Articles | Volume 10, issue 4
https://doi.org/10.5194/se-10-1269-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1269-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extrusion dynamics of deepwater volcanoes revealed by 3-D seismic data
Key Laboratory of Tectonics and Petroleum Resources, China University
of Geosciences (Wuhan), Ministry of Education, Wuhan 430074, China
Laboratory for Marine Mineral Resources, Qingdao National Laboratory
for Marine Science and Technology, Qingdao 266061, China
College of Marine Science and Technology, China University of
Geosciences (Wuhan), Wuhan, Hubei 430074, PR China
Christopher A.-L. Jackson
Basins Research Group (BRG), Department of Earth Science
&Engineering, Imperial College, London, SW7 2BP, UK
Craig Magee
Basins Research Group (BRG), Department of Earth Science
&Engineering, Imperial College, London, SW7 2BP, UK
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Samuel J. Mitchell
School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Xinong Xie
Key Laboratory of Tectonics and Petroleum Resources, China University
of Geosciences (Wuhan), Ministry of Education, Wuhan 430074, China
College of Marine Science and Technology, China University of
Geosciences (Wuhan), Wuhan, Hubei 430074, PR China
Related authors
No articles found.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Thomas B. Phillips, Christopher A.-L. Jackson, and James R. Norcliffe
Solid Earth, 11, 1489–1510, https://doi.org/10.5194/se-11-1489-2020, https://doi.org/10.5194/se-11-1489-2020, 2020
Short summary
Short summary
Normal faults often reactivate under compression, in a process called inversion. The 3D geometry of these structures (and the effect on resultant inversion structural style) is often not considered. Using seismic reflection data, we examine how stresses form different inversion styles that are controlled by the geometry of the pre-existing structure. Geometrically simple faults are preferentially reactivated; more complex areas are typically not reactivated and instead experience bulk uplift.
Christopher A.-L. Jackson, Paul S. Whipp, Robert L. Gawthorpe, and Matthew M. Lewis
Solid Earth, 11, 1027–1051, https://doi.org/10.5194/se-11-1027-2020, https://doi.org/10.5194/se-11-1027-2020, 2020
Short summary
Short summary
Plate tectonics describes the creation, motion, and ultimate destruction of the Earth's continents and oceans. A key plate tectonic process is continental extension; this occurs when the Earth's plates are pulled apart to ultimately form a new ocean. Giant fractures (faults) accommodate plate stretching, although buckling (folding) is thought to be locally important. We use field data to understand how fracturing and buckling relate to each other, demonstrating they are spatially complex.
Craig Magee and Christopher Aiden-Lee Jackson
Solid Earth, 11, 579–606, https://doi.org/10.5194/se-11-579-2020, https://doi.org/10.5194/se-11-579-2020, 2020
Short summary
Short summary
Injection of vertical sheets of magma (dyke swarms) controls tectonic and volcanic processes on Earth and other planets. Yet we know little of the 3D structure of dyke swarms. We use seismic reflection data, which provides ultrasound-like images of Earth's subsurface, to study a dyke swarm in 3D for the first time. We show that (1) dyke injection occurred in the Late Jurassic, (2) our data support previous models of dyke shape, and (3) seismic data provides a new way to view and study dykes.
Thomas B. Phillips, Christopher A.-L. Jackson, Rebecca E. Bell, and Oliver B. Duffy
Solid Earth, 9, 403–429, https://doi.org/10.5194/se-9-403-2018, https://doi.org/10.5194/se-9-403-2018, 2018
Short summary
Short summary
We use seismic reflection data and quantitative fault analyses to examine how a sub-crustal lineament, the Sorgenfrei–Tornquist Zone, is expressed within upper-crustal rift systems off the shore of southern Norway. We document repeated reactivation of upper-crustal faults, displaying both sinistral and dextral oblique activity, which we link to underlying lineament and regional tectonics. We show how sub-crustal lineaments influence rift evolution and offer insights into past tectonic events.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Volcanology
Impact of permeability evolution in igneous sills on hydrothermal flow and hydrocarbon transport in volcanic sedimentary basins
Analysing stress field conditions of the Colima Volcanic Complex (Mexico) by integrating finite-element modelling (FEM) simulations and geological data
Comment on “Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico)” by Urbani et al. (2020)
Cyclic activity of the Fuego de Colima volcano (Mexico): insights from satellite thermal data and nonlinear models
On the link between Earth tides and volcanic degassing
Ole Rabbel, Jörg Hasenclever, Christophe Y. Galerne, Olivier Galland, Karen Mair, and Octavio Palma
Solid Earth, 14, 625–646, https://doi.org/10.5194/se-14-625-2023, https://doi.org/10.5194/se-14-625-2023, 2023
Short summary
Short summary
This work investigates the interaction between magma in the subsurface and the rocks and fluids that surround it. The study investigates how fluids containing hydrocarbons like methane are moving in the rocks surrounding the magma. We show that the generation of fractures in the cooling magma has a significant impact on the flow paths of the fluid and that some of the hydrocabons may be converted to graphite and stored in the fractures within the intrusions.
