 846–851, https://doi.org/10.1038/s41586-022-04538-y, 2022.
Garnero, E. J., McNamara, A. K., and Shim, S.-H.: Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle, Nat. Geosci., 9, 481–489, https://doi.org/10.1038/NGEO2733, 2016.
Gazel, E., Trela, J., Bizimis, M., Sobolev, A., Batanova, V., Class, C., and Jicha, B.: Long-lived source heterogeneities in the Galapagos mantle plume, Geochem. Geophy. Geosy., 19, 2764–2779, https://doi.org/10.1029/2017GC007338, 2018.
Gerya, T.: Precambrian geodynamics: concepts and models, Gondwana Res., 25, 442–463, https://doi.org/10.1016/j.gr.2012.11.008, 2014.
Goltz, C. and Böse, M.: Configurational entropy of critical earthquake populations, Geophys. Res. Lett., 29, 51-1–51-4, https://doi.org/10.1029/2002GL015540, 2002.
Gottschaldt, K.-D., Walzer, U., Hendel, R., Stegman, D. R., Baumgardner, J., and Mühlhaus, H.-B.: Stirring in 3-d spherical models of convection in the Earth's mantle, Phil. Mag., 86, 3175–3204, 2006.
Gülcher, A. J., Gebhardt, D. J., Ballmer, M. D., and Tackley, P. J.: Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle, Earth Planet. Sc. Lett., 536, 116160, https://doi.org/10.1016/j.epsl.2020.116160, 2020.
Gülcher, A. J. P., Ballmer, M. D., and Tackley, P. J.: Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle, Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021, 2021.
Gurnis, M. and Davies, G. F.: The effect of depth-dependent viscosity on convective mixing in the mantle and the possible survival of primitive mantle, Geophys. Res. Lett., 13, 541–544, 1986a.
Gurnis, M. and Davies, G. F.: Mixing in numerical models of mantle convection incorporating plate kinematics, J. Geophys. Res.-Sol. Ea., 91, 6375–6395, 1986b.
Hart, S. R.: A large-scale isotope anomaly in the Southern Hemisphere mantle, Nature, 309, 753–757, https://doi.org/10.1038/309753a0, 1984.
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods – II: realistic models and problems, Geophys. J. Int., 210, 833–851, https://doi.org/10.1093/gji/ggx195, 2017.
Hoernle, K., Werner, R., Morgan, J. P., Garbe-Schönberg, D., Bryce, J., and Mrazek, J.: Existence of complex spatial zonation in the Galápagos plume, Geology, 28, 435–438, https://doi.org/10.1130/0091-7613(2000)28<435:EOCSZI>2.0.CO;2, 2000.
Hoffman, N. and McKenzie, D.: The destruction of geochemical heterogeneities by differential fluid motions during mantle convection, Geophys. J. Int., 82, 163–206, 1985.
Homrighausen, S., Hoernle, K., Hauff, F., Hoyer, P. A., Haase, K. M., Geissler, W. H., and Geldmacher, J.: Evidence for compositionally distinct upper mantle plumelets since the early history of the Tristan-Gough hotspot, Nat. Commun., 14, 3908, https://doi.org/10.1038/s41467-023-39585-0, 2023.
Hunt, D. and Kellogg, L.: Quantifying mixing and age variations of heterogeneities in models of mantle convection: Role of depth-dependent viscosity, J. Geophys. Res.-Sol. Ea., 106, 6747–6759, 2001.
Jackson, M. and Macdonald, F.: Hemispheric geochemical dichotomy of the mantle is a legacy of austral supercontinent assembly and onset of deep continental crust subduction, AGU Adv., 3, e2022AV000664, https://doi.org/10.1029/2022AV000664, 2022.
Jackson, M., Konter, J., and Becker, T.: Primordial helium entrained by the hottest mantle plumes, Nature, 542, 340–343, https://doi.org/10.1038/nature21023, 2017.
Jackson, M., Becker, T., and Konter, J.: Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints, Earth Planet. Sc. Lett., 484, 154–167, https://doi.org/10.1016/j.epsl.2017.11.052, 2018.
