Articles | Volume 9, issue 5
https://doi.org/10.5194/se-9-1187-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-1187-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Oblique rifting: the rule, not the exception
GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
Institute of Earth and Environmental Science, University of
Potsdam, 14476 Potsdam-Golm, Germany
Simon E. Williams
EarthByte Group, School of Geosciences, University of Sydney, Sydney, New South Wales
2006, Australia
R. Dietmar Müller
EarthByte Group, School of Geosciences, University of Sydney, Sydney, New South Wales
2006, Australia
Sydney Informatics Hub, University of Sydney, Sydney, New South Wales,
Australia
Related authors
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Anne C. Glerum, Sascha Brune, Joseph M. Magnall, Philipp Weis, and Sarah A. Gleeson
Solid Earth, 15, 921–944, https://doi.org/10.5194/se-15-921-2024, https://doi.org/10.5194/se-15-921-2024, 2024
Short summary
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
R. Dietmar Müller, Nicolas Flament, John Cannon, Michael G. Tetley, Simon E. Williams, Xianzhi Cao, Ömer F. Bodur, Sabin Zahirovic, and Andrew Merdith
Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, https://doi.org/10.5194/se-13-1127-2022, 2022
Short summary
Short summary
We have built a community model for the evolution of the Earth's plate–mantle system. Created with open-source software and an open-access plate model, it covers the last billion years, including the formation, breakup, and dispersal of two supercontinents, as well as the creation and destruction of numerous ocean basins. The model allows us to
seeinto the Earth in 4D and helps us unravel the connections between surface tectonics and the
beating heartof the Earth, its convecting mantle.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Rohitash Chandra, Danial Azam, Arpit Kapoor, and R. Dietmar Müller
Geosci. Model Dev., 13, 2959–2979, https://doi.org/10.5194/gmd-13-2959-2020, https://doi.org/10.5194/gmd-13-2959-2020, 2020
Short summary
Short summary
Forward landscape and sedimentary basin evolution models pose a major challenge in the development of efficient inference and optimization methods. Bayesian inference provides a methodology for estimation and uncertainty quantification of free model parameters. In this paper, we present an application of a surrogate-assisted Bayesian parallel tempering method where that surrogate mimics a landscape evolution model. We use the method for parameter estimation and uncertainty quantification.
Hugo K. H. Olierook, Richard Scalzo, David Kohn, Rohitash Chandra, Ehsan Farahbakhsh, Gregory Houseman, Chris Clark, Steven M. Reddy, and R. Dietmar Müller
Solid Earth Discuss., https://doi.org/10.5194/se-2019-4, https://doi.org/10.5194/se-2019-4, 2019
Revised manuscript not accepted
Robert McKay, Neville Exon, Dietmar Müller, Karsten Gohl, Michael Gurnis, Amelia Shevenell, Stuart Henrys, Fumio Inagaki, Dhananjai Pandey, Jessica Whiteside, Tina van de Flierdt, Tim Naish, Verena Heuer, Yuki Morono, Millard Coffin, Marguerite Godard, Laura Wallace, Shuichi Kodaira, Peter Bijl, Julien Collot, Gerald Dickens, Brandon Dugan, Ann G. Dunlea, Ron Hackney, Minoru Ikehara, Martin Jutzeler, Lisa McNeill, Sushant Naik, Taryn Noble, Bradley Opdyke, Ingo Pecher, Lowell Stott, Gabriele Uenzelmann-Neben, Yatheesh Vadakkeykath, and Ulrich G. Wortmann
Sci. Dril., 24, 61–70, https://doi.org/10.5194/sd-24-61-2018, https://doi.org/10.5194/sd-24-61-2018, 2018
Jodie Pall, Sabin Zahirovic, Sebastiano Doss, Rakib Hassan, Kara J. Matthews, John Cannon, Michael Gurnis, Louis Moresi, Adrian Lenardic, and R. Dietmar Müller
Clim. Past, 14, 857–870, https://doi.org/10.5194/cp-14-857-2018, https://doi.org/10.5194/cp-14-857-2018, 2018
Short summary
Short summary
Subduction zones intersecting buried carbonate platforms liberate significant atmospheric CO2 and have the potential to influence global climate. We model the spatio-temporal distribution of carbonate platform accumulation within a plate tectonic framework and use wavelet analysis to analyse linked behaviour between atmospheric CO2 and carbonate-intersecting subduction zone (CISZ) lengths since the Devonian. We find that increasing CISZ lengths likely contributed to a warmer Palaeogene climate.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Nicholas Barnett-Moore, Rakib Hassan, Nicolas Flament, and Dietmar Müller
Solid Earth, 8, 235–254, https://doi.org/10.5194/se-8-235-2017, https://doi.org/10.5194/se-8-235-2017, 2017
Short summary
Short summary
We use 3D mantle flow models to investigate the evolution of the Iceland plume in the North Atlantic. Results show that over the last ~ 100 Myr a remarkably stable pattern of flow in the lowermost mantle beneath the region resulted in the formation of a plume nucleation site. At the surface, a model plume compared to published observables indicates that its large plume head, ~ 2500 km in diameter, arriving beneath eastern Greenland in the Palaeocene, can account for the volcanic record and uplift.