Silvia Massaro, Roberto Sulpizio, Gianluca Norini, Gianluca Groppelli, Antonio Costa, Lucia Capra, Giacomo Lo Zupone, Michele Porfido, and Andrea Gabrieli
Solid Earth, 11, 2515–2533, https://doi.org/10.5194/se-11-2515-2020, https://doi.org/10.5194/se-11-2515-2020, 2020
Short summary
Short summary
In this work we provide a 2D finite-element modelling of the stress field conditions around the Fuego de Colima volcano (Mexico) in order to test the response of the commercial Linear Static Analysis software to increasingly different geological constraints. Results suggest that an appropriate set of geological and geophysical data improves the mesh generation procedures and the degree of accuracy of numerical outputs, aimed at more reliable physics-based representations of the natural system.
Gianluca Norini and Gianluca Groppelli
Solid Earth, 11, 2549–2556, https://doi.org/10.5194/se-11-2549-2020, https://doi.org/10.5194/se-11-2549-2020, 2020
Short summary
Short summary
We identified several problems in Urbani et al. (2020), showing that their model does not conform to the age and location of faulting, identification and delimitation of uplifted areas and apical depressions, temperature and lithological well log, and stratigraphic and radiometric data. Published data indicate that the pressurization of the Los Humeros volcanic complex (LHVC) magmatic–hydrothermal system driving resurgence faulting occurs at a greater depth.
Silvia Massaro, Antonio Costa, Roberto Sulpizio, Diego Coppola, and Lucia Capra
Solid Earth, 10, 1429–1450, https://doi.org/10.5194/se-10-1429-2019, https://doi.org/10.5194/se-10-1429-2019, 2019
Short summary
Short summary
The Fuego de Colima volcano (Mexico) shows a complex eruptive history, with periods of rapid and slow lava dome growth punctuated by explosive activity. Here we reconstructed the 1998–2018 average discharge rate by means of satellite thermal data and the literature. Using spectral and wavelet analysis, we found a multi-term cyclic behavior that is in good agreement with numerical modeling, accounting for a variable magmatic feeding system composed of a single or double magma chamber system.
Florian Dinger, Stefan Bredemeyer, Santiago Arellano, Nicole Bobrowski, Ulrich Platt, and Thomas Wagner
Solid Earth, 10, 725–740, https://doi.org/10.5194/se-10-725-2019, https://doi.org/10.5194/se-10-725-2019, 2019
Short summary
Short summary
Evidence for tidal impacts on volcanism have been gathered by numerous empirical studies. This paper elucidates whether a causal link from the tidal forces to a variation in the volcanic degassing can be traced analytically. We model the response of a simplified magmatic system to the local tidal gravity variations, find that the tide-induced dynamics may significantly alter the bubble coalescence rate, and discuss the consequences for volcanic degassing behaviour.
Cited articles
Allen, R. W., Berry, C., Henstock, T. J., Collier, J. S., Dondin, F. J.-Y.,
Rietbrock, A., Latchman, J. L., and Robertson, R. E. A.: 30 Years in the Life
of an Active Submarine Volcano: A Time – Lapse Bathymetry Study of the
Kick-'em-Jenny Volcano, Lesser Antilles, Geochem. Geophy. Geosy., 19,
715–731, https://doi.org/10.1002/2017GC007270, 2018.