Jones, T. D., Sime, N., and van Keken, P.: Burying Earth's primitive mantle in the slab graveyard, Geochem. Geophy. Geosy., 22, e2020GC009396, https://doi.org/10.1029/2020GC009396, 2021.
Kellogg, L. and Turcotte, D.: Mixing and the distribution of heterogeneities in a chaotically convecting mantle, J. Geophys. Res.-Sol. Ea., 95, 421–432, https://doi.org/10.1029/JB095iB01p00421, 1990.
Kellogg, L. H.: Chaotic mixing in the Earth's mantle, Adv. Geophys., 34, 1–33, 1993.
Koelemeijer, P., Deuss, A., and Ritsema, J.: Density structure of Earth's lowermost mantle from Stoneley mode splitting observation, Nat. Commun., 8, 1–10, https://doi.org/10.1038/ncomms15241, 2017.
Li, Y., Liu, L., Peng, D., Dong, H., and Li, S.: Evaluating tomotectonic plate reconstructions using geodynamic models with data assimilation, the case for North America, Earth Sci. Rev., 244, 104518, https://doi.org/10.1016/j.earscirev.2023.104518, 2023.
Lin, Y. A., Colli, L., and Wu, J.: NW Pacific-Panthalassa intra-oceanic subduction during Mesozoic times from mantle convection and geoid models, Geochem. Geophy. Geosy., 23, e2022GC010514, https://doi.org/10.1029/2022GC010514, 2022.
McNamara, A. K.: A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, 760, 199–220, https://doi.org/10.1016/j.tecto.2018.04.015, 2019.
Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L., Young, A., Armistead, S. E., Cannon, J., and Zahirovic, S.: Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic, Earth Sci. Rev., 214, 103477, https://doi.org/10.1016/j.earscirev.2020.103477, 2021.
Naliboff, J. B. and Kellogg, L. H.: Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the mantle?, Phys. Earth Planet. In., 161, 86–102, https://doi.org/10.1016/j.pepi.2007.01.009, 2007.
Olson, P., Yuen, D. A., and Balsiger, D.: Convective mixing and the fine structure of mantle heterogeneity, Phys. Earth Planet. In., 36, 291–304, 1984a.
Olson, P., Yuen, D. A., and Balsiger, D.: Mixing of passive heterogeneities by mantle convection, J. Geophys. Res.-Sol. Ea., 89, 425–436, 1984b.
Perugini, D., De Campos, C., Petrelli, M., Morgavi, D., Vetere, F. P., and Dingwell, D.: Quantifying magma mixing with the Shannon entropy: Application to simulations and experiments, Lithos, 236, 299–310, https://doi.org/10.1016/j.lithos.2015.09.008, 2015.
Richter, F. M., Daly, S. F., and Nataf, H.-C.: A parameterized model for the evolution of isotopic heterogeneities in a convecting system, Earth Planet. Sc. Lett., 60, 178–194, 1982.
Ritsema, J. and Lekić, V.: Heterogeneity of seismic wave velocity in Earth's mantle, Annu. Rev. Earth Pl. Sc., 48, 377–401, https://doi.org/10.1146/annurev-earth-082119-065909, 2020.
Ritsema, J., Deuss, A., Van Heijst, H., and Woodhouse, J.: S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223–1236, https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
Samuel, H., Aleksandrov, V., and Deo, B.: The effect of continents on mantle convective stirring, Geophys. Res. Lett., 38, L04307, https://doi.org/10.1029/2010GL046056, 2011.
Schmalzl, J., Houseman, G., and Hansen, U.: Mixing in vigorous, time-dependent three-dimensional convection and application to Earth's mantle, J. Geophys. Res.-Sol. Ea., 101, 21847–21858, 1996.
Shannon, C. E.: A mathematical theory of communication, Bell Syst. Tech. J., 27, 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x, 1948.
Stegman, D. R., Richards, M. A., and Baumgardner, J. R.: Effects of depth-dependent viscosity and plate motions on maintaining a relatively uniform mid-ocean ridge basalt reservoir in whole mantle flow, J. Geophys. Res.-Sol. Ea., 107, ETG 5-1–ETG 5-8, 2002.
