Békési, E., Lenkey, L., Limberger, J., Porkoláb, K., Balázs, A., Bonté, D., Vrijlandt, M., Horváth, F., Cloetingh, S., and van Wees, J.-D.: Subsurface temperature model of the Hungarian part of the Pannonian Basin, Global Planet. Change, 171, 48–64, https://doi.org/10.1016/j.gloplacha.2017.09.020, 2018.
Békési, E., Struijk, M., Bonté, D., Veldkamp, H., Limberger, J., Fokker, P. A., Vrijlandt, M., and van Wees, J.-D.: An updated geothermal model of the Dutch subsurface based on inversion of temperature data, Geothermics, 88, 101880, https://doi.org/10.1016/j.geothermics.2020.101880, 2020.
Békési, E., Porkoláb, K., Wesztergom, V., and Wéber, Z.: Updated stress dataset of the Circum-Pannonian region: Implications for regional tectonics and geo-energy applications, Tectonophysics, 856, 229860, https://doi.org/10.1016/j.tecto.2023.229860, 2023.
Békési, E., van Wees, J. D., Porkoláb, K., Hencz, M., and Berkesi, M.: Lithosphere temperature models for NW Hungary, Mendeley Data [data set], https://doi.org/10.17632/vp7jdp79y4.1, 2024.
Bonté, D., Van Wees, J.-D., and Verweij, J.: Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling, Neth. J. Geosci., 91, 491–515, https://doi.org/10.1017/S0016774600000354, 2012.
Buck, W. R., Martinez, F., Steckler, M. S., and Cochran, J. R.: Thermal consequences of lithospheric extension: pure and simple, Tectonics, 7, 213–234, 1988.
Budai, T., Császár, G., Csillag, G., Dudko, A., Koloszár, L., and Majoros, G.: The geology of the Balaton Highland, Geological Institute of Hungary, Budapest, Hungary, 257 pp., ISBN 9636712247, 1999.
Chapman, D.: Thermal gradients in the continental crust, Geological Society, London, Special Publications, 24, 63–70, https://doi.org/10.1144/GSL.SP.1986.024.01.07, 1986.
Cloetingh, S., Van Wees, J. D., Ziegler, P., Lenkey, L., Beekman, F., Tesauro, M., Förster, A., Norden, B., Kaban, M., and Hardebol, N.: Lithosphere tectonics and thermo-mechanical properties: an integrated modelling approach for Enhanced Geothermal Systems exploration in Europe, Earth-Sci. Rev., 102, 159–206, https://doi.org/10.1016/j.earscirev.2010.05.003, 2010.
Corver, M. P., Doust, H., van Wees, J. D., Bada, G., and Cloetingh, S.: Classification of rifted sedimentary basins of the Pannonian Basin System according to the structural genesis, evolutionary history and hydrocarbon maturation zones, Mar. Petrol. Geol., 26, 1452–1464, https://doi.org/10.1016/j.marpetgeo.2008.12.001, 2009.
Crameri, F.: Scientific colour maps, Zenodo [code], https://doi.org/10.5281/zenodo.1243862, 2018.
Csontos, L. and Nagymarosy, A.: The Mid-Hungarian line: a zone of repeated tectonic inversions, Tectonophysics, 297, 51–71, https://doi.org/10.1016/S0040-1951(98)00163-2, 1998.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010), US Geological Survey, Open-File Report, 2011-1073, 34 pp., https://doi.org/10.3133/ofr20111073, 2011.
Dövényi, P. and Horváth, F.: A Review of Temperature, Thermal Conductivity, and Heat Flow Data for the Pannonian Basin: Chapter 16, in: The Pannonian Basin: A Study in Basin Evolution, Royden, L. H. and Horváth, F., American Association of Petroleum Geologists, https://doi.org/10.1306/M45474C16, 1988.
Dövényi, P., Horváth, F., Liebe, P., Gálfi, J., and Erki, I.: Geothermal conditions of Hungary, Geophys. Transactions, 29, 3–114, 1983.
Dövényi, P., Horváth, F., and Drahos, D.: Geothermal thermic map (Hungary), in: Atlas of geothermal resources in Europe, Office for Official Publications of the European Communities (Luxembourg), 36–38, ISBN 92-828-0999-4, 2002.
Emerick, A. A. and Reynolds, A. C.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model, Comput. Geosci., 17, 325–350, https://doi.org/10.1007/s10596-012-9333-z, 2013b.