Arnulf, A. F., Harding, A. J., Kent, G. M., Carbotte, S. M., Canales, J. P., and
Nedimovic, M. R.: Anatomy of an active submarine volcano, Geology, 42,
655–658, https://doi.org/10.1130/G35629.1, 2014.
Arnulf, A. F., Harding, A. J., Kent, G. M., and Wilcock, W. S. D.: Structure, Seismicity, and Accretionary Processes at the Hot Spot-Influenced Axial Seamount on the Juan de Fuca Ridge, J. Geophy. Res., 19, 4618–4646, https://doi.org/10.1029/2017JB015131, 2018.
Berndt, C., Skogly, O. P., Planke, S., Eldholm, O., and Mjelde, R.:
High-velocity break up-related sills in the Vøring Basin, off Norway, J.
Geophy. Res., 105, 28443–28454, https://doi.org/10.1029/2000JB900217, 2000.
Briais, A., Patriat, P., and Tapponnier, P.: Updated interpretation of
magnetic anomalies and seafloor spreading stages in the South China Sea:
Implications for the Tertiary tectonics of Southeast Asia, J. Geophy. Res.,
98, 6299–6328, https://doi.org/10.1029/92JB02280, 1993.
Bridges, N. T.: Ambient effects on basalt and rhyolite lavas under Venusian,
subaerial, and subaqueous conditions, J. Geophy. Res., 102, 9243–9255,
https://doi.org/10.1029/97JE00390, 1997.
Brown, A.R.: Interpretation of three-dimensional seismic data: AAPG Memoir
42, 6 ed., SEG Investigations in Geophysics, The American Association of Petroleum Geologists and the Society of Exploration Geophysicists, Tulsa, Oklahoma, USA, 2004.
Calvès, G., Schwab, A. M., Huuse, M., van Rensbergen, P., Clift, P. D.,
Tabrez, A. R., and Inam, A.: Cenozoic mud volcanoe activity along the Indus
Fan: offshore Pakistan, Basin Res., 22, 398–413,
https://doi.org/10.1111/j.1365-2117.2009.00448.x, 2009.
Calvès, G., Schwab, A. M., Huuse, M., Clift, P. D., Gaina, C., Jolley, D.,
Tabrez, A. R., and Inam, A.: Seismic volcanostratigraphy of the western
Indian rifted margin: The pre-Deccan igneous province, J. Geophy. Res., 116,
B01101, https://doi.org/10.1029/2010JB000862, 2011.
Cameselle, A. L., Ranero, C. R., Franke, D., and Barckhausen, U.: The
continent-ocean transition on the northwestern South China Sea, Basin Res.,
29, 73–95, https://doi.org/10.1111/bre.12137, 2017.
Carey, R., Soule, S. A., Manga, M., White, J. D. L., McPhie, J., Wysoczanski,
R., Jutzeler, M., Tani, K., Yoerger, D., Fornari, D., Caratori-Tontini, F.,
Houghton, B., Mitchell, S., Ikegami, F., Conway, C., Murch, A., Fauria, K.,
Jones, M., Cahalan, R., and McKenzie, W.: The largest deep-ocean silicic
volcanic eruption of the past century, Sci. Adv., 4, e1701121,
https://doi.org/10.1126/sciadv.1701121, 2018.
Cashman, K. V., Thornber, C. R., and Kauahikaua, J. P.: Cooling and
crystallization of lava in open channels, and the transition of pahoehoe
lava to `a`a, B. Volcanol., 61, 306–323, https://doi.org/10.1007/s004450050299,
1999.
Chadwick Jr, W. W., Merle, S. G., Baker, E. T., Walker, S. L., Resing, J. A.,
Butterfield, D. A., Anderson, M. O., Baumberger, T., and Bobbitt, A. M.: A
recent volcanic eruption discovered on the central Mariana back-arc
spreading center, Front. Earth Sci., 6, 172,
https://doi.org/10.3389/feart.2018.00172, 2018.
Chiu, M.: The P-wave velocity modeling of the transitional crust in northern
South China Sea continental margin, M.S. dissertation, National Taiwan Ocean
University, Keelung, 112 pp., 2010.