N. Herold, J. Buzan, M. Seton, A. Goldner, J. A. M. Green, R. D. Müller, P. Markwick, and M. Huber
Geosci. Model Dev., 7, 2077–2090, https://doi.org/10.5194/gmd-7-2077-2014, https://doi.org/10.5194/gmd-7-2077-2014, 2014
J. Cannon, E. Lau, and R. D. Müller
Solid Earth, 5, 741–755, https://doi.org/10.5194/se-5-741-2014, https://doi.org/10.5194/se-5-741-2014, 2014
S. Zahirovic, M. Seton, and R. D. Müller
Solid Earth, 5, 227–273, https://doi.org/10.5194/se-5-227-2014, https://doi.org/10.5194/se-5-227-2014, 2014
M. Hosseinpour, R. D. Müller, S. E. Williams, and J. M. Whittaker
Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, https://doi.org/10.5194/se-4-461-2013, 2013
C. Heine, J. Zoethout, and R. D. Müller
Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, https://doi.org/10.5194/se-4-215-2013, 2013
N. Wright, S. Zahirovic, R. D. Müller, and M. Seton
Biogeosciences, 10, 1529–1541, https://doi.org/10.5194/bg-10-1529-2013, https://doi.org/10.5194/bg-10-1529-2013, 2013
R. D. Müller and T. C. W. Landgrebe
Solid Earth, 3, 447–465, https://doi.org/10.5194/se-3-447-2012, https://doi.org/10.5194/se-3-447-2012, 2012
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Geodynamics
Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation
Pore-scale permeability prediction for Newtonian and non-Newtonian fluids
The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling
Lorenzo G. Candioti, Stefan M. Schmalholz, and Thibault Duretz
Solid Earth, 11, 2327–2357, https://doi.org/10.5194/se-11-2327-2020, https://doi.org/10.5194/se-11-2327-2020, 2020
Short summary
Short summary
With computer simulations, we study the interplay between thermo-mechanical processes in the lithosphere and the underlying upper mantle during a long-term (> 100 Myr) tectonic cycle of extension–cooling–convergence. The intensity of mantle convection is important for (i) subduction initiation, (ii) the development of single- or double-slab subduction zones, and (iii) the forces necessary to initiate subduction. Our models are applicable to the opening and closure of the western Alpine Tethys.
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 9, 759–776, https://doi.org/10.5194/se-9-759-2018, https://doi.org/10.5194/se-9-759-2018, 2018
Short summary
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis.
This research was done to validate a hypothesis made on the basis of nonquantitative field data.
Cited articles
Agostini, A., Corti, G., Zeoli, A., and Mulugeta, G.: Evolution, pattern, and partitioning of deformation during oblique continental rifting: Inferences from lithospheric-scale centrifuge models, Geochem. Geophy. Geosy., 10, Q11015, https://doi.org/10.1029/2009GC002676, 2009.
Ali, J. R. and Aitchison, J. C.: Greater India's northern margin prior to its collision with Asia, Basin Res., 26, 73–84, https://doi.org/10.1111/bre.12040, 2014.
Allken, V., Huismans, R. S., and Thieulot, C.: Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophy. Geosy., 13, Q05010, https://doi.org/10.1029/2012GC004077, 2012.
Ammann, N., Liao, J., Gerya, T., and Ball, P.: Oblique continental rifting and long transform fault formation based on 3D thermomechanical numerical modeling, Tectonophysics, in press, https://doi.org/10.1016/j.tecto.2017.08.015, 2017.
Atwater, T. and Stock, J.: Pacific-North America Plate Tectonics of the Neogene Southwestern United States: An Update, Int. Geol. Rev., 40, 375–402, https://doi.org/10.1080/00206819809465216, 1998.
Balázs, A., Matenco, L., Vogt, K., Cloetingh, S., and Gerya, T.: Extensional polarity change in continental rifts: inferences from 3D numerical modeling and observations, J. Geophys. Res.-Sol. Ea., 123, 8073–8094, https://doi.org/10.1029/2018JB015643, 2018.
Ball, P., Eagles, G., Ebinger, C., McClay, K., and Totterdell, J.: The spatial and temporal evolution of strain during the separation of Australia and Antarctica, Geochem. Geophy. Geosy., 14, 2771–2799, https://doi.org/10.1002/ggge.20160, 2013.
Barnett-Moore, N., Müller, D. R., Williams, S., Skogseid, J., and Seton, M.: A reconstruction of the North Atlantic since the earliest Jurassic, Basin Res., 30, 1–26, https://doi.org/10.1111/bre.12214, 2016.
Basile, C.: Transform continental margins – part 1: Concepts and models, Tectonophysics, 661, 1–10, https://doi.org/10.1016/j.tecto.2015.08.034, 2015.
Bayrakci, G., Minshull, T. A., Sawyer, D. S., Reston, T. J., Klaeschen, D., Papenberg, C., Ranero, C., Bull, J. M., Davy, R. G., Shillington, D. J., Perez-Gussinye, M., and Morgan, J. K.: Fault-controlled hydration of the upper mantle during continental rifting, Nat. Geosci., 9, 384–388, https://doi.org/10.1038/ngeo2671, 2016.
Becker, T. W.: On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces, Geophys. J. Int., 167, 943–957, 2006.
