Alvarez, W., Alvarez, L., Asaro, F., and Michel, H. V.: Anomalous iridium levels at the Cretaceous/Tertiary boundary at Gubbio, Italy: Negative results of tests for a supernova origin, edited by: Christensen, W. K. and Birkelund, T., in: Vol. 2, Cretaceous/Tertiary Boundary Events Symposium, Univ. Copenhagen, 18–24 September 1979, Copenhagen, Denmark, p. 69, 1979.
Bucha, B. and Janák, J.: A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders, Comput. Geosci., 56, 186–196, https://doi.org/10.1016/j.cageo.2013.03.012, 2013.
Campos-Enríquez, J. O., Chávez-García, F. J., Cruz, H., Acosta-Chang, J. G., Matsui, T., Arzate, J. A., Unsworth, M. J., and Ramos-López, J.: Shallow crustal structure of Chicxulub impact crater imaged with seismic, gravity and magnetotelluric data: inferences about the central uplift, Geophys. J. Int., 157, 515–525, https://doi.org/10.1111/j.1365-246X.2004.02243.x, 2004.
Christeson, G. L., Collins, G. S., Morgan, J. V., Gulick, S. P. S., Barton, P. J., and Warner M. R.: Mantle deformation beneath the Chicxulub impact crater, Earth Planet. Sc. Lett., 284, 249–257, https://doi.org/10.1016/j.epsl.2009.04.033, 2009.
Collins, G. S., Morgan, J., Barton, P., Gail, L., Christeson, G. L., Gulick, S., Urrutia, J., Warner, M., and Wünnemann, K.: Dynamic modeling suggests terrace zone asymmetry in the Chicxulub crater is caused by target heterogeneity, Earth Planet. Sc. Lett., 270, 221–230, https://doi.org/10.1016/j.epsl.2008.03.032, 2008.
Dasgupta, D., Kundu, A., De, K., and Dasgupta, N.: Polygonal impact craters in the Thaumasia Minor, Mars: role of pre-existing faults in their formation, J. Indian Soc. Remote Sens. 47, 257–265, 2019.
Desch, S., Jackson, A., Noviello, J., and Anbar, A.: The Chicxulub impactor: comet or asteroid?, Astron. Geophys., 62, 3.34–3.37, https://doi.org/10.1093/astrogeo/atab069, 2021.
Deutsch, A., Masaitis, V. L., Langenhorst, F., and Grieve, R. A. F.: Popigai, Siberia – well preserved giant impact structure, national treasury, and world's geological heritage, Episodes, 23, 3–12, https://doi.org/10.18814/epiiugs/2000/v23i1/002, 2000.
Donofrio, R. R.: North American impact structures hold giant field potential, Oil Gas J., 96, 69–83, 1998.
Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.-C., Lemoine, J.-M., Dahle, C., Neumayer, H., Barthelmes, F., König, R., and Biancale, R.: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (EIGEN 6C4), in: 5th GOCE user workshop, 25–28 November 2014, Paris, https://doi.org/10.5880/icgem.2015.1, 2014.
French, B. M. and Koeberl, C.: The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why, Earth Sci. Rev., 98, 23–170, 2010.
Goderis, S., Sato, H., Ferrière, L., and Schmitz, B.: Globally distributed iridium layer preserved within the Chicxulub impact structure, Sci. Adv., 7, eabe3647, https://doi.org/10.1126/sciadv.abe3647, 2021.
Grieve, R. A. F.: Economic natural resource deposits at terrestrial impact structures, in: Mineral Deposits and Earth Evolution, edited by: McDonald, I., Boyce, A. J., Butler, I. B., Herrington, R. J., and Polya, D. A., Geolog. Soc. Lond. Spec. Publ., 248, 1–29, https://doi.org/10.1144/GSL.SP.2005.248.01.01, 2005.
Gulick, S. and the Expedition 364 scientists IODP: Chicxulub: drilling the K-Pg impact crater In collaboration with the International Continental Scientific Drilling Program Platform operations, 21 September–15 October 2016, Onshore Science Party, https://doi.org/10.14379/iodp.pr.364.2017, 2016.