Faccenna, C., Becker, T. W., Auer, L., Billi, A., Boschi, L., Brun, J. P., Capitanio, F. A., Funiciello, F., Horvàth, F., and Jolivet, L.: Mantle dynamics in the Mediterranean, Rev. Geophys., 52, 283–332, https://doi.org/10.1002/2013RG000444, 2014.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., and Roth, L.: The shuttle radar topography mission, Rev. Geophys., 45, RG2004, https://doi.org/10.1029/2005RG000183, 2007.
Fodor, L., Bada, G., Csillag, G., Horváth, E., Ruszkiczay-Rüdiger, Z., Palotás, K., Síkhegyi, F., Timár, G., Cloetingh, S., and Horváth, F.: An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin, Tectonophysics, 410, 15–41, https://doi.org/10.1016/j.tecto.2005.06.008, 2005.
Fodor, L., Uhrin, A., Palotás, K., Selmeczi, I., Tóthné Makk, Á., Rižnar, I., Trajanova, M., Rifelj, H., Jelen, B., and Budai, T.: Geological and structural model of the Mura–Zala Basin and its rims as a basis for hydrogeological analysis, Annual Report of the Geological Institute of Hungary, 2011, 47–92, 2013.
Fodor, L., Balázs, A., Csillag, G., Dunkl, I., Héja, G., Jelen, B., Kelemen, P., Kövér, S., Németh, A., and Nyíri, D.: Crustal exhumation and depocenter migration from the Alpine orogenic margin towards the Pannonian extensional back-arc basin controlled by inheritance, Global Planet. Change, 201, 103475, https://doi.org/10.1016/j.gloplacha.2021.103475, 2021.
Grenerczy, G., Sella, G., Stein, S., and Kenyeres, A.: Tectonic implications of the GPS velocity field in the northern Adriatic region, Geophys. Res. Lett., 32, L16311, https://doi.org/10.1029/2005GL022947, 2005.
Haas, J., Budai, T., Csontos, L., Fodor, L., Konrád, G., and Koroknai, B.: Geology of the pre-Cenozoic basement of Hungary, Geological and Geophysical Institute of Hungary, Budapest, Hungary, 71 pp., ISBN 9789636712990, 2014.
Hantschel, T. and Kauerauf, A. I.: Fundamentals of basin and petroleum systems modeling, Springer Science & Business Media, https://doi.org/10.1007/978-3-540-72318-9, 2009.
Héja, G., Ortner, H., Fodor, L., Németh, A., and Kövér, S.: Modes of oblique inversion: A case study from the Cretaceous fold and thrust belt of the western Transdanubian Range (TR), West Hungary, Tectonics, 41, e2021TC006728, https://doi.org/10.1029/2021TC006728, 2022.
Hetényi, G. and Bus, Z.: Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary, J. Seismol., 11, 405–414, https://doi.org/10.1007/s10950-007-9060-4, 2007.
Horváth, F. and Cloetingh, S.: Stress-induced late stage subsidence anomalies in the Pannonian Basin, Tectonophysics, 266, 287–300, https://doi.org/10.1016/S0040-1951(96)00194-1, 1996.
Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., and Cloetingh, S.: Formation and deformation of the Pannonian Basin: constraints from observational data, Geological Society, London, Memoirs, 32, 191–206, https://doi.org/10.1144/GSL.MEM.2006.032.01.11, 2006.
Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T., and Wórum, G.: Evolution of the Pannonian basin and its geothermal resources, Geothermics, 53, 328–352, https://doi.org/10.1016/j.geothermics.2014.07.009, 2015.
Kalmár, D., Hetényi, G., Balázs, A., Bondár, I., and Group, A. W.: Crustal thinning from orogen to back-arc basin: The structure of the Pannonian Basin region revealed by P-to-S converted seismic waves, J. Geophys. Res.-Sol. Ea., 126, e2020JB021309, https://doi.org/10.1029/2020JB021309, 2021.
Kalmár, D., Petrescu, L., Stipčević, J., Balázs, A., János Kovács, I., AlpArray, and PACASE Working Groups: Lithospheric Structure of the Circum-Pannonian Region Imaged by S-To-P Receiver Functions, Geochem. Geophy. Geosy., 24, e2023GC010937, https://doi.org/10.1029/2023GC010937, 2023.
Kilényi, É., Kröll, A., Obernauer, D., Sefara, J., Steinhauser, P., Szabó, Z., and Wessely, G., Pre-Tertiary basement contour map of the Carpathian Basin beneath Austria, Czechoslovakia and Hungary: Geophysical Transactions, 36, 15–36,
http://epa.niif.hu/02900/02941/00075/pdf/EPA02941_geofizikai_kozlemenyek_1991_36_1-2_015-036.pdf, (last access: 5 July 2024), 1991
Lenkey, L.: Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution, PhD thesis, Vrije Universiteit, Amsterdam, 215 pp.,
https://hdl.handle.net/1871.1/2686075b-7e46-4c55-9c44-50ee40f7e984 (last access: 5 July 2024), 1999.
