Articles | Volume 10, issue 1
Solid Earth, 10, 293–305, 2019
https://doi.org/10.5194/se-10-293-2019
Solid Earth, 10, 293–305, 2019
https://doi.org/10.5194/se-10-293-2019
Research article
06 Feb 2019
Research article | 06 Feb 2019

Impact of terrestrial reference frame realizations on altimetry satellite orbit quality and global and regional sea level trends: a switch from ITRF2008 to ITRF2014

Sergei Rudenko et al.

Related authors

Earth's surface mass transport derived from GRACE, evaluated by GPS, ICESat, hydrological modeling and altimetry satellite orbits
Christian Gruber, Sergei Rudenko, Andreas Groh, Dimitrios Ampatzidis, and Elisa Fagiolini
Earth Surf. Dynam., 6, 1203–1218, https://doi.org/10.5194/esurf-6-1203-2018,https://doi.org/10.5194/esurf-6-1203-2018, 2018
Short summary
An empirical model of the thermospheric mass density derived from CHAMP satellite
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141–1152, https://doi.org/10.5194/angeo-36-1141-2018,https://doi.org/10.5194/angeo-36-1141-2018, 2018
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018,https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018,https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
A new phase in the production of quality-controlled sea level data
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017,https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021,https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Estimating ocean tide loading displacements with GPS and GLONASS
Bogdan Matviichuk, Matt King, and Christopher Watson
Solid Earth, 11, 1849–1863, https://doi.org/10.5194/se-11-1849-2020,https://doi.org/10.5194/se-11-1849-2020, 2020
Short summary
The imprints of contemporary mass redistribution on local sea level and vertical land motion observations
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019,https://doi.org/10.5194/se-10-1971-2019, 2019
Short summary
Time-lapse gravity and levelling surveys reveal mass loss and ongoing subsidence in the urban subrosion-prone area of Bad Frankenhausen, Germany
Martin Kobe, Gerald Gabriel, Adelheid Weise, and Detlef Vogel
Solid Earth, 10, 599–619, https://doi.org/10.5194/se-10-599-2019,https://doi.org/10.5194/se-10-599-2019, 2019
Short summary
Precision of continuous GPS velocities from statistical analysis of synthetic time series
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019,https://doi.org/10.5194/se-10-329-2019, 2019
Short summary

Cited articles

Abbondanza, C., Chin, T. M., Gross, R. S., Heflin, M. B., Parker, J., Soja, B. S., van Dam, T., and Wu, X.: JTRF2014, the JPL Kalman filter, and smoother realization of the International Terrestrial Reference System, J. Geophys. Res.-Sol. Ea., 122, 8474–8510, https://doi.org/10.1002/2017JB014360, 2017. a
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015. a
Altamimi, Z., Collilieux, X., and Métivier, L.: ITRF2008: an improved solution of the international terrestrial reference frame, J. Geod., 85, 457–473, https://doi.org/10.1007/s00190-011-0444-4, 2011. a, b
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016. a, b, c
Beckley, B. D., Lemoine, F. G., Luthcke, S. B., Ray, R. D., and Zelensky, N. P.: A reassessment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits, Geophys. Res. Lett., 34, L14608, https://doi.org/10.1029/2007GL030002, 2007. a, b, c
Download
Short summary
A terrestrial reference frame (TRF) realization is a basis for precise orbit determination of Earth-orbiting artificial satellites and sea level studies. We investigate the impact of a switch from an older TRF realization (ITRF2008) to a new one (ITRF2014) on the quality of orbits of three altimetry satellites (TOPEX/Poseidon, Jason-1, and Jason-2) for 1992–2015, but especially from 2009 onwards, and on altimetry products computed using the satellite orbits derived using ITRF2014.