Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-2245-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extracting microphysical fault friction parameters from laboratory and field injection experiments
Martijn P. A. van den Ende
CORRESPONDING AUTHOR
Université Côte d'Azur, IRD, CNRS, Observatoire de la Côte d'Azur, Géoazur, France
Marco M. Scuderi
Dipartimento di Scienze della Terra, La Sapienza Università di Roma, Rome, Italy
Frédéric Cappa
Université Côte d'Azur, IRD, CNRS, Observatoire de la Côte d'Azur, Géoazur, France
Institut Universitaire de France, Paris, France
Jean-Paul Ampuero
Université Côte d'Azur, IRD, CNRS, Observatoire de la Côte d'Azur, Géoazur, France
Related authors
Constanza Rodriguez Piceda, Zoë K. Mildon, Billy J. Andrews, Yifan Yin, Jean-Paul Ampuero, Martijn van den Ende, Claudia Sgambato, and Percy Galvez
EGUsphere, https://doi.org/10.5194/egusphere-2025-4694, https://doi.org/10.5194/egusphere-2025-4694, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We investigate how the spatial arrangement of normal faults in the Italian Apennines affects earthquake timing and size. Computer-based models show that wide networks with faults offset across-strike produce more irregular and variable earthquakes, while narrow networks with fewer across-strike faults lead to more regular events. Faster-moving faults are more sensitive to nearby positive stress interactions, highlighting the need to consider fault geometry in seismic hazard assessments.
Martijn P. A. van den Ende and Jean-Paul Ampuero
Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, https://doi.org/10.5194/se-12-915-2021, 2021
Short summary
Short summary
Distributed acoustic sensing (DAS) is an emerging technology that measures stretching of an optical-fibre cable. This technology can be used to record the ground shaking of earthquakes, which offers a cost-efficient alternative to conventional seismometers. Since DAS is relatively new, we need to verify that existing seismological methods can be applied to this new data type. In this study, we reveal several issues by comparing DAS with conventional seismometer data for earthquake localisation.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Constanza Rodriguez Piceda, Zoë K. Mildon, Billy J. Andrews, Yifan Yin, Jean-Paul Ampuero, Martijn van den Ende, Claudia Sgambato, and Percy Galvez
EGUsphere, https://doi.org/10.5194/egusphere-2025-4694, https://doi.org/10.5194/egusphere-2025-4694, 2025
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We investigate how the spatial arrangement of normal faults in the Italian Apennines affects earthquake timing and size. Computer-based models show that wide networks with faults offset across-strike produce more irregular and variable earthquakes, while narrow networks with fewer across-strike faults lead to more regular events. Faster-moving faults are more sensitive to nearby positive stress interactions, highlighting the need to consider fault geometry in seismic hazard assessments.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Małgorzata Chmiel, Maxime Godano, Marco Piantini, Pierre Brigode, Florent Gimbert, Maarten Bakker, Françoise Courboulex, Jean-Paul Ampuero, Diane Rivet, Anthony Sladen, David Ambrois, and Margot Chapuis
Nat. Hazards Earth Syst. Sci., 22, 1541–1558, https://doi.org/10.5194/nhess-22-1541-2022, https://doi.org/10.5194/nhess-22-1541-2022, 2022
Short summary
Short summary
On 2 October 2020, the French Maritime Alps were struck by an extreme rainfall event caused by Storm Alex. Here, we show that seismic data provide the timing and velocity of the propagation of flash-flood waves along the Vésubie River. We also detect 114 small local earthquakes triggered by the rainwater weight and/or its infiltration into the ground. This study paves the way for future works that can reveal further details of the impact of Storm Alex on the Earth’s surface and subsurface.
Martijn P. A. van den Ende and Jean-Paul Ampuero
Solid Earth, 12, 915–934, https://doi.org/10.5194/se-12-915-2021, https://doi.org/10.5194/se-12-915-2021, 2021
Short summary
Short summary
Distributed acoustic sensing (DAS) is an emerging technology that measures stretching of an optical-fibre cable. This technology can be used to record the ground shaking of earthquakes, which offers a cost-efficient alternative to conventional seismometers. Since DAS is relatively new, we need to verify that existing seismological methods can be applied to this new data type. In this study, we reveal several issues by comparing DAS with conventional seismometer data for earthquake localisation.