Clift, P.D., Lin, J., and ODP Leg 184 Scientific Party: Patterns of
extension and magmatism along the continent-ocean boundary, South China
margin, Geol. Soc. London Spec. Pub., 187, 489–510,
https://doi.org/10.1144/GSL.SP.2001.187.01.24, 2001.
Cocchi, L., Masetti, G., Muccini, F., and Carmisciano, C.: Geophysical
mapping of Vercelli Seamount: Implications for Miocene evolution of the
Tyrrhenian back arc basin, Geosci. Front., 7, 835–849,
https://doi.org/10.1016/j.gsf.2015.06.006, 2016.
Ding, W. W. and Li, J. B.: Propagated rifting in the Southwest Sub-basin,
South China Sea: Insights from analogue modelling, J. Geodynam., 100, 71–86,
https://doi.org/10.1016/j.jog.2016.02.004, 2016.
Duffield, W. A., Bacon, C. R., and Delaney, P. T.: Deformation of poorly
consolidated sediment during shallow emplacement of a basalt sill, Coso
Range, California, B. Volcanol., 48, 97–107,
https://doi.org/10.1007/BF01046545, 1986.
Embley, R. W. and Rubin, K. H.: Extensive young silicic volcanism produces
large deep submarine lava flows in the NE Lau Basin, B. Volcanol., 80, 36,
https://doi.org/10.1007/s00445-018-1211-7, 2018.
Expedition 349 Scientists: South China Sea tectonics: Opening of the South
China Sea and its implications for southeast Asian tectonics, climates, and
deep mantle processes since the late Mesozoic, International Ocean Discovery
Program Preliminary Report, 349, https://doi.org/10.14379/iodp.pr.349.2014,
2014.
Fan, C. Y., Xia, S. H., Zhao, F., Sun, J. L., Cao, J. H., Xu, H. L., and Wan,
K. Y.: New insights into the magmatism in the northern margin of the South
China Sea: Spatial features and volume of intraplate seamounts, Geochem.
Geophy. Geosy., 18, 2216–2239, https://doi.org/10.1002/2016GC006792, 2017.
Francis, P. W. and Thorpe, R. S.: Significance of lithologic and morphologic
variations of pyroclastic cones, Geol. Soc. Am. Bull., 85, 927–930,
https://doi.org/10.1130/0016-7606(1974)85<927:SOLAMV>2.0.CO;2, 1974.
Franke, D.: Rifting, lithosphere breakup and volcanism: comparison of
magma-poor and volcanic rifted margins, Mar. Petrol. Geol., 43,
63–87, https://doi.org/10.1016/j.marpetgeo.2012.11.003, 2013.
Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.,
Meresse, F., and Chamot-Rooke, N.: The final rifting evolution in the South
China Sea, Mar. Petrol. Geol., 58, 704–720,
https://doi.org/10.1016/j.marpetgeo.2013.11.020, 2014.
Funck, T.: Structure of the volcanic apron north of Gran Canaria deduced
from reflection seismic, bathymetric and borehole data, Ph.D. dissertation,
University of Kiel, 156 pp., 1996.
Giordano, D., Russell, J. K., and Dingwell, D. B.: Viscosity of magmatic liquids:
a model, Earth Planet. Sc. Lett., 271, 123–134,
https://doi.org/10.1016/j.epsl.2008.03.038, 2008.
Goto, Y. and McPhie, J.: Morphology and propagation styles of Miocene
submarine basanite lavas at Stanley, northwestern Tasmania, Australia, J.
Volcanol. Geoth. Res., 130, 307–328,
https://doi.org/10.1016/S0377-0273(03)00311-1, 2004.
Grosse, P. and Kervyn, M.: Morphometry of terrestrial shield volcanoes,
Geomorphology, 304, 1–14, https://doi.org/10.1016/j.geomorph.2017.12.017,
2018.
Greeley, R.: The role of lava tubes in Hawaiian volcanoes, U.S. Geological
Survey Professional Paper 1350, 1589–1602, 1987.
Gregg, T. K. P. and Fornari, D. J.: Long submarine lava flows: Observations
and results from numerical modeling, J. Geophy. Res., 103,
27517-27531, https://doi.org/10.1029/98JB02465, 1998.
Griffiths, R. W. and Fink, J. H.: Solidification and morphology of submarine
lavas: A dependence on extrusion rate, J. Geophy. Res., 97,
19729–19737, https://doi.org/10.1029/92JB01594, 1992.
