Articles | Volume 16, issue 11 
            
                
                    
            
            
            https://doi.org/10.5194/se-16-1249-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1249-2025
                    © Author(s) 2025. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
Hyperspectral mapping of density, porosity, stiffness, and strength in hydrothermally altered volcanic rocks
Samuel T. Thiele
CORRESPONDING AUTHOR
                                            
                                    
                                            Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
                                        
                                    Gabor Kereszturi
                                            Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
                                        
                                    Michael J. Heap
                                            Institut Terre et Environnement de Strasbourg, Université de Strasbourg, CNRS, UMR 7063, 5 rue Descartes, Strasbourg 67084, France
                                        
                                    
                                            Institut Universitaire de France (IUF), Paris, France
                                        
                                    Andréa de Lima Ribeiro
                                            Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
                                        
                                    Akshay V. Kamath
                                            Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
                                        
                                    Maia Kidd
                                            Volcanic Risk Solutions, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
                                        
                                    Matías Tramontini
                                            Institut de Physique des 2 Infinis de Lyon, CNRS-IN2P3, UMR 5822, Université de Lyon, Université Claude Bernard Lyon 1, France
                                        
                                    Marina Rosas-Carbajal
                                            Institut de Physique du Globe de Paris, Université de Paris Cité, CNRS, 75005 Paris, France
                                        
                                    Richard Gloaguen
                                            Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg, Chemnitzer Str. 40, 09599 Freiberg, Germany
                                        
                                    Related authors
Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
                                    Geosci. Model Dev., 18, 7951–7968, https://doi.org/10.5194/gmd-18-7951-2025, https://doi.org/10.5194/gmd-18-7951-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
                                            
                                            
                                        Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
                                    Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
                                            
                                            
                                        Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
                                    Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
                                            
                                            
                                        Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
                                    Geosci. Model Dev., 18, 7951–7968, https://doi.org/10.5194/gmd-18-7951-2025, https://doi.org/10.5194/gmd-18-7951-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
                                            
                                            
                                        Mark S. Bebbington, Melody G. Whitehead, and Gabor Kereszturi
                                    Nat. Hazards Earth Syst. Sci., 25, 3455–3460, https://doi.org/10.5194/nhess-25-3455-2025, https://doi.org/10.5194/nhess-25-3455-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                In volcanic fields, the location of an eruptive vent controls the hazards, their intensities, and ultimately the impact of the eruption. Estimates of where future eruptions are likely to occur inform evacuation plans, the (re)location of vital infrastructure, and the placement of early-warning monitoring equipment. Current estimates assume that locations with more past-vents are more likely to produce future-vents. We provide the formulae for an alternative hypothesis of magma depletion.
                                            
                                            
                                        Akshay V. Kamath, Samuel T. Thiele, Moritz Kirsch, and Richard Gloaguen
                                    Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, https://doi.org/10.5194/se-16-351-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
                                            
                                            
                                        Aldino Rizaldy, Pedram Ghamisi, and Richard Gloaguen
                                    Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 103–109, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, 2024
                            Daniel O'Hara, Liran Goren, Roos M. J. van Wees, Benjamin Campforts, Pablo Grosse, Pierre Lahitte, Gabor Kereszturi, and Matthieu Kervyn
                                    Earth Surf. Dynam., 12, 709–726, https://doi.org/10.5194/esurf-12-709-2024, https://doi.org/10.5194/esurf-12-709-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Understanding how volcanic edifices develop drainage basins remains unexplored in landscape evolution. Using digital evolution models of volcanoes with varying ages, we quantify the geometries of their edifices and associated drainage basins through time. We find that these metrics correlate with edifice age and are thus useful indicators of a volcano’s history. We then develop a generalized model for how volcano basins develop and compare our results to basin evolution in other settings.
                                            
                                            
                                        Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
                                    Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
                                            
                                            
                                        Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
                                    Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
                                            
                                            
                                        Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
                                    Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
                                            