Gulick, S. P. S., Barton, P. J., Christeson, G. L., Morgan, J. V., McDonald, M., Mendoza-Cervantes, K., Pearson, Z. F., Surendra, A., Urrutia-Fucugauchi, J., Vermeesch, P. M., and Warner, M. R.: Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater, Nat. Geosci., 1, 131–135, https://doi.org/10.1038/ngeo103, 2008.
Hildebrandt, A. R.: Mapping Chixculub crater structure with gravity and seismic reflection data, in: Meteorites: Flux with Time and Impact Effects, edited by: Grady, M. M., Geolog. Soc. Lond. Spec. Publ., 140, 155–176, 1998.
Hildebrand, A. R., Millar, J. D., Pilkington, M., and Lawton, D.: Chicxulub Crater Structure Revealed by 3D Gravity Field Modelling, in: 3rd Int. Conf. On Large Meteorite Impacts
, 8–9 August 2003, Nordlingen, Germany,
https://www.lpi.usra.edu/meetings/largeimpacts2003/pdf/4121.pdf (last access: 11 February 2025), 2003.
Hirt, Ch., Rexer, M., Scheinert, M., Pail, R., Claessens, S., and Holmes, S.: A new degree-2190 (10 km resolution) gravity field model for Antarctica developed from GRACE, GOCE and Bedmap 2 data, J. Geod., 90, 105–127, https://doi.org/10.1007/s00190-015-0857-6, 2016.
James, S., Chandran, S., Santosh, M., Pradeepkumar, A. P., Praveen, M. N., and Sajinkumar, K. S.: Meteorite impact craters as hotspots for mineral resources and energy fuels: A global review, Energ. Geosci., 3, 136–146, 2002.
Klokočník, J. and Kostelecký, J.: Gravity signal at Ghawar, Saudi Arabia, from the global gravitational field model EGM 2008 and similarities around, Arab. J. Geosci., 8, 3515–3522, https://doi.org/10.1007/s12517-014-1491-y, 2015.
Klokočník, J., Kostelecký, J., Pešek, I., Novák, P., Wagner, C. A., and Sebera, J.: Candidates for multiple impact craters: Popigai and Chicxulub as seen by the global high resolution gravitational field model EGM08, Solid Earth, 1, 71–83, https://doi.org/10.5194/se-1-71-2010, 2010.
Klokočník, J., Kostelecký, J., and Bezděk, A.: On the detection of the Wilkes Land impact crater, Earth Planets Space, 70, 135–147, https://doi.org/10.1186/s40623-018-0904-7, 2018.
Klokočník, J., Kostelecký, J., Cílek, V., and Bezděk, A.: Subglacial and underground structures detected from recent gravito-topography data, Cambridge SP, ISBN 10:1-5275-4948-8, ISBN 13:978-1-5275-4948-7, 2020a.
Klokočník, J., Kostelecký, J., Bezděk, A., and Kletetschka, G.: Gravity strike angles: a new approach and tool to estimate the direction of impactors of meteoritic craters, Planet. Space Sci., 194, 105113, https://doi.org/10.1016/j.pss.2020.105113, 2020b.
Klokočník, J., Kostelecký, J., Bezděk, A., Kletetschka, G., and Staňková, H.: A 200 km suspected impact crater Kotuykanskaya near Popigai, Siberia, in the light of new gravity aspects from EIGEN 6C4, and other data, Sci. Rep., 10, 6093, https://doi.org/10.1038/s41598-020-62998-6, 2020c.
Klokočník, J., Kostelecký J., Bezděk, A., and Kletetschka, G.: Artefacts in gravity field modelling, Acta Geodynam. Geomat., 18, 511–524, https://doi.org/10.13168/AGG.2021.0036, 2021.
Klokočník, J., Kostelecký, J., Cílek, V., Kletetschka, G., an Bezděk, A.: Gravity aspects from a recent gravity field model GRGM1200A of the Moon and analysis of magnetic data, Icarus, 384, 115086, https://doi.org/10.1016/j.icarus.2022.115086, 2022a.
