Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1137-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-16-1137-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
2D seismic imaging of the Koillismaa Layered Igneous Complex, north-eastern Finland
Institute of Geophysics, Polish Academy of Sciences Warsaw, Księcia Janusza 64, 01-452 Warsaw, Poland
Andrzej Górszczyk
Institute of Geophysics, Polish Academy of Sciences Warsaw, Księcia Janusza 64, 01-452 Warsaw, Poland
Michał Malinowski
Institute of Geophysics, Polish Academy of Sciences Warsaw, Księcia Janusza 64, 01-452 Warsaw, Poland
Geological Survey of Finland, Vuorimiehentie 5, 02151 Espoo, Finland
Suvi Heinonen
Institute of Seismology, University of Helsinki, P.O. Box 68 (Pietari Kalmin katu 5), Helsinki, Finland
Uula Autio
Geological Survey of Finland, Vuorimiehentie 5, 02151 Espoo, Finland
Tuomo Karinen
Geological Survey of Finland, Vuorimiehentie 5, 02151 Espoo, Finland
Marek Wojdyła
Geopartner Geofizyka Sp. z o.o., Skośna 39B, 30-383, Kraków, Poland
A full list of authors appears at the end of the paper.
Related authors
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Małgorzata Ponikowska, Sergiy Mykolayovych Stovba, Michał Malinowski, Quang Nguyen, and Stanisław Mazur
EGUsphere, https://doi.org/10.5194/egusphere-2025-3107, https://doi.org/10.5194/egusphere-2025-3107, 2025
Short summary
Short summary
Transition zone between the Precambrian East European Craton and the Palaeozoic Platform, by integrating seismic interpretation with two-dimensional gravity and magnetic modelling. The combined data provide new insights into the complex tectonic evolution of the region.
Michal Malinowski, Tuomo Karinen, Uula Autio, Suvi Heinonen, Brij Singh, Andrzej Górszczyk, Lukasz Sito, and the SEEMS DEEP Working Group
EGUsphere, https://doi.org/10.5194/egusphere-2025-3111, https://doi.org/10.5194/egusphere-2025-3111, 2025
Short summary
Short summary
We acquired and processed novel 3D seismic data to reveal the hidden structure of a deep rock formation in northeastern Finland. This study uncovered a complex, layered system rather than a simple magma channel, and identified a major fault that may influence mineral deposits. Our findings offer new tools and insights for exploring valuable underground resources in hard rock environments.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Brij Singh, Michał Malinowski, Andrzej Górszczyk, Alireza Malehmir, Stefan Buske, Łukasz Sito, and Paul Marsden
Solid Earth, 13, 1065–1085, https://doi.org/10.5194/se-13-1065-2022, https://doi.org/10.5194/se-13-1065-2022, 2022
Short summary
Short summary
Fast depletion of shallower deposits is pushing the mining industry to look for cutting-edge technologies for deep mineral targeting. We demonstrated a joint workflow including two state-of-the-art technologies: full-waveform inversion and reverse time migration. We produced Earth images with significant details which can help with better estimation of areas with high mineralisation, better mine planning and safety measures.
Felix Hloušek, Michal Malinowski, Lena Bräunig, Stefan Buske, Alireza Malehmir, Magdalena Markovic, Lukasz Sito, Paul Marsden, and Emma Bäckström
Solid Earth, 13, 917–934, https://doi.org/10.5194/se-13-917-2022, https://doi.org/10.5194/se-13-917-2022, 2022
Short summary
Short summary
Methods for mineral exploration play an important role within the EU. Exploration must be environmentally friendly, cost effective, and feasible in populated areas. Seismic methods have the potential to deliver detailed images of mineral deposits but suffer from these demands. We show the results for a sparse 3D seismic dataset acquired in Sweden. The 3D depth image allows us to track the known mineralizations beyond the known extent and gives new insights into the geometry of the deposit.
Michal Chamarczuk, Michal Malinowski, Deyan Draganov, Emilia Koivisto, Suvi Heinonen, and Sanna Rötsä
Solid Earth, 13, 705–723, https://doi.org/10.5194/se-13-705-2022, https://doi.org/10.5194/se-13-705-2022, 2022
Short summary
Short summary
In passive seismic measurement, all noise sources from the environment, such as traffic, vibrations caused by distant excavation, and explosive work from underground mines, are utilized. In the Kylylahti experiment, receivers recorded ambient noise sources for 30 d. These recordings were subjected to data analysis and processing using novel methodology developed in our study and used for imaging the subsurface geology of the Kylylahti mine area.