Griffiths, R. W.: The Dynamics of lava flows, Annu. Rev. Fluid Mech., 32,
477–518, https://doi.org/10.1146/annurev.fluid.32.1.477, 2000.
Hall, R.: Cenozoic geological and plate tectonic evolution of SE Asia and
the SW Pacific: Computer-based reconstructions, model and animations, J.
Asian Earth Sci., 20, 353–431,
https://doi.org/10.1016/S1367-9120(01)00069-4, 2002.
He, Y. M. and Wen, L. X.: Seismic velocity structures and detailed features
of the D′′ discontinuity near the core-mantle boundary beneath eastern
Eurasia, Phys. Earth Planet. In., 189, 176–184,
https://doi.org/10.1016/j.pepi.2011.09.002, 2011.
Holcomb, R. T., Moore, J. G., Lipman, P. W., and Belderson, R. H.: Voluminous
submarine lava flows from Hawaiian volcanoes, Geology, 16, 400–404,
https://doi.org/10.1130/0091-7613(1988)016<0400:VSLFFH>2.3.CO;2, 1988.
Ikegami, F., McPhie, J., Carey, R., Mundana, R., Soule, S. A., and Jutzeler,
M.: The eruption of submarine rhyolite lavas and domes in the deep
ocean–Havre 2012, Kermadec Arc, Front. Earth Sci., 6, 147,
https://doi.org/10.3389/feart.2018.00147, 2018.
Jackson, C.A.-L.: Seismic reflection imaging and controls on the
preservation of ancient sill-fed magmatic vents, J. Geol. Soc. London, 169,
503–506, https://doi.org/10.1144/0016-76492011-147, 2012.
Judd, A. G. and Hovland, M. (Eds.): Seabed Fluid Flow: The Impact on
Geology, Biology and the Marine Environment, Cambridge University Press,
Cambridge, 2007.
Jutzeler, M., Marsh, R., Carey, R. J., White, J. D., Talling, P. J., and
Karlstrom, L.: On the fate of pumice rafts formed during the 2012 Havre
submarine eruption, Nat. Commun., 5, 3660,
https://doi.org/10.1038/ncomms4660, 2014.
Keen, C. E., Dafoe, L. T., and Dickie, K.: A volcanic province near the
western termination of the Charlie-Gibbs Fracture Zone at the rifted margin,
offshore northeast Newfoundland, Tectonics, 33, 1133–1153,
https://doi.org/10.1002/2014TC003547, 2014.
Lester, R., Van Avendonk, H. J. A., McIntosh, K., Lavier, L., Liu, C. S., Wang,
T. K., and Wu, F.: Rifting and magmatism in the northeastern South China Sea
from wide-angle tomography and seismic reflection imaging, J. Geophy. Res.,
119, 2305–2323, https://doi.org/10.1002/2013JB010639, 2014.
Li, C. F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y. J., Zhao, X. X., Liu,
Q. S., Kulhanek, D. K., Wang, J., Song, T. R., Zhao, J. F., Qiu, N., Guan, Y. X.,
Zhou, Z. Y., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y. F.,
Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W. W., Almeida, I. H., Huang,
X. L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q. Y., Liu, C. L., Liu, Z. F.,
Nagai, R. H., Peleo-Alampay, A., Su, X., Tejada, M. L. G., Trin, H. S., Yeh,
Y. C., Zhang, C. L., Zhang, F., and Zhang, G. L.: Ages and magnetic structures
of the South China Sea constrained by the deep tow magnetic surveys and IODP
Expedition 349, Geochem. Geophy. Geosy., 15, 4958–4983,
https://doi.org/10.1002/2014JB011686, 2014.
Li, C. F., Lin, J., Kulhanek, D. K., and the Expedition 349 Scientists:
Proceedings of the International Ocean Discovery Program, 349,
https://doi.org/10.14379/iodp.proc.349.103.2015, 2015.
Li, L., Clift, P. D., and Nguyen, H. T.: The sedimentary, magmatic and
tectonic evolution of the southwestern South China Sea revealed by seismic
stratigraphic analysis, Mar. Geophys. Res., 34, 341–365,
https://doi.org/10.1007/s11001-013-9171-y, 2013.