Bennett, S. E. K. and Oskin, M. E.: Oblique rifting ruptures continents: Example from the Gulf of California shear zone, Geology, 42, 215–218, https://doi.org/10.1130/G34904.1, 2014.
Bercovici, D.: The generation of plate tectonics from mantle convection, Earth Planet. Sc. Lett., 205, 107–121, https://doi.org/10.1016/S0012-821X(02)01009-9, 2003.
Bertrand, G., Horstmann, M., Hermann, O., and Behrmann, J. H.: Retrodeformation of the southern Upper Rhine Graben: new insights on continental oblique rifting, Quaternary Sci. Rev., 24, 345–352, https://doi.org/10.1016/j.quascirev.2004.07.011, 2005.
Bonini, M., Souriot, T., Boccaletti, M., and Brun, J. P.: Successive orthogonal and oblique extension episodes in a rift zone: Laboratory experiments with application to the Ethiopian Rift, Tectonics, 16, 347–362, https://doi.org/10.1029/96TC03935, 1997.
Borissova, I., Coffin, M. F., Charvis, P., and Operto, S.: Structure and development of a microcontinent: Elan Bank in the southern Indian Ocean, Geochem. Geophy. Geosy., 4, 1071, https://doi.org/10.1029/2003GC000535, 2003.
Brune, S.: Evolution of stress and fault patterns in oblique rift systems: 3-D numerical lithospheric-scale experiments from rift to breakup, Geochem. Geophy. Geosy., 15, 3392–3415, https://doi.org/10.1002/2014GC005446, 2014.
Brune, S.: Rifts and rifted margins: A review of geodynamic processes and natural hazards, edited by: Duarte, J. C. and Schellart, W. P., Plate Boundaries and Natural Hazards, 219, 11–37, https://doi.org/10.1002/9781119054146.ch2, 2016.
Brune, S.: Forces within continental and oceanic rifts: Numerical modeling elucidates the impact of asthenospheric flow on surface stress, Geology, 46, 191–192, https://doi.org/10.1130/focus022018.1, 2018.
Brune, S. and Autin, J.: The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling, Tectonophysics, 607, 65–79, https://doi.org/10.1016/j.tecto.2013.06.029, 2013.
Brune, S., Popov, A. A., and Sobolev, S. V.: Modeling suggests that oblique extension facilitates rifting and continental break-up, J. Geophys. Res., 117, B08402, https://doi.org/10.1029/2011JB008860, 2012.
Brune, S., Heine, C., Perez-Gussinye, M., and Sobolev, S. V.: Rift migration explains continental margin asymmetry and crustal hyper-extension, Nat. Commun., 5, https://doi.org/10.1038/ncomms5014, 2014.
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016.
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinyé, M.: Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea, Mar. Petrol. Geol., 79, 257–281, https://doi.org/10.1016/j.marpetgeo.2016.10.018, 2017a.
Brune, S., Corti, G., and Ranalli, G.: Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression, Tectonics, 36, 2017TC004739, https://doi.org/10.1002/2017TC004739, 2017b.
Brune, S., Williams, S. E., and Müller, R. D.: Potential links between continental rifting, CO2 degassing and climate change through time, Nat. Geosci., 10, 941–946, https://doi.org/10.1038/s41561-017-0003-6, 2017c.
Buck, W. R.: The Dynamics of Continental Breakup and Extension: Treatise on Geophysics, 2nd Edn., Vol 6 – Crust and Lithosphere Dynamics, 2015.
Burov, E. B.: Plate Rheology and Mechanics: Treatise on Geophysics, 2nd Edn., edited by: Schubert, G., 95–152, https://doi.org/10.1016/B978-0-444-53802-4.00112-3, 2015.
Chaboureau, A.-C., Guillocheau, F., Robin, C., Rohais, S., Moulin, M., and Aslanian, D.: Paleogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: Paleotopographic and geodynamic implications, Tectonophysics, 604, 191–223, https://doi.org/10.1016/j.tecto.2012.08.025, 2013.
Clifton, A. E. and Schlische, R. W.: Nucleation, growth, and linkage of faults in oblique rift zones: Results from experimental clay models and implications for maximum fault size, Geology, 29, 455–458, https://doi.org/10.1130/0091-7613(2001)029<0455:NGALOF>2.0.CO;2, 2001.
Clifton, A. E., Schlische, R. W., Withjack, M. O., and Ackermann, R. V.: Influence of rift obliquity on fault-population systematics: results of experimental clay models, J. Struct. Geol., 22, 1491–1509, https://doi.org/10.1016/S0191-8141(00)00043-2, 2000.
Coffin, M. F. and Eldholm, O.: Volcanism and continental break-up: a global compilation of large igneous provinces, Geol. Soc. Spec. Publ., 68, 17–30, https://doi.org/10.1144/GSL.SP.1992.068.01.02, 1992.
Corti, G.: Control of rift obliquity on the evolution and segmentation of the main Ethiopian rift, Nat. Geosci., 1, 258–262, https://doi.org/10.1038/ngeo160, 2008.
Daly, M. C., Chorowicz, J., and Fairhead, J. D.: Rift basin evolution in Africa: the influence of reactivated steep basement shear zones, Geol. Soc. Spec. Publ., 44, 309–334, https://doi.org/10.1144/GSL.SP.1989.044.01.17, 1989.