Berend A. Verberne, Martijn P. A. van den Ende, Jianye Chen, André R. Niemeijer, and Christopher J. Spiers
Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, https://doi.org/10.5194/se-11-2075-2020, 2020
Short summary
Short summary
The strength of fault rock plays a central role in determining the distribution of crustal seismicity. We review laboratory work on the physics of fault friction at low shearing velocities carried out at Utrecht University in the past 2 decades. Key mechanical data and post-mortem microstructures can be explained using a generalized, physically based model for the shear of gouge-filled faults. When implemented into numerical fault-slip codes, this offers new ways to simulate the seismic cycle.
Cited articles
Aharonov, E. and Scholz, C. H.: A
Physics-Based Rock Friction Constitutive Law: Steady State Friction, J. Geophys. Res.-Sol. Ea., 123, 1591–1614,
https://doi.org/10.1002/2016JB013829, 2018. a
Beeler, N. M.,
Tullis, T. E., Blanpied, M. L., and Weeks, J. D.: Frictional Behavior of Large Displacement
Experimental Faults, J. Geophys. Res.-Sol. Ea., 101, 8697–8715, https://doi.org/10.1029/96JB00411, 1996. a
Blanpied, M. L., Marone, C. J., Lockner, D. A., Byerlee, J. D., and King, D. P.: Quantitative
Measure of the Variation in Fault Rheology Due to Fluid-Rock Interactions,
J. Geophys. Res.-Sol. Ea., 103, 9691–9712, https://doi.org/10.1029/98JB00162, 1998. a, b
Boulton, C., Niemeijer, A. R., Hollis, C. J., Townend, J., Raven, M. D.,
Kulhanek, D. K., and Shepherd, C. L.: Temperature-Dependent Frictional Properties of Heterogeneous
Hikurangi Subduction Zone Input Sediments, ODP Site 1124, Tectonophysics, 757, 123–139,
https://doi.org/10.1016/j.tecto.2019.02.006, 2019. a
Brechet, Y. and Estrin, Y.: The Effect of Strain
Rate Sensitivity on Dynamic Friction of Metals, Scr. Metall. Mater., 30, 1449–1454,
https://doi.org/10.1016/0956-716X(94)90244-5, 1994. a
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., and
Brodsky, E. E.: Roughness of Fault Surfaces over Nine Decades of Length Scales,
J. Geophys. Res.-Sol. Ea., 117, B08409, https://doi.org/10.1029/2011JB009041, 2012. a
Carpenter, B., Collettini, C., Viti, C., and Cavallo, A.: The Influence of Normal Stress and
Sliding Velocity on the Frictional Behaviour of Calcite at Room Temperature: Insights from
Laboratory Experiments and Microstructural Observations, Geophys. J. Int., 205, 548–561,
https://doi.org/10.1093/gji/ggw038, 2016. a
Catalli,
F., Rinaldi, A. P., Gischig, V., Nespoli, M., and Wiemer, S.: The Importance of Earthquake
Interactions for Injection-Induced Seismicity: Retrospective Modeling of the Basel Enhanced
Geothermal System, Geophys. Res. Lett., 43, 4992–4999, https://doi.org/10.1002/2016GL068932, 2016. a
Chen, J. and Niemeijer, A. R.: Seismogenic
Potential of a Gouge-Filled Fault and the Criterion for Its Slip Stability:
Constraints From a Microphysical Model,
J. Geophys. Res.-Sol. Ea., 122, 9658–9688, https://doi.org/10.1002/2017JB014228, 2017. a
Chen, J., Verberne, B. A., and
Spiers, C. J.: Effects of Healing on the Seismogenic Potential of Carbonate Fault Rocks:
Experiments on Samples from the Longmenshan Fault, Sichuan, China,
J. Geophys. Res.-Sol. Ea., 120, 5479–5506, https://doi.org/10.1002/2015JB012051, 2015. a
Chen, J., Niemeijer, A. R., and
Spiers, C. J.: Microphysically Derived Expressions for Rate-and-State Friction Parameters, a,
b, and Dc, J. Geophys. Res.-Sol. Ea., 122,
9627–9657, https://doi.org/10.1002/2017JB014226, 2017. a, b
Chester, F. M.: Effects of Temperature on Friction:
Constitutive Equations and Experiments with Quartz Gouge, J. Geophys. Res., 99, 7247,
https://doi.org/10.1029/93JB03110, 1994. a, b
Cubas, N., Lapusta,
N., Avouac, J.-P., and Perfettini, H.: Numerical Modeling of Long-Term Earthquake Sequences on the
NE Japan Megathrust: Comparison with Observations and Implications for Fault Friction,
Earth Planet. Sc. Lett., 419, 187–198, https://doi.org/10.1016/j.epsl.2015.03.002, 2015. a
Dempsey, D. and Riffault, J.: Response of
Induced Seismicity to Injection Rate Reduction: Models of Delay, Decay,
Quiescence, Recovery, and Oklahoma, Water Resour. Res., 55, 656–681,
https://doi.org/10.1029/2018WR023587, 2019. a
den Hartog, S. and Spiers, C.: Influence
of Subduction Zone Conditions and Gouge Composition on Frictional Slip Stability of Megathrust
Faults, Tectonophysics, 600, 75–90, https://doi.org/10.1016/j.tecto.2012.11.006, 2013. a
Derode, B.,
Guglielmi, Y., Barros, L. D., and Cappa, F.: Seismic Responses to Fluid Pressure Perturbations in
a Slipping Fault, Geophys. Res. Lett., 42, 3197–3203, https://doi.org/10.1002/2015GL063671, 2015. a
Dieterich, J.: A Constitutive Law for Rate of Earthquake
Production and Its Application to Earthquake Clustering, J. Geophys. Res.-Sol. Ea., 99,
2601–2618, https://doi.org/10.1029/93JB02581, 1994. a
Dieterich, J. H.: Modeling of Rock Friction:
1. Experimental Results and Constitutive Equations, J. Geophys. Res., 84, 2161,
https://doi.org/10.1029/JB084iB05p02161, 1979. a, b
Duboeuf, L., De Barros, L., Cappa, F., Guglielmi, Y., Deschamps, A., and
Seguy, S.: Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a
Fractured Zone in a Carbonate Reservoir: Injection-Induced (A)Seismic
Motions, J. Geophys. Res.-Sol. Ea., 122, 8285–8304, https://doi.org/10.1002/2017JB014535, 2017. a, b
Ellsworth, W. L.: Injection-Induced Earthquakes,
Science, 341, 1225942, https://doi.org/10.1126/science.1225942, 2013. a
Elsworth, D., Spiers,
C. J., and Niemeijer, A. R.: Understanding Induced Seismicity, Science, 354, 1380–1381,
https://doi.org/10.1126/science.aal2584, 2016. a
Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.:
Emcee: The MCMC Hammer, Publ. Astron. Soc. Pacific, 125, 306–312, https://doi.org/10.1086/670067, 2013. a
Frye, K. M. and Marone, C.: The Effect of Particle
Dimensionality on Granular Friction in Laboratory Shear Zones, Geophys. Res. Lett., 29,
22-1–22-4, https://doi.org/10.1029/2002GL015709, 2002. a
Goebel, T. H. W. and Brodsky, E. E.: The Spatial
Footprint of Injection Wells in a Global Compilation of Induced Earthquake Sequences, Science,
361, 899–904, https://doi.org/10.1126/science.aat5449, 2018. a
Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., and Elsworth, D.: Seismicity Triggered by
Fluid Injection–Induced Aseismic Slip, Science, 348, 1224–1226, https://doi.org/10.1126/science.aab0476,
2015. a
Hazzard, J. F. and Mair, K.: The Importance of the
Third Dimension in Granular Shear, Geophys. Res. Lett., 30, 1708, https://doi.org/10.1029/2003GL017534, 2003. a
He, C., Tan, W., and Zhang, L.: Comparing Dry
and Wet Friction of Plagioclase: Implication to the Mechanism of Frictional Evolution Effect
at Hydrothermal Conditions, J. Geophys. Res.-Sol. Ea., 121, 6365–6383,
https://doi.org/10.1002/2016JB012834, 2016. a
Hunfeld, L. B.,
Niemeijer, A. R., and Spiers, C. J.: Frictional Properties of Simulated Fault Gouges from
the Seismogenic Groningen Gas Field Under In Situ P-T-Chemical
Conditions, J. Geophys. Res.-Sol. Ea., 122,
8969–8989, https://doi.org/10.1002/2017JB014876, 2017. a, b
Ikari, M. J., Carpenter,