                                            
                                        Stuart R. Mead, Jonathan Procter, and Gabor Kereszturi
                                    Nat. Hazards Earth Syst. Sci., 21, 2447–2460, https://doi.org/10.5194/nhess-21-2447-2021, https://doi.org/10.5194/nhess-21-2447-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                Computer simulations can be used to estimate the flow path and inundation of volcanic mass flows; however, their accuracy needs to be appropriately measured and handled in order to determine hazard zones. This paper presents an approach to simulation accuracy assessment and hazard zonation with a volcanic debris avalanche as the benchmark. This method helped to identify and support key findings about errors in mass flow simulations, as well as potential end-use cases for hazard zonation.
                                            
                                            
                                        Cited articles
                        
                        Arens, F., Coco, A., Gottsmann, J., Hickey, J., and Kilgour, G.: Multiphysics modeling of volcanic unrest at Mt. Ruapehu (New Zealand), Geochem. Geophys. Geosystems, 23, e2022GC010572, https://doi.org/10.1029/2022GC010572, 2022. 
                    
                
                        
                        Aubry, T. J., Farquharson, J. I., Rowell, C. R., Watt, S. F. L., Pinel, V., Beckett, F., Fasullo, J., Hopcroft, P. O., Pyle, D. M., Schmidt, A., and Sykes, J. S.: Impact of climate change on volcanic processes: current understanding and future challenges, Bull. Volcanol., 84, 58, https://doi.org/10.1007/s00445-022-01562-8, 2022. 
                    
                
                        
                        Bakun-Mazor, D., Ben-Ari, Y., Marco, S., and Ben-Dor, E.: Predicting mechanical properties of carbonate rocks using spectroscopy across 0.4–12 µm, Rock Mech. Rock Eng., 57, 8951–8968, https://doi.org/10.1007/s00603-024-04035-w, 2024. 
                    
                
                        
                        Chandrasekhar, S.: Radiative transfer, Dover Publications, New York, ISBN 978-0-486-60590-6, 1960. 
                    
                
                        
                        Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R., Rodger, A., and Verrall, M.: Next generation mineral mapping: Queensland airborne HyMap and satellite ASTER surveys 2006–2008, Publicly Available Rep. P2007364, Perth, 152, 2008. 
                    
                
                        
                        Cundall, P. A., Pierce, M. E., and Mas Ivars, D.: Quantifying the size effect of rock mass strength, in: SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics, 3–15, 2008. 
                    
                
                        
                        del Potro, R. and Hürlimann, M.: A comparison of different indirect techniques to evaluate volcanic intact rock strength, Rock Mech. Rock Eng., 42, 931–938, https://doi.org/10.1007/s00603-008-0001-5, 2009. 
                    
                
                        
                        Dewez, T. J. B., Girardeau-Montaut, D., Allanic, C., and Rohmer, J.: Facets: a cloudcompare plugin to extract geological planes from unstructured 3D point clouds, ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLI-B5, 799, https://doi.org/10.5194/isprsarchives-xli-b5-799-2016, 2016. 
                    
                
                        
                        Dinçer, I., Acar, A., Çobanoğlu, I., and Uras, Y.: Correlation between Schmidt hardness, uniaxial compressive strength and Young's modulus for andesites, basalts and tuffs, Bull. Eng. Geol. Environ., 63, 141–148, https://doi.org/10.1007/s10064-004-0230-0, 2004. 
                    
                
                        
                        Farquharson, J., Heap, M. J., Varley, N. R., Baud, P., and Reuschlé, T.: Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study, J. Volcanol. Geotherm. Res., 297, 52–68, https://doi.org/10.1016/j.jvolgeores.2015.03.016, 2015. 
                    
                
                        
                        Foster, S., Chilton, J., Nijsten, G. J., and Richts, A.: Groundwater – a global focus on the local resource, Curr. Opin. Environ. Sustain., 5, 685–695, https://doi.org/10.1016/j.cosust.2013.10.010, 2013. 
                    
                
                        
                        Franzosi, F., Crippa, C., Derron, M. H., Jaboyedoff, M., and Agliardi, F.: Slope-scale remote mapping of rock mass fracturing by modeling cooling trends derived from infrared thermography, Remote Sens., 15, 4525, https://doi.org/10.3390/rs15184525, 2023. 
                    
                
                        
                        Griffiths, L., Heap, M.J., Baud, P., and Schmittbuhl, J.: Quantification of microcrack characteristics and implications for stiffness and strength of granite, Int. J. Rock Mech. Min. Sci., 100, 138–150, https://doi.org/10.1016/j.ijrmms.2017.10.013, 2017. 
                    