Li, P. and Liang, H.: Cenozoic magmatism in the Pearl River Mouth Basin and
its relationship to the basin evolution and petroleum accumulation,
Guangdong Geology, 9, 23–34, 1994.
Lüdmann, T. and Wong, H. K.: Neotectonic regime on the passive
continental margin of the northern South China Sea, Tectonophysics, 311,
113–138, https://doi.org/10.1016/S0040-1951(99)00155-9, 1999.
Lüdmann, T., Wong, H. K., and Wang, P.: Plio-Quaternary sedimentation
processes and neotectonics of the northern continental margin of the South
China Sea, Mar. Geol., 172, 331–356,
https://doi.org/10.1016/S0025-3227(00)00129-8, 2001.
Magee, C., Hunt-Stewart, E., and Jackson, C.A.-L.: Volcano growth mechanisms
and the role of sub-volcanic intrusions: Insights from 2-D seismic reflection
data, Earth Planet. Sc. Lett., 373, 41–53,
https://doi.org/10.1016/j.epsl.2013.04.041, 2013.
Miles, A. and Cartwright, J.: Hybrid flow sills: A new mode of igneous
sheet intrusion, Geology, 38, 343–346, https://doi.org/10.1130/G30414.1,
2010.
Newman, S. and Lowenstern, J. B.: VolatileCalc: a silicate
melt-H2O-CO2 solution model written in Visual Basic for excel,
Comput. Geosci., 28, 597–604, https://doi.org/10.1016/S0098-3004(01)00081-4,
2002,
Planke, S., Symonds, P., Alvestad, E., and Skogseid, J.: Seismic
volcanostratigraphy of large-volume basaltic extrusive complexes on rifted
margins, J. Geophy. Res., 105, 19335–19351,
https://doi.org/10.1029/1999JB900005, 2000.
Qin, G. Q.: Application of micropaleontology to the sequence stratigraphic
studies of late Cenozoic in the Pearl River Mouth Basin, Mar. Geol.
Quat. Geol., 16, 1–18, 1996.
Reynolds, P., Holford, S., Schofield, N., and Ross, A.: Three-dimensional
seismic imaging of ancient submarine lava flows: an example from the
southern Australian margin, Geochem. Geophy. Geosy., 18, 3840–3853,
https://doi.org/10.1002/2017GC007178, 2017.
Reynolds, P., Schofield, N., Brown, R. J., and Holford, S. P.: The architecture
of submarine monogenetic volcanoes-insights from 3-D seismic data, Basin Res.,
30, 437–451, https://doi.org/10.1111/bre.12230, 2018.
Robinson, J. E. and Eakins, B. W.: Calculated volumes of individual shield
volcanoes at the young end of the Hawaiian Ridge, J. Volcanol. Geoth. Res.,
151, 309–617, https://doi.org/10.1016/j.jvolgeores.2005.07.033, 2006.
Ru, K. and Pigott, J. D.: Episodic rifting and subsidence in the South China
Sea, AAPG Bull., 9, 1136–1155, 1986.
Shi, X., Kohn, B., Spencer, S., Guo, X., Li, Y., Yang, X., Shi, H., and Gleadow,
A.: Cenozoic denudation history of southern Hainan Island, South China Sea:
constraints from low temperature thermochronology, Tectonophysics, 504,
100–115, https://doi.org/10.1016/j.tecto.2011.03.007, 2011.
Sibuet, J.-C., Yeh, Y.-C., and Lee, C.-S.: Geodynamics of the South China
Sea, Tectonophysics, 692, 98–119,
https://doi.org/10.1016/j.tecto.2016.02.022, 2016.
Somoza, L., Gonzalez, F. J., Barker, S. J., Madureira, P., Medialdea, T., de
Ignacio, C., Lourenco, N., Leon, R., Vazquez, J. T., and Palomino, D.:
Evolution of submarine eruptive activity during the 2011–2012 El Hierro
event as documented by hydroacoustic images and remotely operated vehicle
observations, Geochem. Geophy. Geosy., 18, 3109–3137,
https://doi.org/10.1002/2016GC006733, 2017.