Stracke, A., Genske, F., Berndt, J., and Koornneef, J. M.: Ubiquitous ultra-depleted domains in Earth's mantle, Nat. Geosci., 12, 851–855, https://doi.org/10.1038/s41561-019-0446-z, 2019.
Tackley, P. J. and Xie, S.: The thermochemical structure and evolution of Earth's mantle: constraints and numerical models, Philos. T. Roy. Soc. A, 360, 2593–2609, 2002.
Ten, A. A., Podladchikov, Y. Y., Yuen, D. A., Larsen, T. B., and Malevsky, A. V.: Comparison of mixing properties in convection with the Particle-Line Method, Geophys. Res. Lett., 25, 3205–3208, 1998.
Thieulot, C.: GHOST: Geoscientific Hollow Sphere Tessellation, Solid Earth, 9, 1169–1177, https://doi.org/10.5194/se-9-1169-2018, 2018.
Thieulot, C.: FIELDSTONE: a computational geodynamics (self-)teaching tool, EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-14212, https://doi.org/10.5194/egusphere-egu23-14212, 2023.
Thieulot, C.: Fieldstone, GitHub [code], https://github.com/cedrict/fieldstone/blob/master/python_codes/fieldstone_137/ministone.py (lat access: 7 November 2023), 2024.
Thomas, B., Samuel, H., Farnetani, C., Aubert, J., and Chauvel, C.: Mixing time of heterogeneities in a buoyancy-dominated magma ocean, Geophys. J. Int., 236, 764–777, 2024.
van der Meer, D. G., van Hinsbergen, D. J. J., and Spakman, W.: Atlas of the underworld: Slab remnants in the mantle, their sinking history and a new outlook on lower mantle viscosity, Tectonophysics, 723, 309–448, https://doi.org/10.1016/j.tecto.2017.10.004, 2018.
van der Wiel, E.: Data for: Quantifying mantle mixing through Configurational Entopy [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.10077983, 2023.
van der Wiel, E., van Hinsbergen, D. J., Thieulot, C., and Spakman, W.: Linking rates of slab sinking to long-term lower mantle flow and mixing, Earth Planet. Sc. Lett., 625, 118471, https://doi.org/10.1016/j.epsl.2023.118471, 2024.
van Keken, P. and Zhong, S.: Mixing in a 3D spherical model of present-day mantle convection, Earth Planet. Sc. Lett., 171, 533–547, 1999.
van Keken, P. E., Ballentine, C. J., and Hauri, E. H.: Convective mixing in the Earth's mantle, Treat. Geochem., 2, 1–21, 2003.
Vilella, K., Bodin, T., Boukaré, C.-E., Deschamps, F., Badro, J., Ballmer, M. D., and Li, Y.: Constraints on the composition and temperature of LLSVPs from seismic properties of lower mantle minerals, Earth Planet. Sc. Lett., 554, 116685, https://doi.org/10.1016/j.epsl.2020.116685, 2021.
Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M., and Scoates, J. S.: Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume, Nat. Geosci., 4, 831–838, https://doi.org/10.1038/ngeo1328, 2011.
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012.
Wichmann, D., Delandmeter, P., Dijkstra, H. A., and van Sebille, E.: Mixing of passive tracers at the ocean surface and its implications for plastic transport modelling, Environ. Res. Commun., 1, 115001, https://doi.org/10.1088/2515-7620/ab4e77, 2019.
Yan, J., Ballmer, M. D., and Tackley, P. J.: The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models, Earth Planet. Sc. Lett., 537, 116171, https://doi.org/10.1016/j.epsl.2020.116171, 2020.
Zahirovic, S., Müller, R. D., Seton, M., and Flament, N.: Tectonic speed limits from plate kinematic reconstructions, Earth Planet. Sc. Lett., 418, 40–52, https://doi.org/10.1016/j.epsl.2015.02.037, 2015.
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Geodynamic models of mantle convection provide a powerful tool to study the structure and...