                
                        
                        Hapke, B.: Bidirectional reflectance spectroscopy: 1. Theory, J. Geophys. Res.-Solid Earth, 86, 3039–3054, https://doi.org/10.1029/JB086iB04p03039, 1981. 
                    
                
                        
                        Hapke, B.: Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness, Icarus, 59, 41–59, https://doi.org/10.1016/0019-1035(84)90054-X, 1984. 
                    
                
                        
                        Hapke, B.: Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect, Icarus, 67, 264–280, https://doi.org/10.1016/0019-1035(86)90108-9, 1986. 
                    
                
                        
                        Hapke, B.: Theory of reflectance and emittance spectroscopy, Topics in Remote Sensing, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511524998, 1993. 
                    
                
                        
                        Hapke, B.: Bidirectional reflectance spectroscopy: 5. The coherent backscatter opposition effect and anisotropic scattering, Icarus, 157, 523–534, https://doi.org/10.1006/icar.2002.6853, 2002. 
                    
                
                        
                        Hapke, B.: Bidirectional reflectance spectroscopy: 6. Effects of porosity, Icarus, 195, 918–926, https://doi.org/10.1016/j.icarus.2008.01.003, 2008. 
                    
                
                        
                        Hapke, B.: Theory of reflectance and emittance spectroscopy, Cambridge University Press, 2012. 
                    
                
                        
                        Hardgrove, C. J., Rogers, A. D., Glotch, T. D., and Arnold, J. A.: Thermal emission spectroscopy of microcrystalline sedimentary phases: effects of natural surface roughness on spectral feature shape, J. Geophys. Res.-Planets, 121, 542–555, https://doi.org/10.1002/2015JE004919, 2016. 
                    
                
                        
                        Harnett, C. E. and Heap, M. J.: Mechanical and topographic factors influencing lava dome growth and collapse, J. Volcanol. Geotherm. Res., 420, 107398, https://doi.org/10.1016/j.jvolgeores.2021.107398, 2021. 
                    
                
                        
                        Harnett, C. E., Kendrick, J. E., Lamur, A., Thomas, M. E., Stinton, A., Wallace, P. A., Utley, J. E. P., Murphy, W., Neuberg, J., and Lavallée, Y.: Evolution of mechanical properties of lava dome rocks across the 1995–2010 eruption of Soufrière Hills volcano, Montserrat, Front. Earth Sci., 7, https://doi.org/10.3389/feart.2019.00007, 2019. 
                    
                
                        
                        Heap, M. J. and Violay, M. E. S.: The mechanical behaviour and failure modes of volcanic rocks: a review, Bull. Volcanol., 83, 33, https://doi.org/10.1007/s00445-021-01447-2, 2021. 
                    
                
                        
                        Heap, M. J., Gravley, D. M., Kennedy, B. M., Gilg, H. A., Bertolett, E., and Barker, S. L. L.: Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: the Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand), J. Volcanol. Geotherm. Res., 390, 106703, https://doi.org/10.1016/j.jvolgeores.2019.106703, 2020a. 
                    
                
                        
                        Heap, M. J., Villeneuve, M., Albino, F., Farquharson, J. I., Brothelande, E., Amelung, F., Got, J. L., and Baud, P.: Towards more realistic values of elastic moduli for volcano modelling, J. Volcanol. Geotherm. Res., 390, 106684, https://doi.org/10.1016/j.jvolgeores.2019.106684, 2020b. 
                    
                
                        
                        Heap, M. J., Baumann, T., Gilg, H. A., Kolzenburg, S., Ryan, A. G., Villeneuve, M., Russell, J. K., Kennedy, L. A., Rosas-Carbajal, M., and Clynne, M. A.: Hydrothermal alteration can result in pore pressurization and volcano instability, Geology, 49, 1348–1352, https://doi.org/10.1130/G49063.1, 2021a. 
                    