Sun, Q. L., Wu, S. G., Cartwright, J., and Dong, D. D.: Shallow gas and focused
fluid flow systems in the Pearl River Mouth Basin, northern South China Sea,
Mar. Geol., 315–318, 1–14, https://doi.org/10.1016/j.margeo.2012.05.003,
2012.
Sun, Q. L., Wu, S. G., Cartwright, J., Wang, S. H., Lu, Y. T., Chen, D. X., and
Dong, D. D.: Neogene igneous intrusions in the northern South China Sea:
evidence from high resolution three dimensional seismic data, Mar. Petrol.
Geol., 54, 83–95, https://doi.org/10.1016/j.marpetgeo.2014.02.014, 2014.
Sun, Q. L., Xie, X. N., Piper, D. J. W., Wu, J., and Wu, S. G.: Three dimensional
seismic anatomy of multi-stage mass transport deposits in the Pearl River
Mouth Basin, northern South China Sea: Their ages and kinematics, Mar.
Geol., 393, 93–108, https://doi.org/10.1016/j.margeo.2017.05.005, 2017.
Sun, Z., Xu, Z., Sun, L., Pang, X., Yan, C., Li, Y., Zhao, Z., Wang, Z.,
and Zhang, C.: The mechanism of post-rift fault activities in the Baiyun Sag,
Pearl River Mouth Basin, J. Asian Earth Sci., 89, 76–87,
https://doi.org/10.1016/j.jseaes.2014.02.018, 2014.
Taylor, B. and Hayes, D. E.: Origin and history of the South China Sea
Basin, in: The Tectonic and Geologic Evolution of Southeast Asian Seas and
Islands, edited by: Hayes, D. E., AGU, Washington, DC, 23–56, 1983.
Thomson, K.: Determining magma flow in sills, dykes and laccoliths and their
implications for sill emplacement mechanisms, B. Volcanol., 70, 183–201,
https://doi.org/10.1007/s00445-007-0131-8, 2007.
Thomson, K. and Hutton, D.: Geometry and growth of sill complexes: Insights
using 3-D seismic from the North Rockall Trough, B. Volcanol., 66, 364–375,
https://doi.org/10.1007/s00445-003-0320-z, 2004.
Tu, K., Flower, M. F. J., Carlson, R. W., Zhang, M., and Xie, G.: Sr, Nd, and Pb
isotopic compositions of Hainan basalts (south China): implications for a
subcontinental lithosphere Dupal source, Geology, 19, 567–569,
https://doi.org/10.1130/0091-7613(1991)019<0567:SNAPIC>2.3.CO;2, 1991.
Walker, G. P. L.: Basaltic-volcano systems, in: Magmatic Processes and Plate
Tectonics, edited by Pritchard, H.M., Alabaster, T., Harris, N.B.W., and
Neary, C.R., Geol. Soc. Spec. Pub., 76, 3–38, 1993.
Wang, P., Prell, W. L., and ODP 184 scientists: Proceedings of the Ocean
Drilling Program, Initial Reports, 184, Ocean Drilling Program, College
Station, TX 2000, 2000.
Wang, T. K., Chen, M. K., Lee, C. S., and Xia, K. Y.: Seismic imaging of the
transitional crust across the northeastern margin of the South China Sea,
Tectonophysics, 412, 237–254, https://doi.org/10.1016/j.tecto.2005.10.039,
2006.
Wei, X. D., Ruan, A. G., Zhao, M. H., Qiu, X. L., Li, J. B., Zhu, J. J., Wu, Z. L.,
and Ding, W. W.: A wide-angle OBS profile across the Dongsha uplift and
Chaoshan depression in the mid-northern South China Sea, Chinese J.
Geophys.-CH., 54, 3325–3335,
https://doi.org/10.3969/j.issn.0001-5733.2011.12.030, 2011.
Wheeler, P. and White, N.: Quest for dynamic topography: observations from Southeast Asia. Geology, 28, 963–966, https://doi.org/10.1130/0091-7613(2000)28<963:QFDTOF>2.0.CO;2, 2000.
Wu, S. G., Gao, J. W., Zhao, S. J., Lüdmann, T., Chen, D. X., and Spence,
G.: Post-rift uplift and focused fluid flow in the passive margin of
Northern South China Sea, Tectonophysics, 615–616, 27–39,
https://doi.org/10.1016/j.tecto.2013.12.013, 2014.