Darin, M. H., Bennett, S. E. K., Dorsey, R. J., Oskin, M. E., and Iriondo, A.: Late Miocene extension in coastal Sonora, México: Implications for the evolution of dextral shear in the proto-Gulf of California oblique rift, Tectonophysics, 693, 378–408, https://doi.org/10.1016/j.tecto.2016.04.038, 2016.
Davis, J. K., Lawver, L. A., Norton, I. O., and Gahagan, L. M.: New Somali Basin magnetic anomalies and a plate model for the early Indian Ocean, Gondwana Res., 34, 16–28, https://doi.org/10.1016/j.gr.2016.02.010, 2016.
Deng, C., Gawthorpe, R., Fossen, H., and Finch, E.: How does the orientation of a pre-existing basement weakness influence fault development during renewed rifting? Insights from three-dimensional discrete element modeling, Tectonics, 37, 2221–2242, https://doi.org/10.1029/2017TC004776, 2018.
Dewey, J. F., Holdsworth, R. E., and Strachan, R. A.: Transpression and transtension zones, Geol. Soc. Spec. Publ., 135, 1–14, https://doi.org/10.1144/GSL.SP.1998.135.01.01, 1998.
de Wit, M. J., Stankiewicz, J., and Reeves, C.: Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans-Atlantic corruption, Geol. Soc. Spec. Publ., 294, 399–412, 2008.
Díaz-Azpiroz, M., Brune, S., Leever, K. A., Fernández, C., and Czeck, D. M.: Tectonics of oblique plate boundary systems, Tectonophysics, 693, 165–170, https://doi.org/10.1016/j.tecto.2016.07.028, 2016.
Dickie, K., Keen, C. E., Williams, G. L., and Dehler, S. A.: Tectonostratigraphic evolution of the Labrador margin, Atlantic Canada, Mar. Petrol. Geol., 28, 1663–1675, https://doi.org/10.1016/j.marpetgeo.2011.05.009, 2011.
Doré, A. G.: The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic, Palaeogeogr. Palaeocl., 87, 441–492, https://doi.org/10.1016/0031-0182(91)90144-G, 1991.
Duque-Trujillo, J., Ferrari, L., Orozco-Esquivel, T., López-Martínez, M., Lonsdale, P., Bryan, S. E., Kluesner, J., Piñero-Lajas, D., and Solari, L.: Timing of rifting in the southern Gulf of California and its conjugate margins: Insights from the plutonic record, Geol. Soc. Am. Bull., 127, 702–736, https://doi.org/10.1130/B31008.1, 2015.
Espurt, N., Callot, J.-P., Roure, F., Totterdell, J. M., Struckmeyer, H. I. M., and Vially, R.: Transition from symmetry to asymmetry during continental rifting: an example from the Bight Basin–Terre Adélie (Australian and Antarctic conjugate margins), Terra Nova, 24, 167–180, https://doi.org/10.1111/j.1365-3121.2011.01055.x, 2012.
Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, O., Wilson, J., and Eldholm, O.: Structure and Evolution of the Continental Margin off Norway and the Barents Sea, Episodes, 31, 82–91, 2008.
Féraud, G., Beslier, M.-O., and Cornen, G.: 40Ar/39Ar dating of gabbros from the ocean/continent transition of the western Iberia Margin: Preliminary results: Proceedings of the Ocean Drilling Program, Scientific Results, 149, 489–495, 1996.
Ferrari, L., López-Martínez, M., Orozco-Esquivel, T., Bryan, S. E., Duque-Trujillo, J., Lonsdale, P., and Solari, L.: Late Oligocene to Middle Miocene rifting and synextensional magmatism in the southwestern Sierra Madre Occidental, Mexico: The beginning of the Gulf of California rift, Geosphere, 9, 1161–1200, https://doi.org/10.1130/GES00925.1, 2013.
Fletcher, J. M., Grove, M., Kimbrough, D., Lovera, O., and Gehrels, G. E.: Ridge-trench interactions and the Neogene tectonic evolution of the Magdalena shelf and southern Gulf of California: Insights from detrital zircon U-Pb ages from the Magdalena fan and adjacent areas, Geol. Soc. Am. Bull., 119, 1313–1336, https://doi.org/10.1130/B26067.1, 2007.
Fossen, H. and Rotevatn, A.: Fault linkage and relay structures in extensional settings – A review, Earth-Sci. Rev., 154, 14–28, https://doi.org/10.1016/j.earscirev.2015.11.014, 2016.
Fournier, M. and Petit, C.: Oblique rifting at oceanic ridges: Relationship between spreading and stretching directions from earthquake focal mechanisms, J. Struct. Geol., 29, 201–208, https://doi.org/10.1016/j.jsg.2006.07.017, 2007.
Fournier, M., Bellahsen, N., Fabbri, O., and Gunnell, Y.: Oblique rifting and segmentation of the NE Gulf of Aden passive margin, Geochem. Geophy. Geosy., 5, Q11005, https://doi.org/10.1029/2004GC000731, 2004.
Gaina, C., Nasuti, A., Kimbell, G. S., and Blischke, A.: Break-up and seafloor spreading domains in the NE Atlantic, Geol. Soc. Spec. Publ., 447, SP447.12, https://doi.org/10.1144/SP447.12, 2017.
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active extensional basins, Basin Res., 12, 195–218, 2000.