Lenkey, L., Dövényi, P., Horváth, F., and Cloetingh, S.: Geothermics of the Pannonian basin and its bearing on the neotectonics, EGU Stephan Mueller Special Publication Series, 3, 29–40, https://doi.org/10.5194/smsps-3-29-2002, 2002.
Lenkey, L., Raáb, D., Goetzl, G., Lapanje, A., Nádor, A., Rajver, D., Rotár-Szalkai, Á., Svasta, J., and Zekiri, F.: Lithospheric scale 3D thermal model of the Alpine–Pannonian transition zone, Acta Geod. Geophys., 52, 161–182, https://doi.org/10.1007/s40328-017-0194-8, 2017.
Lenkey, L., Mihályka, J., and Paróczi, P.: Review of geothermal conditions of Hungary, Földtani Közlöny, 151, 65–65, https://doi.org/10.23928/foldt.kozl.2021.151.1.65, 2021.
Limberger, J., van Wees, J.-D., Tesauro, M., Smit, J., Bonté, D., Békési, E., Pluymaekers, M., Struijk, M., Vrijlandt, M., Beekman, F., and Cloetingh, S.: Refining the thermal structure of the European lithosphere by inversion of subsurface temperature data, Global Planet. Change, 171, 18–47, https://doi.org/10.1016/j.gloplacha.2018.07.009, 2018.
Mádl-Szőnyi, J. and Tóth, Á.: Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region, Hydrogeol. J., 23, 1359–1380, https://doi.org/10.1007/s10040-015-1274-x, 2015.
Majcin, D., Bilčík, D., and Klučiar, T.: Thermal state of the lithosphere in the Danube Basin and its relation to tectonics, Contributions to Geophysics and Geodesy, 45, 193–218, https://doi.org/10.1515/congeo-2015-0020, 2015.
Mendrinos, D., Choropanitis, I., Polyzou, O., and Karytsas, C.: Exploring for geothermal resources in Greece, Geothermics, 39, 124–137, https://doi.org/10.1016/j.geothermics.2009.11.002, 2010.
Mihályka, J., Paróczi, P., Balázs, L., Drahos, D., and Lenkey, L.: Thermal conductivity of sediments from well-logs and its application to determine heat flow density in the Pannonian Basin, Hungary, Tectonophysics, 868, 230095, https://doi.org/10.1016/j.tecto.2023.230095, 2023.
OGRe: Geothermals Information System, MBFSZ,
https://map.hugeo.hu/ogre_en/ (last access: 5 July 2024), 2020.
Petersen, K., Armitage, J., Nielsen, S., and Thybo, H.: Mantle temperature as a control on the time scale of thermal evolution of extensional basins, Earth Planet. Sc. Lett., 409, 61–70, https://doi.org/10.1016/j.epsl.2014.10.043, 2015.
Porkoláb, K., Broerse, T., Kenyeres, A., Békési, E., Tóth, S., Magyar, B., and Wesztergom, V.: Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data, Acta Geod. Geophys., 58, 149–173, https://doi.org/10.1007/s40328-023-00409-8, 2023.
Porkoláb, K., Békési, E., Győri, E., Broerse, T., Czecze, B., Kenyeres, A., Tari, G., and Wéber, Z.: Present-day stress field, strain rate field and seismicity of the Pannonian region: overview and integrated analysis, Geological Society, London, Special Publications, 554, SP554-2023-2219, https://doi.org/10.1144/SP554-2023-219, 2025.
Ranalli, G. and Rybach, L.: Heat flow, heat transfer and lithosphere rheology in geothermal areas: features and examples, J. Volcanol. Geoth. Res., 148, 3–19, https://doi.org/10.1016/j.jvolgeores.2005.04.010, 2005.
Royden, L. and Keen, C.: Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence curves, Earth Planet. Sc. Lett., 51, 343–361, https://doi.org/10.1016/0012-821X(80)90216-2, 1980.
Royden, L., Horváth, F., Nagymarosy, A., and Stegena, L.: Evolution of the Pannonian basin system: 2. Subsidence and thermal history, Tectonics, 2, 91–137, https://doi.org/10.1029/TC002i001p00091, 1983.