                
                        
                        Heap, M. J., Baumann, T. S., Rosas-Carbajal, M., Komorowski, J. C., Gilg, H. A., Villeneuve, M., Moretti, R., Baud, P., Carbillet, L., Harnett, C., and Reuschlé, T.: Alteration-induced volcano instability at La Soufrière de Guadeloupe (Eastern Caribbean), J. Geophys. Res.-Solid Earth, 126, e2021JB022514, https://doi.org/10.1029/2021JB022514, 2021b. 
                    
                
                        
                        Heap, M. J., Lavallée, Y., Petrakova, L., Baud, P., Reuschlé, T., Varley, N. R., and Dingwell, D. B.: Microstructural controls on the physical and mechanical properties of edifice‐forming andesites at Volcán de Colima, Mexico, Journal of Geophysical Research: Solid Earth, 119, 2925–2963, 2014. 
                    
                
                        
                        Heap, M. J., Troll, V. R., Harris, C., Gilg, H. A., Moretti, R., Rosas-Carbajal, M., Komorowski, J. C., and Baud, P.: Whole-rock oxygen isotope ratios as a proxy for the strength and stiffness of hydrothermally altered volcanic rocks, Bull. Volcanol., 84, 74, https://doi.org/10.1007/s00445-022-01588-y, 2022. 
                    
                
                        
                        Hickey, J., Pascal, K., Head, M., Gottsmann, J., Fournier, N., Hreinsdottir, S., and Syers, R.: Magma pressurization sustains ongoing eruptive episode at dome-building Soufrière Hills volcano, Montserrat, Geology, 50, 1261–1265, https://doi.org/10.1130/G50239.1, 2022. 
                    
                
                        
                        Hoek, E. and Diederichs, M. S.: Empirical estimation of rock mass modulus, Int. J. Rock Mech. Min. Sci., 43, 203–215, 2006. 
                    
                
                        
                        Huang, J., Liu, S., Liu, W., Zhang, C., Li, S., Yu, M., and Wu, L.: Experimental study on the thermal infrared spectral variation of fractured rock, Remote Sens., 13, 1191, https://doi.org/10.3390/rs13061191, 2021. 
                    
                
                        
                        Hunt, G. R. and Vincent, R. K.: The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes, J. Geophys. Res., 1896–1977, 73, 6039–6046, https://doi.org/10.1029/JB073i018p06039, 1968. Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., and Cundall, P. A.: The synthetic rock mass approach for jointed rock mass modelling, International Journal of Rock Mechanics and Mining Sciences, 48, 219–244, https://doi.org/10.1016/j.ijrmms.2010.11.014, 2011. 
                    
                
                        
                        Kamath, A. V., Thiele, S. T., Kirsch, M., and Gloaguen, R.: Multiphysics property prediction from hyperspectral drill core data, Solid Earth, 16, 351–365, https://doi.org/10.5194/se-16-351-2025, 2025. 
                    
                
                        
                        Kereszturi, G., Heap, M., Schaefer, L. N., Darmawan, H., Deegan, F. M., Kennedy, B., Komorowski, J. C., Mead, S., Rosas-Carbajal, M., Ryan, A., Troll, V. R., Villeneuve, M., and Walter, T. R.: Porosity, strength, and alteration – towards a new volcano stability assessment tool using VNIR-SWIR reflectance spectroscopy, Earth Planet. Sci. Lett., 602, 117929, https://doi.org/10.1016/j.epsl.2022.117929, 2023. 
                    
                
                        
                        Kereszturi, G., Schaefer, L. N., Miller, C., and Mead, S.: Hydrothermal alteration on composite volcanoes: mineralogy, hyperspectral imaging, and aeromagnetic study of Mt Ruapehu, New Zealand, Geochem. Geophys. Geosystems, 21, e2020GC009270, https://doi.org/10.1029/2020GC009270, 2020. 
                    
                
                        
                        Kidd, M., Kereszturi, G., Heap, M., Kennedy, B., and Procter, J.: Linking hydrothermal alteration and volcanic rock mechanics through VNIR-SWIR spectroscopy, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-6858, https://doi.org/10.5194/egusphere-egu24-6858, 2024. 
                    
                
                        
                        Kirkland, L. E., Herr, K. C., and Salisbury, J. W.: Thermal infrared spectral band detection limits for unidentified surface materials, Appl. Optics, 40, 4852–4862, https://doi.org/10.1364/AO.40.004852, 2001. 
                    