B. M., and Marone, C.: A Microphysical Interpretation of Rate- and State-Dependent Friction for
Fault Gouge, Geochem. Geophy. Geosy. 17, 1660–1677, https://doi.org/10.1002/2016GC006286, 2016. a
Jeanne, P., Guglielmi, Y., Rutqvist, J., Nussbaum, C., and Birkholzer, J.: Permeability
Variations Associated With Fault Reactivation in a Claystone Formation Investigated by
Field Experiments and Numerical Simulations, J. Geophys. Res.-Sol. Ea., 123, 1694–1710,
https://doi.org/10.1002/2017JB015149, 2018. a
Kaproth, B. M.,
Kacewicz, M., Muhuri, S., and Marone, C.: Permeability and Frictional Properties of
Halite-Clay-Quartz Faults in Marine-Sediment: The Role of Compaction and Shear,
Mar. Petrol. Geol., 78, 222–235, https://doi.org/10.1016/j.marpetgeo.2016.09.011, 2016. a
Kroll, K. A.,
Richards-Dinger, K. B., and Dieterich, J. H.: Sensitivity of Induced Seismic Sequences to
Rate-and-State Frictional Processes, J. Geophys. Res.-Sol. Ea., 122, 10207–10219,
https://doi.org/10.1002/2017JB014841, 2017. a
Marone, C., Raleigh, C. B.,
and Scholz, C. H.: Frictional Behavior and Constitutive Modeling of Simulated Fault Gouge,
J. Geophys. Res., 95, 7007, https://doi.org/10.1029/JB095iB05p07007, 1990. a
McClure, M. W. and Horne, R. N.: Investigation of
Injection-Induced Seismicity Using a Coupled Fluid Flow and Rate/State Friction Model, Geophysics,
76, WC181–WC198, https://doi.org/10.1190/geo2011-0064.1, 2011. a
Noda, H., Sawai, M., and
Shibazaki, B.: Earthquake Sequence Simulations with Measured Properties for JFAST Core
Samples, Philos. Trans. Roy. Soc. A-Math., 375, 20160003, https://doi.org/10.1098/rsta.2016.0003, 2017. a
Putelat, T., Dawes, J. H.,
and Willis, J. R.: On the Microphysical Foundations of Rate-and-State Friction,
J. Mech. Phys. Solid., 59, 1062–1075, https://doi.org/10.1016/j.jmps.2011.02.002, 2011. a
Reinen, L. A. and Weeks, J. D.: Determination of Rock
Friction Constitutive Parameters Using an Iterative Least Squares Inversion Method,
J. Geophys. Res., 98, 15937, https://doi.org/10.1029/93JB00780, 1993. a
Reinen, L. A., Tullis, T. E.,
and Weeks, J. D.: Two-Mechanism Model for Frictional Sliding of Serpentinite, Geophys. Res. Lett.,
19, 1535–1538, https://doi.org/10.1029/92GL01388, 1992. a
Rivet,
D., Barros, L. D., Guglielmi, Y., Cappa, F., Castilla, R., and Henry, P.: Seismic Velocity Changes
Associated with Aseismic Deformations of a Fault Stimulated by Fluid Injection,
Geophys. Res. Lett., 43, 9563–9572, https://doi.org/10.1002/2016GL070410, 2016. a
Rubin, A. M. and Ampuero, J.-P.: Earthquake
Nucleation on (Aging) Rate and State Faults, J. Geophys. Res.-Sol. Ea., 110, B11312,
https://doi.org/10.1029/2005JB003686, 2005. a
Ruina, A.: Slip Instability and State Variable Friction Laws,
J. Geophys. Res.-Sol. Ea., 88, 10359–10370, https://doi.org/10.1029/JB088iB12p10359, 1983. a, b
Rutqvist, J.,
Birkholzer, J., Cappa, F., and Tsang, C. F.: Estimating Maximum Sustainable Injection Pressure
during Geological Sequestration of CO2 Using Coupled Fluid Flow and Geomechanical Fault-Slip
Analysis, Energ. Convers. Manage., 48, 1798–1807, https://doi.org/10.1016/j.enconman.2007.01.021, 2007. a
Sawai,
M., Niemeijer, A. R., Plümper, O., Hirose, T., and Spiers, C. J.: Nucleation of Frictional
Instability Caused by Fluid Pressurization in Subducted Blueschist, Geophys. Res. Lett., 43,
2543–2551, https://doi.org/10.1002/2015GL067569, 2016. a
Schoenball, M. and Ellsworth, W. L.: A
Systematic Assessment of the Spatiotemporal Evolution of Fault Activation Through
Induced Seismicity in Oklahoma and Southern Kansas, J. Geophys. Res.-Sol. Ea., 122,