Nikita Afonin, Elena Kozlovskaya, Suvi Heinonen, and Stefan Buske
Solid Earth, 12, 1563–1579, https://doi.org/10.5194/se-12-1563-2021, https://doi.org/10.5194/se-12-1563-2021, 2021
Short summary
Short summary
In our study, we show the results of a passive seismic interferometry application for mapping the uppermost crust in the area of active mineral exploration in northern Finland. The obtained velocity models agree well with geological data and complement the results of reflection seismic data interpretation.
Andrzej Górszczyk and Stéphane Operto
Geosci. Model Dev., 14, 1773–1799, https://doi.org/10.5194/gmd-14-1773-2021, https://doi.org/10.5194/gmd-14-1773-2021, 2021
Short summary
Short summary
We present the 3D multi-parameter synthetic geomodel of the subduction zone, as well as the workflow designed to implement all of its components. The model contains different geological structures of various scales and complexities. It is intended to serve as a tool for the geophysical community to validate imaging approaches, design acquisition techniques, estimate uncertainties, benchmark computing approaches, etc.
Cited articles
Alapieti, T.: The Koillismaa Layered Igneous Complex, Finland – Its Structure, Mineralogy and Geochemistry with Emphasis on the Distribution of Chromium, Geological Survey of Finland, Bulletin 319, 116 pp., https://hakku.gtk.fi/en/publications?id=506 (last access: 1 May 2024), 1982.
Alapieti, T. and Lahtinen, J.: Platinum-group element mineralization in layered intrusions of northern Finland and the Kola Peninsula, Russia, The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements, Canadian Institute of Mining, Metallurgy and Petroleum, CIM Special Volume, 54, 507–546, 2002.
Autio, U., Darnet, M., Górszczyk, A., Kamm, J., Heinonen, S., Malinowski, M., Kim, B., Singh, B., Vedrine, S., Bretaudeau, F., Patzer, C., Karinen, T., Kalscheuer, T., Truffert, C., Wojdyła, M., Kivinen, A., and Koltun, Y.: Integrating Seismic and Electromagnetic Methods for Deep Mineral Exploration – Results from the SEEMS DEEP Project, NSG 2024 5th Conference on Geophysics for Mineral Exploration and Mining, 1–5, https://doi.org/10.3997/2214-4609.202420147, 2024.
Barnes, S. J., Cruden, A. R., Arndt, N., and Saumur, B. M.: The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits, Ore Geology Reviews, 76, 296–316, https://doi.org/10.1016/j.oregeorev.2015.06.012, 2016.
Bedrock of Finland: DigiKP Digital Map Database, Version 2.3, Geological Survey of Finland, Espoo, Finland, https://gtkdata.gtk.fi/Kalliopera/index.html (last access: 19 June 2025), 2019.
Bellefleur, G., Schetselaar, E., White, D., Miah, K., and Dueck, P.: 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada, Geophysical Prospecting, 63, 813–832, https://doi.org/10.1111/1365-2478.12236, 2015.
Bleeker, W. and Ernst, R.: Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth's paleogeographic record back to 2.6 Ga, 5th International Dyke Conference: Dyke Swarms – Time Markers of Crustal Evolution, IDC-5, 3–26, ISBN 0 415 39899 1, 2006.
Cheraghi, S., Naghizadeh, M., Snyder, D., Haugaard, R., and Gemmell, T.: High-resolution seismic imaging of crooked two-dimensional profiles in greenstone belts of the Canadian shield: results from the Swayze area, Ontario, Canada, Geophysical Prospecting, 68, 62–81, https://doi.org/10.1111/1365-2478.12854, 2020.
Ciborowski, T. J. R., Kerr, A. C., Ernst, R. E., McDonald, I., Minifie, M. J., Harlan, S. S., and Millar, I. L.: The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, Petrogenesis, and Implications for Earth Evolution, Journal of Petrology, 56, 1459–1494, https://doi.org/10.1093/petrology/egv038, 2015.
EU Critical Raw Materials Act: Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020.: Official Journal of the European Union, https://eur-lex.europa.eu/eli/reg/2024/1252/oj, last access: 12 November 2024.
European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, Grohol, M. and Veeh, C.: Study on the critical raw materials for the EU 2023 – final report, Publications Office of the European Union, https://doi.org/10.2873/725585, 2023.
Gislason, G., Heinonen, S., Salmirinne, H., Konnunaho, J., and Karinen, T.: KOSE-Koillismaa Seismic Exploration survey: Acquisition, processing and interpretation, GTK:n työraportti-GTK Open File Work Report, 101/2018, 33 pp., Geological survey of Finland, https://hakku.gtk.fi/en/publications?id=21695 (last access: 13 July 2024), 2019.
Górszczyk, A., Malinowski, M., and Bellefleur, G.: Enhancing 3D post-stack seismic data acquired in hardrock environment using 2D curvelet transform, Geophysical Prospecting, 63, 903–918, https://doi.org/10.1111/1365-2478.12234, 2015.