Gernigon, L., Blischke, A., Nasuti, A., and Sand, M.: Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin, Tectonics, 34, 2014TC003717, https://doi.org/10.1002/2014TC003717, 2015.
Gerya, T. V.: Initiation of transform faults at rifted continental margins: 3D petrological-thermomechanical modeling and comparison to the Woodlark Basin, Petrology, 21, 550–560, https://doi.org/10.1134/S0869591113060039, 2013.
Gibbons, A. D., Whittaker, J. M., and Müller, R. D.: The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model, J. Geophys. Res.-Sol. Ea., 118, 808–822, https://doi.org/10.1002/jgrb.50079, 2013.
Gibbons, A. D., Zahirovic, S., Müller, R. D., Whittaker, J. M., and Yatheesh, V.: A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys, Gondwana Res., 28, 451–492, https://doi.org/10.1016/j.gr.2015.01.001, 2015.
Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., and Schaming, M.: Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations, Tectonics, 34, 2015TC003850, https://doi.org/10.1002/2015TC003850, 2015.
Gillard, M., Autin, J., and Manatschal, G.: Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma, Mar. Petrol. Geol., 76, 51–67, https://doi.org/10.1016/j.marpetgeo.2016.05.013, 2016.
Granot, R. and Dyment, J.: The Cretaceous opening of the South Atlantic Ocean, Earth Planet. Sc. Lett., 414, 156–163, https://doi.org/10.1016/j.epsl.2015.01.015, 2015.
Granot, R. and Dyment, J.: Late Cenozoic unification of East and West Antarctica, Nat. Commun., 9, 3189, https://doi.org/10.1038/s41467-018-05270-w, 2018.
Heine, C. and Brune, S.: Oblique rifting of the Equatorial Atlantic: Why there is no Saharan Atlantic Ocean, Geology, 42, 211–214, https://doi.org/10.1130/G35082.1, 2014.
Heine, C., Zoethout, J., and Müller, R. D.: Kinematics of the South Atlantic rift, Solid Earth, 4, 215–253, https://doi.org/10.5194/se-4-215-2013, 2013.
Hetzel, R. and Strecker, M. R.: Late Mozambique Belt structures in western Kenya and their influence on the evolution of the Cenozoic Kenya Rift, J. Struct. Geol., 16, 189–201, https://doi.org/10.1016/0191-8141(94)90104-X, 1994.
Hodge, M. S., Fagereng, Å., Biggs, J., and Mdala, H.: Controls on early-rift geometry: new perspectives from the Bilila-Mtakataka fault, Malawi, Geophys. Res. Lett., 45, 3896–3905, https://doi.org/10.1029/2018GL077343, 2018.
Hosseinpour, M., Müller, R. D., Williams, S. E., and Whittaker, J. M.: Full-fit reconstruction of the Labrador Sea and Baffin Bay, Solid Earth, 4, 461–479, https://doi.org/10.5194/se-4-461-2013, 2013.
Huismans, R. S. and Beaumont, C.: Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins, Nature, 473, 74–78, https://doi.org/10.1038/nature09988, 2011.
Jakobsson, M., Backman, J., Rudels, B., Nycander, J., Frank, M., Mayer, L., Jokat, W., Sangiorgi, F., O'Regan, M., Brinkhuis, H., King, J., and Moran, K.: The early Miocene onset of a ventilated circulation regime in the Arctic Ocean, Nature, 447, 986–990, https://doi.org/10.1038/nature05924, 2007.
Jeanniot, L. and Buiter, S. J. H.: A quantitative analysis of transtensional margin width, Earth Planet. Sc. Lett., 491, 95–108, https://doi.org/10.1016/j.epsl.2018.03.003, 2018.
Klimke, J. and Franke, D.: Gondwana breakup: no evidence for a Davie Fracture Zone offshore northern Mozambique, Tanzania and Kenya, Terra Nova, 28, 233–244, https://doi.org/10.1111/ter.12214, 2016.
Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J., and Queffelec, T. A.: Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic, Comput. Geosci., 49, 217–230, https://doi.org/10.1016/j.cageo.2012.06.019, 2012.
Knies, J. and Gaina, C.: Middle Miocene ice sheet expansion in the Arctic: Views from the Barents Sea, Geochem. Geophy. Geosy., 9, Q02015, https://doi.org/10.1029/2007GC001824, 2008.
Kröner, A. and Stern, R. J.: Pan-African Orogeny, Encyclopedia of Geology, edited by: Selley, R. C., Cocks, L. R. M., and Plimer, I. R., 1–12, Elsevier, Oxford, 2005.
Lavier, L. L. and Manatschal, G.: A mechanism to thin the continental lithosphere at magma-poor margins, Nature, 440, 324–328, https://doi.org/10.1038/nature04608, 2006.
Le Calvez, J. H. and Vendeville, B. C.: Experimental designs to model along-strike fault interaction, Journal of the Virtual Explorer, 7, 1–17, https://doi.org/10.3809/jvirtex.2002.00043, 2002.
Le Pourhiet, L., Huet, B., May, D. A., Labrousse, L., and Jolivet, L.: Kinematic interpretation of the 3D shapes of metamorphic core complexes: Geochem. Geophy. Geosy., 13, Q09002, https://doi.org/10.1029/2012GC004271, 2012.