10189–10206, https://doi.org/10.1002/2017JB014850, 2017. a
Scholz, C. H.: The Mechanics of Earthquakes and
Faulting, 3rd Edn., Cambridge University Press, Cambridge, https://doi.org/10.1017/9781316681473,
2019. a
Scuderi, M.,
Collettini, C., and Marone, C.: Frictional Stability and Earthquake Triggering during Fluid
Pressure Stimulation of an Experimental Fault, Earth Planet. Sc. Lett., 477, 84–96,
https://doi.org/10.1016/j.epsl.2017.08.009, 2017. a, b
Scuderi, M. M. and Collettini, C.: Fluid
Injection and the Mechanics of Frictional Stability of Shale-Bearing Faults,
J. Geophys. Res.-Sol. Ea., 123, 8364–8384, https://doi.org/10.1029/2018JB016084, 2018. a
Scuderi, M. M., Marone, C., Tinti, E., Di Stefano, G., and Collettini, C.: Precursory Changes in
Seismic Velocity for the Spectrum of Earthquake Failure Modes, Nat. Geosci., 9, 695–700,
https://doi.org/10.1038/ngeo2775, 2016. a, b
Segall, P. and Rice, J. R.: Dilatancy, Compaction, and
Slip Instability of a Fluid-Infiltrated Fault, J. Geophys. Res.-Sol. Ea., 100, 22155–22171,
https://doi.org/10.1029/95JB02403, 1995. a, b
Sleep, N. H.: Physical Basis of Evolution Laws for Rate and State
Friction, Geochem. Geophy. Geosy., 6, Q11008, https://doi.org/10.1029/2005GC000991, 2005. a
Takahashi, M., van den Ende, M. P. A., Niemeijer, A. R., and Spiers, C. J.: Shear Localization
in a Mature Mylonitic Rock Analog during Fast Slip, Geochem. Geophy. Geosy., 18, 513–530,
https://doi.org/10.1002/2016GC006687, 2017. a
Tenthorey, E., Cox, S. F.,
and Todd, H. F.: Evolution of Strength Recovery and Permeability during Fluid–Rock Reaction in
Experimental Fault Zones, Earth Planet. Sc. Lett., 206, 161–172,
https://doi.org/10.1016/S0012-821X(02)01082-8, 2003. a
van den Ende, M., Scuderi, M., Cappa, F., and Ampuero, J.-P.: Extracting microphysical fault friction parameters from laboratory-and field injection experiments, figshare, https://doi.org/10.6084/m9.figshare.12613007, 2020. a
van den Ende, M. P. A. and
Niemeijer, A. R.: Time-Dependent Compaction as a Mechanism for Regular
Stick-Slips, Geophys. Res. Lett., 45, 5959–5967, https://doi.org/10.1029/2018GL078103, 2018.
a
van den Ende, M. P. A., Chen, J., Ampuero, J. P., and Niemeijer, A. R.: A Comparison between
Rate-and-State Friction and Microphysical Models, Based on Numerical Simulations of Fault Slip,
Tectonophysics, 733, 273–295, https://doi.org/10.1016/j.tecto.2017.11.040, 2018. a, b, c, d
Verberne, B. A., van den Ende, M. P. A., Chen, J., Niemeijer, A. R., and Spiers, C. J.: The physics of fault friction: insights from experiments on simulated gouges at low shearing velocities, Solid Earth, 11, 2075–2095, https://doi.org/10.5194/se-11-2075-2020, 2020. a
Wynants-Morel, N., Cappa, F., Barros, L. D., and Ampuero, J.-P.: Stress Perturbation From
Aseismic Slip Drives The Seismic Front During Fluid Injection In A Permeable Fault,
J. Geophys. Res.-Sol. Ea., 125, e2019JB019179, https://doi.org/10.1029/2019JB019179, 2020. a
Short summary
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes when existing geological faults inside the reservoir are (re-)activated. To assess the hazard associated with this, previous studies have conducted experiments in which fluids have been injected into centimetre- and decimetre-scale faults. In this work, we analyse and model these experiments. To this end, we propose a new approach through which we extract the model parameters that govern slip on faults.
The injection of fluids (like wastewater or CO2) into the subsurface could cause earthquakes...