Xia, S. H., Zhao, D. P., Sun, J. L., and Huang, H. B.: Teleseismic imaging of
the mantle beneath southernmost China: new insights into the Hainan plume,
Gondwana Res., 36, 33–43, https://doi.org/10.1016/j.gr.2016.05.003, 2016.
Xie, Z. Y., Sun, L. T., Pang, X., Zheng, J. Y., and Sun, Z.: Origin of the
Dongsha Event in the South China Sea: Mar. Geophys. Res., 38, 357–371,
https://doi.org/10.1007/s11001-017-9321-8, 2017.
Xu, S. C., Yang, S. K., and Huang, L. F.: The application of sequence
stratigraphy to stratigraphic correlation, Earth Sci. Front., 2, 115–123,
1995.
Yan, P., Zhou, D., and Liu, Z. S.: A crustal structure profile across the
northern continental margin of the South China Sea, Tectonophysics, 338,
1–21, https://doi.org/10.1016/S0040-1951(01)00062-2, 2001.
Yan, P., Deng, H., Liu, H. L., Zhang, Z., and Jiang, Y.: The temporal and
spatial distribution of volcanism in the South China Sea region, J. Asian
Earth Sci., 27, 647–659, https://doi.org/10.1016/j.jseaes.2005.06.005, 2006.
Yan, P., Wang, Y. L., Liu, J., Zhong, G. J., and Liu, X. J.: Discovery of the
southwest Dongsha Island mud volcanoes amid the northern margin of the South
China Sea, Mar. Petrol. Geol., 88, 858–870,
https://doi.org/10.1016/j.marpetgeo.2017.09.021, 2017.
Yang, S., Qiu, Y., and Zhu, B.: Atlas of Geology and Geophysics of the South
China Sea, China Navigation Publications, Tianjin, 2015.
Yu, H. S.: Structure, stratigraphy and basin subsidence of Tertiary basins
along the Chinese southeastern continental margin, Tectonophysics, 253,
63–76, 1994.
Zhang, N. and Li, Z. X.: Formation of mantle “lone plumes” in the global
downwelling zone – A multiscale modelling of subduction-controlled plume
generation beneath the South China Sea, Tectonophysics, 723, 1–13,
https://doi.org/10.1016/j.tecto.2017.11.038, 2018.
Zhao, F., Wu, S. G., Sun, Q. L., Huuse, M., Li, W., and Wang, Z. J.: Submarine
volcanic mounds in the Pearl River Mouth Basin, northern South China Sea,
Mar. Geol., 355, 162–172, https://doi.org/10.1016/j.margeo.2014.05.018,
2014.
Zhao, F., Alves, T. M., Wu, S. G., Li, W., Huuse, M., Mi, L. J., Sun, Q. L., and
Ma, B. J.: Prolonged post-rift magmatism on highly extended crust of
divergent continental margins (Baiyun Sag, South China Sea), Earth Planet.
Sc. Lett., 445, 79–91, https://doi.org/10.1016/j.epsl.2016.04.001, 2016.
Zhao, S. J., Wu, S. G., Shi, H. S., Dong, D. D., Chen, D. X., and Wang, Y.:
Structures and dynamic mechanism related to the Dongsha Event at the
northern margin of the South China Sea, Prog. Geophys., 27,
1008–1019, https://doi.org/10.6038/j.issn.1004-2903.2012.03.022, 2012.
Zou, H., Li, P., and Rao, C.: Geochemistry of Cenozoic volcanic rocks in Zhu
Jiangkou Basin and its geodynamic significance, Geochimica, 24, 33–45, 1995.
Short summary
3-D seismic reflection data reveal that deepwater volcanoes have rugged basal contacts, which truncate underlying strata, and erupted lava flows that feed lobate lava fans. The lava flows (> 9 km long) account for 50–97 % of the total erupted volume. This indicates that deepwater volcanic edifices may thus form a minor component (~ 3–50 %) of the extrusive system and that accurate estimates of erupted volume require knowledge of the basal surface of genetically related lava flows.
3-D seismic reflection data reveal that deepwater volcanoes have rugged basal contacts, which...