Heaman, L. M.: Global mafic magmatism at 2.45 Ga: Remnants of an ancient large igneous province?, Geology, 25, 299–302, https://doi.org/10.1130/0091-7613(1997)025<0299:GMMAGR>2.3.CO;2, 1997.
Heinonen, S., Nousiainen, M., Karinen, T., and Häkkinen, T.: Are Seismic P-Wave Velocities Capable of Revealing The Deep-Seated Prospective Intrusion?, NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining, 1–5, https://doi.org/10.3997/2214-4609.202220167, 2022.
Hloušek, F., Hellwig, O., and Buske, S.: Improved structural characterization of the Earth's crust at the German Continental Deep Drilling Site using advanced seismic imaging techniques, Journal of Geophysical Research: Solid Earth, 120, 6943–6959, https://doi.org/10.1002/2015JB012330, 2015.
Järvinen, V., Halkoaho, T., Konnunaho, J., Heinonen, J. S., and Rämö, O. T.: Parental magma, magmatic stratigraphy, and reef-type PGE enrichment of the 2.44-Ga mafic-ultramafic Näränkävaara layered intrusion, Northern Finland, Mineralium Deposita, 55, 1535–1560, https://doi.org/10.1007/s00126-019-00934-z, 2020.
Järvinen, V., Karampelas, N., Rämö, T., Halkoaho, T., Törmänen, T., Mikkola, P., and Lahaye, Y.: Secular change of tectonic setting in the Archean Takanen greenstone belt, northeastern Karelia Province, Fennoscandian Shield, Bulletin of the Geological Society of Finland, 95, 107–134, https://doi.org/10.17741/bgsf/95.2.002, 2023.
Karinen, T.: The Koillismaa intrusion, northeastern Finland: evidence for PGE reef forming processes in the layered series, Geological Survey of Finland, https://hakku.gtk.fi/en/publications?id=22154 (last access: 12 July 2024), 2010.
Karinen, T., Heinonen, S., Konnunaho, J., Salmirinne, H., Lahti, I., and Salo, A.: Koillismaa Deep Hole–Solving the mystery of a geophysical anomaly, in: Lithosphere 2021, eleventh symposium on structure, composition and evolution of the lithosphere, Programme and Extended Abstracts, 55–58, https://research.fi/en/results/publication/0374173621 (last access: 15 July 2024), 2021a.
Karinen, T., Salmirinne, H., Lahti, I., Konnunaho, J., S., H., and Salo, A.: The Koillismaa Deep Hole: insight to anomalous mafic intrusion, ARLIN – Online Workshop 1 (Apatity, 25.02.2021), 38–41, https://www.researchgate.net/publication/355906032, 2021b.
Karinen, T., Kurhila, M., Moilanen, M., Konnunaho, J., Salmirinne, H., and Tirroniemi, J.: Chilled margin and marginal reversal formation in the Koillismaa Deep Intrusion: implications for parental magma compositions in the 2.44 Ga Tornio–Näränkävaara Belt, Contributions to Mineralogy and Petrology, 180, 43, https://doi.org/10.1007/s00410-025-02226-4, 2025.
Kärki, A. and Laajoki, K.: An interlinked system of folds and ductile shear zones—late stage Svecokarelian deformation in the central Fennoscandian Shield, Finland, Journal of Structural Geology, 17, 1233–1247, https://doi.org/10.1016/0191-8141(95)00006-Y, 1995.
Köykkä, J., Lahtinen, R., and Manninen, T.: Tectonic evolution, volcanic features and geochemistry of the Paleoproterozoic Salla belt, northern Fennoscandia: From 2.52 to 2.40 Ga LIP stages to ca. 1.92–1.90 Ga collision, Precambrian Research, 371, 106597, https://doi.org/10.1016/j.precamres.2022.106597, 2022.
Makkonen, V.: Korpuan Jatkotutkimus, Rautaruukki Oy Research Report Ou 16/72, Rautaruukki Oy, 1972.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C., White, D. J., Milkereit, B., and Campbell, G.: Seismic methods in mineral exploration and mine planning: A general overview of past and present case histories and a look into the future, Geophysics, 77, WC173–WC190, https://doi.org/10.1190/geo2012-0028.1, 2012.
Malehmir, A., Maries, G., Bäckström, E., Schön, M., and Marsden, P.: Developing cost-effective seismic mineral exploration methods using a landstreamer and a drophammer, Scientific Reports, 7, 10325, https://doi.org/10.1038/s41598-017-10451-6, 2017.
Malinowski, M., Brodic, B., Martinkauppi, I., Koskela, E., and Laakso, V.: Distributed acoustic sensing vertical seismic profiling in hardrock environment: case study from Koillismaa drillhole, Finland, 84th EAGE Annual Conference & Exhibition, 1–5, https://doi.org/10.3997/2214-4609.2023101043, 2023.