                
                        
                        Kirkland, L. E., Herr, K. C., and Adams, P. M.: Infrared stealthy surfaces: why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces, J. Geophys. Res.-Planets, 108, https://doi.org/10.1029/2003JE002105, 2003. 
                    
                
                        
                        Laukamp, C., Cudahy, T., Cleverley, J. S., Oliver, N. H. S., and Hewson, R.: Airborne hyperspectral imaging of hydrothermal alteration zones in granitoids of the Eastern Fold Belt, Mount Isa Inlier, Australia, Geochem. Explor. Environ. Anal., 11, 3–24, https://doi.org/10.1144/1467-7873/09-231, 2011. 
                    
                
                        
                        Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., and Ramanaidou, E.: Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra, Minerals, 11, 347, https://doi.org/10.3390/min11040347, 2021. 
                    
                
                        
                        Lee, J., Cook, O. J., Argüelles, A. P., and Mehmani, Y.: Imaging geomechanical properties of shales with infrared light, Fuel, 334, 126467, https://doi.org/10.1016/j.fuel.2022.126467, 2023. 
                    
                
                        
                        Leight, C. J., Ytsma, C., McCanta, M. C., Dyar, M. D., and Glotch, T. D.: Compositional Characterization of Glassy Volcanic Material From VSWIR and MIR Spectra Using Partial Least Squares Regression Models, Earth Space Sci., 11, e2023EA003439, https://doi.org/10.1029/2023EA003439, 2024. 
                    
                
                        
                        Leiter, S., Russell, J. K., Heap, M. J., Barendregt, R. W., Wilson, S., and Edwards, B.: Distribution, intensity, and timing of palagonitization in glaciovolcanic deposits, Cracked Mountain volcano, Canada, Bull. Volcanol., 86, 32, https://doi.org/10.1007/s00445-024-01724-w, 2024. 
                    
                
                        
                        Lewicka, E., Guzik, K., and Galos, K.: On the Possibilities of Critical Raw Materials Production from the EU's Primary Sources, Resources, 10, 50, https://doi.org/10.3390/resources10050050, 2021. 
                    
                
                        
                        Loche, M., Scaringi, G., Blahůt, J., Melis, M. T., Funedda, A., Da Pelo, S., Erbì, I., Deiana, G., Meloni, M. A., and Cocco, F.: An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff, Remote Sens., 13, 1265, https://doi.org/10.3390/rs13071265, 2021. 
                    
                
                        
                        Lund, J. W. and Toth, A. N.: Direct utilization of geothermal energy 2020 worldwide review, Geothermics, 90, 101915, https://doi.org/10.1016/j.geothermics.2020.101915, 2021. 
                    
                
                        
                        Lundberg, S.M., Lee, S.-I.,: A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems, Presented at the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, https://doi.org/10.48550/arXiv.1705.07874, 2017. 
                    
                
                        
                        Lyon, R. J. P.: Analysis of rocks by spectral infrared emission (8 to 25 microns), Econ. Geol., 60, 715–736, https://doi.org/10.2113/gsecongeo.60.4.715, 1965. 
                    
                
                        
                        Mineo, S. and Pappalardo, G.: The Use of Infrared Thermography for Porosity Assessment of Intact Rock, Rock Mech. Rock Eng., 49, 3027–3039, https://doi.org/10.1007/s00603-016-0992-2, 2016. 
                    
                
                        
                        Mordensky, S. P., Villeneuve, M. C., Farquharson, J. I., Kennedy, B. M., Heap, M. J., and Gravley, D. M.: Rock mass properties and edifice strength data from Pinnacle Ridge, Mt. Ruapehu, New Zealand, J. Volcanol. Geotherm. Res., 367, 46–62, https://doi.org/10.1016/j.jvolgeores.2018.09.012, 2018. 
                    
                
                        
                        Mustard, J. F. and Hays, J. E.: Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 µm, Icarus, 125, 145–163, https://doi.org/10.1006/icar.1996.5583, 1997. 
                    
                
                        
                        Osterloo, M. M., Hamilton, V. E., and Anderson, F. S.: A laboratory study of the effects of roughness on the thermal infrared spectra of rock surfaces, Icarus, 220, 404–426, https://doi.org/10.1016/j.icarus.2012.04.020, 2012. 
                    