Klokočník, J., Kostelecký, J., Cílek, V., Bezděk, A., and Kletetschka, G.: Atlas of the Gravity and Magnetic Fields of the Moon, Springer Geophysics, ISBN 978-3-031-08867-4, https://doi.org/10.1007/978-3-031-08867-4_2, 2022b.
Klokočník, J. Kletetschka, G., Kostelecký, J., and Bezděk, A.: Gravity aspects for Mars, Icarus, 406, 115729, https://doi.org/10.1016/j.icarus.2023.115729, 2023a.
Klokočník, J., Kostelecký, J., Bezděk, A., and Cílek, V.: Hydrocarbons on Mars, Int. J. Astrobiol., 22, 696–728, https://doi.org/10.1017/S1473550423000216, 2023b.
Kring, D.: Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin, Nat. Commun., 7, 13161, https://doi.org/10.1038/ncomms13161, 2016.
Lemoine, F. G., Goossens, S., Sabaka, T. J., Nicholas, J. B., Mazarico, E., and Rowlands, D. D.: GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data, Geophys. Res. Lett., 41, 3382–3389, https://doi.org/10.1002/2014GL060027, 2014.
Masaitis, V. L.: Popigai crater: Origin and distribution of diamond-bearing impactites, Meteorit. Planet. Sci., 33, 349–359, 1998.
Masaitis, V. L.: Obscure-bedded Ejecta Facies from the Popigai Impact Structure, Siberia: Lithological Features and Mode of Origin, in: Impact Markers in the Stratigraphic Record, edited by: Koeberl, C. and Martínez-Ruiz, F. C., Springer Verlag, Berlin, Heidelberg, 128–162, https://doi.org/10.1007/978-3-642-55463-6, 2003.
Masaitis, V. L.: Popigai Impact Structure and its Diamond-Bearing Rocks, in: Impact Studies, Springer Nature, ISBN 978-3-319-77987-4, eBook ISBN 978-3-319-77988-1, https://doi.org/10.1007/978-3-319-77988-1, 2019.
Mashchak, M. S. and Naumov, M. V.: Late Modification-Stage Tectonic Deformation of the Popigai Impact Structure, Russia, in: Impact Tectonics. Impact Studies, edited by: Koeberl, C. and Henkel, H., Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-27548-7_7, 2005.
Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., and Brozena, J.: EMAG2: A 2-arcmin resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements, Geochem. Geophy. Geosy., 10, Q08005, https://doi.org/10.1029/2009GC002471, 2009.
Mendes, B. D. L., Kontny, A., Poelchau, M., Fischer, L. A., Gaus, K., Dudzisz, K., Kuipers, B. W. M., and Dekkers, M. J.: Peak-ring magnetism: Rock and mineral magnetic properties of the Chicxulub impact crater, GSA Bull., 136, 307–328, https://doi.org/10.1130/B36547.1, 2023.
Miljikovic, K., Collins, G. S., Mannick, S., and Bland, P. A.: Morphology and population of binary asteroid impact craters, Earth Planet. Sc. Lett., 363, 121–132, https://doi.org/10.1016/j.epsl.2012.12.033, 2013.
Morgan, J. V., Gulick, S. P. S., Bralower, T., at al.: The formation of peak rings in large impact craters, Science, 354, 878–882, https://doi.org/10.1126/science.aah6561, 2016.
Nesvorný, D., Bottke, W. F., and March, S.: Dark primitive asteroids account for a large share of K/Pg-scale impacts on the Earth, Icarus, 368, 114621, https://doi.org/10.1016/j.icarus.2021.114621, 2021.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: EGM2008: An Overview of its Development and Evaluation, National Geospatial-Intelligence Agency, USA, in: Gravity, Geoid and Earth Observation, 23–27 June 2008, Chania, Crete, Greece, https://doi.org/10.1007/978-3-642-10634-7, 2008a.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: An Earth Gravitational Model to Degree 2160: EGM2008, in: EG
U General Assembly, 13–18 April 2008, Vienna, Austria, Geophys. Res. Abstr., 10, EGU2008-A-01891, 2008b.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 17, B04406, https://doi.org/10.1029/2011JB008916, 2012.