Malinowski, M., Karinen, T., Autio, U., Heinonen, S., Singh, B., Górszczyk, A., Sito, L., and the SEEMS DEEP Working Group: Uncovering the deep structure of the Koillismaa Layered Intrusion Complex, Finland using a novel 3D seismic survey, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-3111, 2025.
Markovic, M., Maries, G., Malehmir, A., Ketelhodt, J. von, Bäckström, E., Schön, M., and Marsden, P.: Deep reflection seismic imaging of iron-oxide deposits in the Ludvika mining area of central Sweden, Geophysical Prospecting, 68, 7–23, https://doi.org/10.1111/1365-2478.12855, 2020.
Milkereit, B., Berrer, E. K., King, A. R., Watts, A. H., Roberts, B., Erick, A., Eaton, D. W., Wu, J., and Salisbury, M. H.: Development of 3-D seismic exploration technology for deep nickel-copper deposits – A case history from the Sudbury basin, Canada3-D Seismic Exploration Technology, Geophysics, 65, 1890–1899, https://doi.org/10.1190/1.1444873, 2000.
Nedimović, M. R. and West, G. F.: Crooked-line 2D seismic reflection imaging in crystalline terrains: Part 2, migration, Geophysics, 68, 286–296, https://doi.org/10.1190/1.1543214, 2003.
Nousiainen, M., Heinonen, S., and Karinen, T.: Petrophysics of the Koillismaa drill hole, in: Lithosphere 2022: twelfth symposium on the structure, composition and evolution of the lithosphere, Report – Institute of Seismology, University of Helsinki, 131–134, http://hdl.handle.net/10138/350596 (last access: 23 Feb 2024), 2022.
Ripley, E. M. and Li, C.: Chapter 3 – Metallic Ore Deposits Associated With Mafic to Ultramafic Igneous Rocks, in: Processes and Ore Deposits of Ultramafic-Mafic Magmas through Space and Time, edited by: Mondal, S. K. and Griffin, W. L., Elsevier, 79–111, https://doi.org/10.1016/B978-0-12-811159-8.00004-4, 2018.
Salmirinne, H. and Iljina, M.: Koillismaan kerrosintruusiokompleksin tulokanavamuodostuman painovoimatulkinta ja alueen malmimahdollisuudet (osa 1), GTK:n arkistoraportit, https://hakku.gtk.fi/en/publications?id=14126 (last access: 1 July 2024), 2003.
Schulz, K. J., Woodruff, L. G., Nicholson, S. W., Ii, R. R. S., Piatak, N. M., Chandler, V. W., and Mars, J. L.: Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes, Scientific Investigations Report, U. S. Geological Survey, https://doi.org/10.3133/sir20105070I, 2014.
Singh, B. and Malinowski, M.: Depth Imaging of Crooked Seismic Profiles in Hardrock Environment: Is 2D Enough?, NSG2022 4th Conference on Geophysics for Mineral Exploration and Mining, 1–5, https://doi.org/10.3997/2214-4609.202220169, 2022.
Singh, B. and Malinowski, M.: Seismic Imaging of Mineral Exploration Targets: Evaluation of Ray- vs. Wave-Equation-Based Pre-Stack Depth Migrations for Crooked 2D Profiles, Minerals, 13, 264, https://doi.org/10.3390/min13020264, 2023.
Skyttä, P., Piippo, S., Kloppenburg, A., and Corti, G.: 2.45 Ga break-up of the Archaean continent in Northern Fennoscandia: Rifting dynamics and the role of inherited structures within the Archaean basement, Precambrian Research, 324, 303–323, https://doi.org/10.1016/j.precamres.2019.02.004, 2019.
Tirronniemi, J., Bischoff, A., Malinowski, M., Autio, U., Karinen, T., Lukkarinen, V., Heinonen, S., Mikkola, P., Leskelä, T., Patzer, C., Piipponen, K., Nousiainen, M., Hakala, P., Martinkauppi, I., Anttilainen, T., Engström, J., Konnunaho, J., Telkkälä, P., and Haavikko, S.: Koillismaa Deep Hole Final Report, GTK Open File Work Report, 77 pp., https://hakku.gtk.fi/en/publications?id=22284 (last access: 1 July 2024), 2024.
Short summary
Two regional reflection seismic profiles were acquired to map the geometrical architecture of the Koillismaa Layered Igneous Complex (KLIC) in north-eastern Finland. Reflectivity up to a depth of ~5–6 km is delineated. The magma conduit associated with the KLIC was successfully revealed and the associated mineralization potential was established. A regional fault system associated with the magma emplacement was mapped for the first time.
Two regional reflection seismic profiles were acquired to map the geometrical architecture of...
Special issue