                
                        
                        Poganj, A., Heap, M. J., and Baud, P.: Spatial distribution of alteration and strength in a lava dome: Implications for large-scale volcano stability modelling, J. Volcanol. Geotherm. Res., 463, 108344, https://doi.org/10.1016/j.jvolgeores.2025.108344, 2025. 
                    
                
                        
                        Pola, A., Crosta, G., Fusi, N., Barberini, V., and Norini, G.: Influence of alteration on physical properties of volcanic rocks, Tectonophysics, 566–567, 67–86, https://doi.org/10.1016/j.tecto.2012.07.017, 2012. 
                    
                
                        
                        Portela, B., Sepp, M. D., van Ruitenbeek, F. J. A., Hecker, C., and Dilles, J. H.: Using hyperspectral imagery for identification of pyrophyllite-muscovite intergrowths and alunite in the shallow epithermal environment of the Yerington porphyry copper district, Ore Geol. Rev., 131, 104012, https://doi.org/10.1016/j.oregeorev.2021.104012, 2021. 
                    
                
                        
                        Rost, E., Hecker, C., Schodlok, M. C., and van der Meer, F. D.: Rock Sample Surface Preparation Influences Thermal Infrared Spectra, Minerals, 8, 475, https://doi.org/10.3390/min8110475, 2018. 
                    
                
                        
                        Salisbury, J. W. and Eastes, J. W.: The effect of particle size and porosity on spectral contrast in the mid-infrared, Icarus, 64, 586–588, https://doi.org/10.1016/0019-1035(85)90078-8, 1985. 
                    
                
                        
                        Salisbury, J. W. and Wald, A.: The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals, Icarus, 96, 121–128, https://doi.org/10.1016/0019-1035(92)90009-V, 1992. 
                    
                
                        
                        Schaefer, L. N., Kereszturi, G., Villeneuve, M., and Kennedy, B.: Determining physical and mechanical volcanic rock properties via reflectance spectroscopy, J. Volcanol. Geotherm. Res., 420, 107393, https://doi.org/10.1016/j.jvolgeores.2021.107393, 2021. 
                    
                
                        
                        Schaefer, L. N., Kereszturi, G., Kennedy, B. M., and Villeneuve, M.: Characterizing lithological, weathering, and hydrothermal alteration influences on volcanic rock properties via spectroscopy and laboratory testing, a case study of Mount Ruapehu volcano, New Zealand, Bull. Volcanol., 85, 43, https://doi.org/10.1007/s00445-023-01657-w, 2023. 
                    
                
                        
                        Schodlok, M. C., Whitbourn, L., Huntington, J., Mason, P., Green, A., Berman, M., Coward, D., Connor, P., Wright, W., Jolivet, M., and Martinez, R.: HyLogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging, functional description, Aust. J. Earth Sci., 63, 929–940, https://doi.org/10.1080/08120099.2016.1231133, 2016. 
                    
                
                        
                        Shapley, L. S.: On Balanced Games without Side Payments, in: Mathematical Programming, edited by: Hu, T. C. and Robinson, S. M., Academic Press, 261–290, https://doi.org/10.1016/B978-0-12-358350-5.50012-9, 1973. 
                    
                
                        
                        Simpson, M. P. and Rae, A. J.: Short-wave infrared (SWIR) reflectance spectrometric characterisation of clays from geothermal systems of the Taupō Volcanic Zone, New Zealand, Geothermics, 73, 74–90, https://doi.org/10.1016/j.geothermics.2018.01.006, 2018. 
                    
                
                        
                        Soltani, M., Moradi Kashkooli, F., Dehghani-Sanij, A. R., Nokhosteen, A., Ahmadi-Joughi, A., Gharali, K., Mahbaz, S. B., and Dusseault, M. B.: A comprehensive review of geothermal energy evolution and development, Int. J. Green Energy, 16, 971–1009, https://doi.org/10.1080/15435075.2019.1650047, 2019. 
                    