Le Pourhiet, L., May, D. A., Huille, L., Watremez, L., and Leroy, S.: A genetic link between transform and hyper-extended margins, Earth Planet. Sc. Lett., 465, 184–192, https://doi.org/10.1016/j.epsl.2017.02.043, 2017.
Lithgow-Bertelloni, C., Richards, M. A., Ricard, Y., O'Connell, R. J., and Engebretson, D. C.: Toroidal-poloidal partitioning of plate motions since 120 MA, Geophys. Res. Lett., 20, 375–378, https://doi.org/10.1029/93GL00168, 1993.
Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M., Gonzalez-Fernandez, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo, P., Sutherland, F., and Umhoefer, P. J.: Variation in styles of rifting in the Gulf of California, Nature, 448, 466–469, https://doi.org/10.1038/nature06035, 2007.
Lundin, E. R. and Doré, A. G.: A tectonic model for the Norwegian passive margin with implications for the NE Atlantic: Early Cretaceous to break-up, J. Geol. Soc. London, 154, 545–550, https://doi.org/10.1144/gsjgs.154.3.0545, 1997.
Manatschal, G., Lavier, L., and Chenin, P.: The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling, Gondwana Res., 27, 140–164, https://doi.org/10.1016/j.gr.2014.08.006, 2015.
Mart, Y., Ryan, W. B. F., and Lunina, O. V.: Review of the tectonics of the Levant Rift system: the structural significance of oblique continental breakup, Tectonophysics, 395, 209–232, https://doi.org/10.1016/j.tecto.2004.09.007, 2005.
McKenzie, D.: Some remarks on the development of sedimentary basins, Earth Planet. Sc. Lett., 40, 25–32, https://doi.org/10.1016/0012-821X(78)90071-7, 1978.
McQuarrie, N. and Wernicke, B. P.: An animated tectonic reconstruction of southwestern North America since 36 Ma, Geosphere, 1, 147–172, https://doi.org/10.1130/GES00016.1, 2005.
Mericer de Lépinay, M., Loncke, L., Basile, C., Roest, W. R., Patriat, M., Maillard, A., and De Clarens, P.: Transform continental margins – Part 2: A worldwide review, Tectonophysics, 693, 96–115, https://doi.org/10.1016/j.tecto.2016.05.038, 2016.
Molnar, N. E., Cruden, A. R., and Betts, P. G.: Interactions between propagating rotational rifts and linear rheological heterogeneities: Insights from three-dimensional laboratory experiments, Tectonics, 36, 2016TC004447, https://doi.org/10.1002/2016TC004447, 2017.
Mondy, L. S., Rey, P. F., Duclaux, G., and Moresi, L.: The role of asthenospheric flow during rift propagation and breakup, Geology, 46, 103–106, https://doi.org/10.1130/G39674.1, 2017.
Montési, L. G. J. and Behn, M. D.: Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges, Geophys. Res. Lett., 34, L24307, https://doi.org/10.1029/2007GL031067, 2007.
Morley, C. K.: The impact of multiple extension events, stress rotation and inherited fabrics on normal fault geometries and evolution in the Cenozoic rift basins of Thailand, Geol. Soc. Spec. Publ., 439, SP439.3, https://doi.org/10.1144/SP439.3, 2016.
Moulin, M., Aslanian, D., and Unternehr, P.: A new starting point for the South and Equatorial Atlantic Ocean, Earth-Sci. Rev., 98, 1–37, https://doi.org/10.1016/j.earscirev.2009.08.001, 2010.
Müller, R. D., Seton, M., Zahirovic, S., Williams, S. E., Matthews, K. J., Wright, N. M., Shephard, G. E., Maloney, K. T., Barnett-Moore, N., Hosseinpour, M., Bower, D. J., and Cannon, J.: Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup, Annu. Rev. Earth Pl. Sc., 44, 107–138, https://doi.org/10.1146/annurev-earth-060115-012211, 2016.
Müller, R. D., Cannon, J., Qin, X., Watson, R. J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S. H. J., and Zahirovic, S.: GPlates – Building a Virtual Earth Through Deep Time, Geochem. Geophy. Geosy., 2243–2261, https://doi.org/10.1029/2018GC007584, 2018.
Naliboff, J. B., Buiter, S. J. H., Péron-Pinvidic, G., Osmundsen, P. T., and Tetreault, J.: Complex fault interaction controls continental rifting, Nat. Commun., 8, 1179, https://doi.org/10.1038/s41467-017-00904-x, 2017.
Nemčok, M., Sinha, S. T., Doré, A. G., Lundin, E. R., Mascle, J., and Rybár, S.: Mechanisms of microcontinent release associated with wrenching-involved continental break-up; a review, Geol. Soc. Spec. Publ., 431, SP431.14, https://doi.org/10.1144/SP431.14, 2016.
Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., and Sauter, D.: Kinematic Evolution of the Southern North Atlantic: Implications for the Formation of Hyperextended Rift Systems, Tectonics, 37, 89–118, https://doi.org/10.1002/2017TC004495, 2018.
Norvick, M. S. and Smith, M. A.: Mapping the plate tectonic reconstruction of southern and southeastern Australia and implications for petroleum systems, The APPEA Journal, 41, 15–35, https://doi.org/10.1071/aj00001, 2001.