Pedersen, B. D. and Rasmussen, T. M.: The gradient tensor of potential field anomalies: Some implications on data collection and data processing of maps, Geophysics, 55, 1558–1566, 1990.
Perry, E., Marin, L., McClain, J., and Velázquez, G.: Ring of Cenotes (sinkholes), north-west Yucatan, Mexico: Its hydrogeologic characteristics and possible association with the Chicxulub impact crater, Geology, 23, 17–20, 1995.
Pilkington, M., Pesonen, L. J., Grieve, R. A. F., and Masaitis, V. L.: Geophysics and Petrophysics of the Popigai Impact Structure, Siberia, in: Impacts in Precambrian Shields, edited by: Plado, J. and Pesonen, L. J., Springer-Verlag, 87–107, https://doi.org/10.1007/978-3-662-05010-1, 2002.
Rajmon, D.: Impact database 2009.1, Planetary and Space Science Centre, University of New Brunswick, Canada,
http://www.passc.net/EarthImpactDatabase/index.html (last access: 11 February 2025), 2009.
Ramos, E. L.: Geological Summary of the Yucatan Peninsula, in: The Gulf of Mexico and the Caribbean, edited by: Nairn, A. E. M. and Stehli, F. G., Springer, Boston, MA, https://doi.org/10.1007/978-1-4684-8535-6_7, 1975.
Schmitz, B., Boschi, S., Cronholm, A., Heck, P., Monechi, S., Montanari, A., and Terfelt, F.: Fragments of Late Eocene Earth-impacting asteroids linked to disturbance of asteroid belt, Earth Planet. Sc. Lett., 425, 77–83, https://doi.org/10.1016/j.epsl.2015.05.041, 2015.
Sebera, J., Wagner, C. A., Bezděk, A., and Klokočník, J.: Short guide to direct gravitational field modelling with Hotine's equations, J. Geod., 87, 223–238, 2013.
Smit, J. and Hertogen, J.: An extraterrestrial event at the Cretaceous–Tertiary boundary, Nature, 285, 198–200, https://doi.org/10.1038/285198a0, 1980.
Spudis, P. D.: The Geology of Multiring Impact Basins, The Moon and Other Planets, in: Cambridge Planetary Science Series, edited by: Axford, W. I., Hunt, G. E., and Greeley, R., Cambridge UP, ISBN 0 521 26103, 1993.
Urrutia-Fucugauchi, J., Arellano-Catalán, O., and Pérez-Cruz, L. : Chicxulub Crater Joint Gravity and Magnetic Anomaly Analysis: Structure, Asymmetries, Impact Trajectory and Target Structures, Pure Appl. Geophys., 179, 2735–2756, https://doi.org/10.1007/s00024-022-03074-0, 2022.
Vishnevsky, S. and Montanari, A.: Popigai impact structure (Arctic Siberia, Russia): Geology, petrology, geochemistry, and geochronology of glas-bearing impactites, in: Large Meteorite Impacts and Planetary Evolution II, Special Paper 339, edited by: Dressler, B. O. and Sharpton, V. L., The Geological Society of America, Boulder, Colorado, https://doi.org/10.1130/SPE339, 1999.
Whitehead, J., Papanastassiou, D. A., Spray, J. G., Grieve, R. A. F., and Wasserburg, G. J.: Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structure, Earth Planet. Sc. Lett., 181, 473–487, https://doi.org/10.1016/S0012-821X(00)00225-9, 2000.
Wichman, R. W.: Post-impact modification of craters and multi-ring basins on the Earth and Moon by volcanism and crustal failure, PhD thesis, Brown University, Providence, Rhode Island,
https://www.proquest.com/openview/89456c499d034eb49b83d702c61b92c3 (last access: 11 February 2025), 1993.
Zhang, F., Pizzi, A., Ruj, T., Komatsu, G., Yin, A., Dang, Y., Liu, Y., and Zou, Y.: Evidence for structural control of mare volcanism in lunar compressional tectonic settings, Nat. Commun., 14, 2892, https://doi.org/10.1038/s41467-023-38615-1, 2023.