                
                        
                        Strehlow, K., Gottsmann, J. H., and Rust, A. C.: Poroelastic responses of confined aquifers to subsurface strain and their use for volcano monitoring, Solid Earth, 6, 1207–1229, https://doi.org/10.5194/se-6-1207-2015, 2015. 
                    
                
                        
                        Swanson, E., Wilson, J., Broome, S., and Sussman, A.: The Complicated Link Between Material Properties and Microfracture Density for an Underground Explosion in Granite, J. Geophys. Res.-Solid Earth, 125, e2020JB019894, https://doi.org/10.1029/2020JB019894, 2020. 
                    
                
                        
                        Takemura, T., Golshani, A., Oda, M., and Suzuki, K.: Preferred orientations of open microcracks in granite and their relation with anisotropic elasticity, Int. J. Rock Mech. Min. Sci., 40, 443–454, https://doi.org/10.1016/S1365-1609(03)00014-5, 2003. 
                    
                
                        
                        Thiele, S. T., Grose, L., Samsu, A., Micklethwaite, S., Vollgger, S. A., and Cruden, A. R.: Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data, Solid Earth, 8, 1241–1253, https://doi.org/10.5194/se-8-1241-2017, 2017. 
                    
                
                        
                        Thiele, S. T., Lorenz, S., Kirsch, M., Acosta, I. C. C., Tusa, L., Hermann, E., Möckel, R., and Gloaguen, R.: Multi-scale, multi-sensor data integration for automated 3-D geological mapping using hylite, Ore Geol. Rev., 136, https://doi.org/10.1016/j.oregeorev.2021.104252, 2021. 
                    
                
                        
                        Thiele, S. T., Bnoulkacem, Z., Lorenz, S., Bordenave, A., Menegoni, N., Madriz, Y., Dujoncquoy, E., Gloaguen, R., and Kenter, J.: Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs, Remote Sens., 14, 5, https://doi.org/10.3390/rs14010005, 2022. 
                    
                
                        
                        Thiele, S. T., Kirsch, M., Lorenz, S., Saffi, H., El Alami, S., Contreras Acosta, I. C., Madriz, Y., and Gloaguen, R.: Maximising the value of hyperspectral drill core scanning through real-time processing and analysis, Front. Earth Sci., 12, https://doi.org/10.3389/feart.2024.1433662, 2024.  
                    
                
                        
                        Tramontini, M., Rosas-Carbajal, M., Zyserman, F. I., Besson, P., Marteau, J., and Heap, M.: Investigating hydrothermal alteration in Copahue volcano (Argentina/Chile) using muography and laboratory measurements on rock samples, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-6565, https://doi.org/10.5194/egusphere-egu24-6565, 2024. 
                    
                
                        
                        Vairé, E., Heap, M. J., Baud, P., and van Wyk de Vries, B.: Quantifying the physical and mechanical heterogeneity of porous volcanic rocks from the Chaîne des Puys (Massif Central, France), Bull. Volcanol., 86, 49, https://doi.org/10.1007/s00445-024-01742-8, 2024. 
                    
                
                        
                        van der Meer, F., Kopačková, V., Koucká, L., van der Werff, H. M. A., van Ruitenbeek, F. J. A., and Bakker, W. H.: Wavelength feature mapping as a proxy to mineral chemistry for investigating geologic systems: An example from the Rodalquilar epithermal system, Int. J. Appl. Earth Obs. Geoinformation, 64, 237–248, https://doi.org/10.1016/j.jag.2017.09.008, 2018. 
                    
                
                        
                        Vincent, R. K. and Hunt, G. R.: Infrared reflectance from mat surfaces, Appl. Optics, 7, 53–59, https://doi.org/10.1364/AO.7.000053, 1968. 
                    
                
                        
                        Vrakas, A., Dong, W., and Anagnostou, G.: Elastic deformation modulus for estimating convergence when tunnelling through squeezing ground, Géotechnique, 68, 713–728, https://doi.org/10.1680/jgeot.17.P.008, 2018. 
                    
                
                        
                        Williams, D. B. and Ramsey, M. S.: Infrared spectroscopy of volcanoes: from laboratory to orbital scale, Front. Earth Sci., 12, https://doi.org/10.3389/feart.2024.1308103, 2024. 
                    
                Short summary
            Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
            Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and...