Nürnberg, D. and Müller, R. D.: The Tectonic Evolution of the South-Atlantic from Late Jurassic to Present, Tectonophysics, 191, 27–53, https://doi.org/10.1016/0040-1951(91)90231-G, 1991.
O'Connell, R. J., Gable, C. W., and Hager, B. H.: Toroidal-Poloidal Partitioning of Lithospheric Plate Motions, NATO Ad. Sci. I. C.-Mat., 535–551, https://doi.org/10.1007/978-94-011-3374-6_25, 1991.
Oskin, M. and Stock, J.: Marine incursion synchronous with plate-boundary localization in the Gulf of California, Geology, 31, 23–26, https://doi.org/10.1130/0091-7613(2003)031<0023:MISWPB>2.0.CO;2, 2003.
Osmundsen, P. T. and Redfield, T. F.: Crustal taper and topography at passive continental margins, Terra Nova, 23, 349–361, https://doi.org/10.1111/j.1365-3121.2011.01014.x, 2011.
Peron-Pinvidic, G., Manatschal, G., and Osmundsen, P. T.: Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts, Mar. Petrol. Geol., 43, 21–47, https://doi.org/10.1016/j.marpetgeo.2013.02.002, 2013.
Phethean, J. J. J., Kalnins, L. M., van Hunen, J., Biffi, P. G., Davies, R. J., and McCaffrey, K. J. W.: Madagascar's escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal, Geochem. Geophy. Geosy., 17, 5036–5055, https://doi.org/10.1002/2016GC006624, 2016.
Philippon, M. and Corti, G.: Obliquity along plate boundaries, Tectonophysics, 693B, 171–182, https://doi.org/10.1016/j.tecto.2016.05.033, 2016.
Philippon, M., Willingshofer, E., Sokoutis, D., Corti, G., Sani, F., Bonini, M., and Cloetingh, S.: Slip re-orientation in oblique rifts, Geology, 43, 147–150, https://doi.org/10.1130/G36208.1, 2015.
Phillips, T. B., Jackson, C. A.-L., Bell, R. E., and Duffy, O. B.: Oblique reactivation of lithosphere-scale lineaments controls rift physiography – the upper-crustal expression of the Sorgenfrei–Tornquist Zone, offshore southern Norway, Solid Earth, 9, 403–429, https://doi.org/10.5194/se-9-403-2018, 2018.
Powell, C. M., Roots, S. R., and Veevers, J. J.: Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean, Tectonophysics, 155, 261–283, https://doi.org/10.1016/0040-1951(88)90269-7, 1988.
Power, M. R., Hill, K. C., Hoffman, N., Bernecker, T., and Norvick, M.: The Structural and Tectonic Evolution of the Gippsland Basin: Results from 2D Section Balancing and 3D Structural Modelling, available at: http://archives.datapages.com/data/petroleum-exploration-society-of-australia/conferences/001/001001/pdfs/373.htm (last access: June 2018), 2001.
Quirk, D. G., Hertle, M., Jeppesen, J. W., Raven, M., Mohriak, W. U., Kann, D. J., Nørgaard, M., Howe, M. J., Hsu, D., Coffey, B., and Mendes, M. P.: Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic, Geol. Soc. Spec. Publ., 369, 185–214, https://doi.org/10.1144/SP369.20, 2013.
Ranero, C. R. and Pérez-Gussinyé, M.: Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins, Nature, 468, 294–299, https://doi.org/10.1038/nature09520, 2010.
Rolf, T., Capitanio, F. A., and Tackley, P. J.: Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models, Tectonophysics, in press, https://doi.org/10.1016/j.tecto.2017.04.031, 2017.
Rossetti, F., Lisker, F., Storti, F., and Läufer, A. L.: Tectonic and denudational history of the Rennick Graben (North Victoria Land): Implications for the evolution of rifting between East and West Antarctica, Tectonics, 22, 1016, https://doi.org/10.1029/2002TC001416, 2003.
Royer, J.-Y. and Sandwell, D. T.: Evolution of the eastern Indian Ocean since the Late Cretaceous: Constraints from Geosat altimetry, J. Geophys. Res.-Sol. Ea., 94, 13755–13782, https://doi.org/10.1029/JB094iB10p13755, 1989.
Sanderson, D. J. and Marchini, W. R. D.: Transpression, J. Struct. Geol., 6, 449–458, https://doi.org/10.1016/0191-8141(84)90058-0, 1984.
Schreurs, G. and Colletta, B.: Analogue modelling of faulting in zones of continental transpression and transtension, Geol. Soc. Spec. Publ., 135, 59–79, 1998.
Sippel, J., Meeßen, C., Cacace, M., Mechie, J., Fishwick, S., Heine, C., Scheck-Wenderoth, M., and Strecker, M. R.: The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling, Solid Earth, 8, 45–81, https://doi.org/10.5194/se-8-45-2017, 2017.
Skogseid, J., Planke, S., Faleide, J. I., Pedersen, T., Eldholm, O., and Neverdal, F.: NE Atlantic continental rifting and volcanic margin formation: Geol. Soc. Spec. Publ., 167, 295–326, https://doi.org/10.1144/GSL.SP.2000.167.01.12, 2000.