Schatz, J. F. and Simmons, G.: Thermal conductivity of earth materials at high temperatures, J. Geophys. Res., 77, 6966–6983, https://doi.org/10.1029/JB077i035p06966, 1972.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., and Ustaszewski, K.: The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units, Swiss J. Geosci., 101, 139–183, https://doi.org/10.1007/s00015-008-1247-3, 2008.
Sekiguchi, K.: A method for determining terrestrial heat flow in oil basinal areas, Tectonophysics, 103, 67–79, https://doi.org/10.1016/0040-1951(84)90075-1, 1984.
Šujan, M., Rybár, S., Kováč, M., Bielik, M., Majcin, D., Minár, J., Plašienka, D., Nováková, P., and Kotulová, J.: The polyphase rifting and inversion of the Danube Basin revised, Global Planet. Change, 196, 103375, https://doi.org/10.1016/j.gloplacha.2020.103375, 2021.
Szafián, P., Tari, G., Horváth, F., and Cloetingh, S.: Crustal structure of the Alpine–Pannonian transition zone: a combined seismic and gravity study, Int. J. Earth Sci., 88, 98–110, https://doi.org/10.1007/s005310050248, 1999.
Szalay, Á.: A rekonstrukciós szemléletű földtani kutatás lehetőségei a szénhidrogén perspektívák előrejelzésében a DK-Alföld neogén süllyedékek területén (Possibilities of conceptual hydrocarbon exploration based on dynamic structural restoration in the prediction of hydrocarbon potential of Neogene depocenters in SE Hungary), Hungarian Academy of Sciences, Budapest, 1982.
Sztanó, O., Kovac, M., Magyar, I., Sujan, M., Fodor, L., Uhrin, A., Rybár, S., Csillag, G., and Tőkés, L.: Late Miocene sedimentary record of the Danube/Kisalföld Basin: interregional correlation of depositional systems, stratigraphy and structural evolution, Geol. Carpath., 67, 525–542, https://doi.org/10.1515/geoca-2016-0033, 2016.
Tari, G., Dövényi, P., Dunkl, I., Horváth, F., Lenkey, L., Stefanescu, M., Szafián, P., and Tóth, T.: Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data, Geological Society, London, Special Publications, 156, 215–250, https://doi.org/10.1144/GSL.SP.1999.156.01.12, 1999.
Tari, G., Arbouille, D., Schléder, Z., and Tóth, T.: Inversion tectonics: a brief petroleum industry perspective, Solid Earth, 11, 1865–1889, https://doi.org/10.5194/se-11-1865-2020, 2020.
Tari, G., Bada, G., Beidinger, A., Csizmeg, J., Danišik, M., Gjerazi, I., Grasemann, B., Kováč, M., Plašienka, D., and Šujan, M.: The connection between the Alps and the Carpathians beneath the Pannonian Basin: Selective reactivation of Alpine nappe contacts during Miocene extension, Global Planet. Change, 197, 103401, https://doi.org/10.1016/j.gloplacha.2020.103401, 2021.
Tari, G. C.: Alpine tectonics of the Pannonian Basin, Rice University, PhD thesis, Rice University, Huston, Texas, United States, 510 pp.,
https://www.researchgate.net/profile/Gabor-Tari/publication/236449756_Alpine_Tectonics_of_the_Pannonian_Basin/links/56a0041908ae2c638eb7d7ae/Alpine-Tectonics-of-the-Pannonian-Basin.pdf (last access: 1 February 2024), 1994.
Tóth, Á., Baják, P., Szijártó, M., Tiljander, M., Korkka-Niemi, K., Hendriksson, N., and Mádl-Szőnyi, J.: Multimethodological Revisit of the Surface Water and Groundwater Interaction in the Balaton Highland Region – Implications for the Overlooked Groundwater Component of Lake Balaton, Hungary, Water, 15, 1006, https://doi.org/10.3390/w15061006, 2023.
Van Wees, J., Van Bergen, F., David, P., Nepveu, M., Beekman, F., Cloetingh, S., and Bonté, D.: Probabilistic tectonic heat flow modeling for basin maturation: Assessment method and applications, Mar. Petrol. Geol., 26, 536–551, https://doi.org/10.1016/j.marpetgeo.2009.01.020, 2009.
Verwer, J. G.: Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22, 359–379, https://doi.org/10.1016/S0168-9274(96)00022-0, 1996.
Xie, X. and Heller, P. L.: Plate tectonics and basin subsidence history, Geol. Soc. Am. Bull., 121, 55–64, https://doi.org/10.1130/B26398.1, 2009.
Xu, Y., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., and Klasinski, K.: Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K, Phys. Earth Planet. In., 143, 321–336, https://doi.org/10.1016/j.pepi.2004.03.005, 2004.