Storey, M., Duncan, R. A., and Tegner, C.: Timing and duration of volcanism in the North Atlantic Igneous Province: Implications for geodynamics and links to the Iceland hotspot, Chem. Geol., 241, 264–281, https://doi.org/10.1016/j.chemgeo.2007.01.016, 2007.
Teyssier, C., Tikoff, B., and Markley, M.: Oblique plate motion and continental tectonics, Geology, 23, 447–450, https://doi.org/10.1130/0091-7613(1995)023<0447:OPMACT>2.3.CO;2, 1995.
Tikku, A. A. and Cande, S. C.: The oldest magnetic anomalies in the Australian-Antarctic Basin: Are they isochrons?, J. Geophys. Res.-Sol. Ea., 104, 661–677, https://doi.org/10.1029/1998JB900034, 1999.
Torsvik, T. H., Rousse, S., Labails, C., and Smethurst, M. A.: A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin, Geophys. J. Int., 177, 1315–1333, 2009.
Tron, V. and Brun, J.-P.: Experiments on oblique rifting in brittle-ductile systems, Tectonophysics, 188, 71–84, https://doi.org/10.1016/0040-1951(91)90315-J, 1991.
Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and Thinon, I.: Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay-Pyrenees, Tectonics, 33, 2014TC003529, https://doi.org/10.1002/2014TC003529, 2014.
Umhoefer, P. J.: Why did the Southern Gulf of California rupture so rapidly? – Oblique divergence across hot, weak lithosphere along a tectonically active margin, GSA Today, 21, 4–10, https://doi.org/10.1130/G133A.1, 2011.
Umhoefer, P. J., Darin, M. H., Bennett, S. E. K., Skinner, L. A., Dorsey, R. J., and Oskin, M. E.: Breaching of strike-slip faults and successive flooding of pull-apart basins to form the Gulf of California seaway from ca. 8–6 Ma, Geology, 46, 695–698, https://doi.org/10.1130/G40242.1, 2018.
Vignaroli, G., Balsamo, F., Giordano, G., Rossetti, F., and Storti, F.: Miocene-to-Quaternary oblique rifting signature in the Western Ross Sea from fault patterns in the McMurdo Volcanic Group, north Victoria Land, Antarctica, Tectonophysics, 656, 74–90, https://doi.org/10.1016/j.tecto.2015.05.027, 2015.
White, N.: Recovery of strain rate variation from inversion of subsidence data, Nature, 366, 449–452, https://doi.org/10.1038/366449a0, 1993.
Whittaker, J. M., Williams, S. E., and Müller, R. D.: Revised tectonic evolution of the Eastern Indian Ocean, Geochem. Geophy. Geosy., 14, 1891–1909, https://doi.org/10.1002/ggge.20120, 2013.
Whittaker, J. M., Williams, S. E., Halpin, J. A., Wild, T. J., Stilwell, J. D., Jourdan, F., and Daczko, N. R.: Eastern Indian Ocean microcontinent formation driven by plate motion changes, Earth Planet. Sc. Lett., 454, 203–212, https://doi.org/10.1016/j.epsl.2016.09.019, 2016.
van Wijk, J., Axen, G., and Abera, R.: Initiation, evolution and extinction of pull-apart basins: Implications for opening of the Gulf of California, Tectonophysics, 719–720, 37–50, https://doi.org/10.1016/j.tecto.2017.04.019, 2017.
van Wijk, J. W.: Role of weak zone orientation in continental lithosphere extension, Geophys. Res. Lett., 32, L02303, https://doi.org/10.1029/2004GL022192, 2005.
Willcox, J. B. and Stagg, H. M. J.: Australia's southern margin: a product of oblique extension, Tectonophysics, 173, 269–281, https://doi.org/10.1016/0040-1951(90)90223-U, 1990.
Williams, S. E., Whittaker, J. M., and Müller, R. D.: Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins, Tectonics, 30, TC6012, https://doi.org/10.1029/2011TC002912, 2011.
Williams, S. E., Whittaker, J. M., Granot, R., and Müller, D. R.: Early India-Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain, J. Geophys. Res.-Sol. Ea., 118, 3275–3284, https://doi.org/10.1002/jgrb.50239, 2013.
Williams, S. E., Whittaker, J. M., Halpin, J. A., and Müller, R. D.: Australian-Antarctic break up and seafloor spreading: Balancing geological and geophysical constraints, Earth-Sci. Rev., in press, https://doi.org/10.1016/j.earscirev.2018.10.011, 2018.
Withjack, M. O. and Jamison, W. R.: Deformation produced by oblique rifting, Tectonophysics, 126, 99–124, https://doi.org/10.1016/0040-1951(86)90222-2, 1986.
Woodcock, N. H.: The Role of Strike-Slip Fault Systems at Plate Boundaries, Philos. T. R. Soc. Lond., 317, 13–29, 1986.
Zwaan, F. and Schreurs, G.: How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models, Interpretation, SD119–SD138, https://doi.org/10.1190/INT-2016-0063.1, 2017.
Zwaan, F., Schreurs, G., Naliboff, J., and Buiter, S. J. H.: Insights into the effects of oblique extension on continental rift interaction from 3D analogue and numerical models, Tectonophysics, 693B, 239–260, https://doi.org/10.1016/j.tecto.2016.02.036, 2016.
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Fragmentation of continents often involves obliquely rifting segments that feature a complex...